BVDSS = 400 V RDS(on) typ = 0.8 Ω HFP730 ID = 5.5 A 400V N-Channel MOSFET TO-220 FEATURES 1 Originative New Design Superior Avalanche Rugged Technology Robust Gate Oxide Technology Very Low Intrinsic Capacitances Excellent Switching Characteristics Unrivalled Gate Charge : 18 nC (Typ.) Extended Safe Operating Area Lower RDS(ON) : 0.8 Ω (Typ.) @VGS=10V Absolute Maximum Ratings Symbol 2 3 1.Gate 2. Drain 3. Source D G S TC=25℃ unless otherwise specified Parameter Value Units 400 V VDSS Drain-Source Voltage ID Drain Current – Continuous (TC = 25℃) 5.5 A Drain Current – Continuous (TC = 100℃) 3.5 A IDM Drain Current – Pulsed 22 A VGS Gate-Source Voltage ±30 V EAS Single Pulsed Avalanche Energy (Note 2) 330 mJ IAR Avalanche Current (Note 1) 5.5 A EAR Repetitive Avalanche Energy (Note 1) 7.3 mJ dv/dt Peak Diode Recovery dv/dt (Note 3) 5.5 V/ns PD Power Dissipation (TC = 25℃) - Derate above 25℃ (Note 1) TJ, TSTG Operating and Storage Temperature Range TL Maximum lead temperature for soldering purposes, 1/8” from case for 5 seconds 73 W 0.58 -55 to +150 W/℃ 300 ℃ ℃ Thermal Resistance Characteristics Junction-to-Case -- Max. 1.71 Units RθJC Symbol Parameter Typ. RθCS Case-to-Sink 0.5 -- ℃/W RθJA Junction-to-Ambient -- 62.5 ◎ SEMIHOW REV.A0,May 2006 HFP730 May 2006 Symbol Parameter unless otherwise specified Test Conditions Min Typ Max Units On Characteristics VGS RDS(ON) Gate Threshold Voltage VDS = VGS, ID = 250 ㎂ 2.5 -- 4.5 V Static Drain-Source On-Resistance VGS = 10 V, ID = 2.75 A -- 0.8 1.0 Ω 400 -- -- V ID = 250 ㎂, Referenced to25℃ -- 0.4 -- V/℃ VDS = 400 V, VGS = 0 V -- -- 1 ㎂ VDS = 320 V, TC = 125℃ -- -- 10 ㎂ Off Characteristics BVDSS Drain-Source Breakdown Voltage ΔBVDSS Breakdown Voltage Temperature /ΔTJ Coefficient IDSS Zero Gate Voltage Drain Current VGS = 0 V, ID = 250 ㎂ IGSSF Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V -- -- 100 ㎁ IGSSR Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V -- -- -100 ㎁ -- 760 990 ㎊ -- 95 125 ㎊ -- 15 20 ㎊ -- 12 15 ㎱ -- 40 90 ㎱ -- 60 130 ㎱ -- 40 90 ㎱ -- 18 23 nC -- 4.0 -- nC -- 8.3 -- nC Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz Switching Characteristics td(on) Turn-On Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd VDS = 200 V, ID = 5.5 A, RG = 25 Ω (Note 4,5) VDS = 320 V, ID = 5.5 A, VGS = 10 V (Note 4,5) Gate-Drain Charge Source-Drain Diode Maximum Ratings and Characteristics IS Continuous Source-Drain Diode Forward Current -- -- 5.5 ISM Pulsed Source-Drain Diode Forward Current -- -- 22 VSD Source-Drain Diode Forward Voltage IS = 5.5 A, VGS = 0 V -- -- 1.5 V trr Reverse Recovery Time -- 235 -- ㎱ Qrr Reverse Recovery Charge IS = 5.5 A, VGS = 0 V diF/dt = 100 A/μs (Note 4) -- 1.5 -- μC A Notes ; 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. IAS=5.5A, VDD=50V, RG=25Ω, Starting TJ =25°C 3. ISD≤5.5A, di/dt≤300A/μs, VDD≤BVDSS , Starting TJ =25 °C 4. Pulse Test : Pulse Width ≤ 300μs, Duty Cycle ≤ 2% 5. Essentially Independent of Operating Temperature ◎ SEMIHOW REV.A0,May 2006 HFP730 Electrical Characteristics TC=25 °C HFP730 Typical Characteristics VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V Bottom : 5.5 V Top : ID, Drain Current [A] 1 10 ID , Drain Current [A] 1 10 0 10 150℃ -55℃ 0 10 25℃ ※ Note 1. VDS = 50V 2. 250μ s Pulse Test ※ Note : 1. 250μ s Pulse Test 2. TC = 25℃ -1 10 -1 -1 0 10 10 1 10 10 2 4 6 8 10 VGS , Gate-Source Voltage [V] VDS, Drain-Source Voltage [V] Figure 1. On Region Characteristics Figure 2. Transfer Characteristics IDR , Reverse Drain Current [A] RDS(on) , [Ω] Drain-Source On-Resistance 4 3 VGS = 10V VGS = 20V 2 1 1 10 0 10 150℃ 25℃ ※ Note : 1. VGS = 0V 2. 250μ s Pulse Test ※ Note : TJ = 25℃ -1 0 3 6 9 12 15 18 21 24 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ID , Drain Current [A] VSD , Source-Drain Voltage [V] Figure 3. On Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature 1400 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd 1200 Ciss 1000 Capacitances [pF] 10 800 Coss 600 ※ Note ; 1. VGS = 0 V 2. f = 1 MHz Crss 400 200 12 VGS, Gate-Source Voltage [V] 0 VDS = 80V 10 VDS = 200V VDS = 320V 8 6 4 2 ※ Note : ID = 5.5A 0 -1 10 0 0 10 1 10 0 4 8 12 16 20 VDS, Drain-Source Voltage [V] QG, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ◎ SEMIHOW REV.A0,May 2006 (continued) 3.0 RDS(ON), (Normalized) Drain-Source On-Resistance 1.2 BVDSS, (Normalized) Drain-Source Breakdown Voltage HFP730 Typical Characteristics 1.1 1.0 ※ Note : 1. VGS = 0 V 2. ID = 250 μA 0.9 0.8 -100 -50 0 50 100 150 2.5 2.0 1.5 1.0 ※ Note : 1. VGS = 10 V 2. ID = 2.25 A 0.5 0.0 -100 200 -50 0 50 100 150 200 o TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs Temperature Figure 8. On-Resistance Variation vs Temperature o 2 6 10 Operation in This Area is Limited by R DS(on) 5 1 1 ms 10 ms DC 0 10 4 3 2 -1 10 ※ Notes : 1 o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse 0 25 -2 10 0 10 1 2 10 3 10 10 50 75 Figure 9. Maximum Safe Operating Area 10 100 125 150 TC, Case Temperature [℃] VDS, Drain-Source Voltage [V] Figure 10. Maximum Drain Current vs Case Temperature 0 D = 0 .5 Zθ JC(t), Thermal Response ID, Drain Current [A] ID, Drain Current [A] 100 μs 10 0 .2 ※ N o te s : 1 . Z θ J C( t) = 1 .7 1 ℃ /W M a x . 2 . D u ty F a c to r , D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C( t) 0 .1 10 -1 0 .0 5 0 .0 2 0 .0 1 10 PDM s in g le p u ls e t1 -2 10 -5 10 -4 10 -3 10 -2 10 -1 t2 10 0 10 1 t 1 , S q u a r e W a v e P u ls e D u r a tio n [s e c ] Figure 11. Transient Thermal Response Curve ◎ SEMIHOW REV.A0,May 2006 HFP730 Fig 12. Gate Charge Test Circuit & Waveform 50KΩ 12V VGS Same Type as DUT 200nF Qg 10V 300nF VDS VGS Qgs Qgd DUT 3mA Charge Fig 13. Resistive Switching Test Circuit & Waveforms RL VDS VDS 90% VDD RG ( 0.5 rated VDS ) Vin DUT 10V 10% tr td(on) td(off) t on tf t off Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD L VDS VDD ID BVDSS IAS RG 10V ID (t) DUT VDS (t) VDD tp Time ◎ SEMIHOW REV.A0,May 2006 HFP730 Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT + VDS _ IS L Driver RG VGS VGS ( Driver ) Same Type as DUT VDD • dv/dt controlled by RG • IS controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V IFM , Body Diode Forward Current IS ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt Vf VDD Body Diode Forward Voltage Drop ◎ SEMIHOW REV.A0,May 2006 HFP730 Package Dimension ◎ SEMIHOW REV.A0,May 2006 HFP730 Reliability Qualification A. High Temperature Reverse Bias ( HTRB ) The purpose of this test is to determine the sensitivity of the product to mobile ion contamination and related failure mechanisms. Conditions: JESD22-A108, JIS C 7021 B-8 TA=150℃ VDS=80% max rated VDS Sample Size #of Fail Cum. Fail% 168hrs 300hrs 45 0 0.0% 0 0 B. High Temperature Gate Bias ( HTGB ) The purpose of this test is to determine the sensitivity of the product to mobile ion contamination between gate and source and related failure mechanisms. TA=150℃ VDS= VGSS max Sample Size #of Fail Cum. Fail% 168hrs 300hrs 45 0 0.0% 0 0 C. Pressure Cooker Test ( PCT ) Autoclave ( ACLV ) The purpose of this test is to evaluate the moisture resistance of non-hermetic components under pressure/temperature conditions. Conditions: JESD22-A102, JIS C 7021 A-6 TA=121℃ RH=100% P=1 atmosphere (15psig) Sample Size #of Fail Cum. Fail% 48hrs 45 0 0.0% 0 ◎ SEMIHOW REV.A0,May 2006 HFP730 Reliability Qualification ( Continued ) D. Temperature Humidity Bias ( THBT ) The purpose of this test is to evaluate the moisture resistance of non-hermetic components. The addition of voltage bias accelerates the corrosive effect after moisture penetration has taken place. with time, this is a catastrophically destructive test. Conditions: JESD22-A101 TA=85℃ RH=85% VDS=80% max rated VDS Sample Size #of Fail Cum. Fail% 168hrs 300hrs 45 0 0.0% 0 0 E. High Temperature Storage Life ( HTSL ) The purpose of this test is to expose time/temperature failure mechanisms and to evaluate long-term strong stability. Conditions: JESD22-A103, JIS C 7021 B-10 TA=Tstg(max) Sample Size #of Fail Cum. Fail% 168hrs 300hrs 45 0 0.0% 0 0 F. Temperature Cycle Air-to Air ( TMCL ) The purpose of this test is to evaluate the ability of the device to withstand both exposure to extreme temperature and the transition between temperature extreme, and to exposure excessive thermal mismatch between materials. Conditions: JESD22-A104, JIS C 7021 A-4 Air to air, -65℃~150℃, 15 minutes dwell time at each temperature Sample Size #of Fail Cum. Fail% 100cycles 200cycles 45 0 0.0% 0 0 ◎ SEMIHOW REV.A0,May 2006