ETC HFP730

BVDSS = 400 V
RDS(on) typ = 0.8 Ω
HFP730
ID = 5.5 A
400V N-Channel MOSFET
TO-220
FEATURES
1
Originative New Design
Superior Avalanche Rugged Technology
Robust Gate Oxide Technology
Very Low Intrinsic Capacitances
Excellent Switching Characteristics
Unrivalled Gate Charge : 18 nC (Typ.)
Extended Safe Operating Area
Lower RDS(ON) : 0.8 Ω (Typ.) @VGS=10V
‰
‰
‰
‰
‰
‰
‰
‰
Absolute Maximum Ratings
Symbol
2
3
1.Gate 2. Drain 3. Source
D
G
S
TC=25℃ unless otherwise specified
Parameter
Value
Units
400
V
VDSS
Drain-Source Voltage
ID
Drain Current
– Continuous (TC = 25℃)
5.5
A
Drain Current
– Continuous (TC = 100℃)
3.5
A
IDM
Drain Current
– Pulsed
22
A
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulsed Avalanche Energy
(Note 2)
330
mJ
IAR
Avalanche Current
(Note 1)
5.5
A
EAR
Repetitive Avalanche Energy
(Note 1)
7.3
mJ
dv/dt
Peak Diode Recovery dv/dt
(Note 3)
5.5
V/ns
PD
Power Dissipation (TC = 25℃)
- Derate above 25℃
(Note 1)
TJ, TSTG
Operating and Storage Temperature Range
TL
Maximum lead temperature for soldering purposes,
1/8” from case for 5 seconds
73
W
0.58
-55 to +150
W/℃
300
℃
℃
Thermal Resistance Characteristics
Junction-to-Case
--
Max.
1.71
Units
RθJC
Symbol
Parameter
Typ.
RθCS
Case-to-Sink
0.5
--
℃/W
RθJA
Junction-to-Ambient
--
62.5
◎ SEMIHOW REV.A0,May 2006
HFP730
May 2006
Symbol
Parameter
unless otherwise specified
Test Conditions
Min
Typ
Max
Units
On Characteristics
VGS
RDS(ON)
Gate Threshold Voltage
VDS = VGS, ID = 250 ㎂
2.5
--
4.5
V
Static Drain-Source
On-Resistance
VGS = 10 V, ID = 2.75 A
--
0.8
1.0
Ω
400
--
--
V
ID = 250 ㎂, Referenced to25℃
--
0.4
--
V/℃
VDS = 400 V, VGS = 0 V
--
--
1
㎂
VDS = 320 V, TC = 125℃
--
--
10
㎂
Off Characteristics
BVDSS
Drain-Source Breakdown Voltage
ΔBVDSS Breakdown Voltage Temperature
/ΔTJ
Coefficient
IDSS
Zero Gate Voltage Drain Current
VGS = 0 V, ID = 250 ㎂
IGSSF
Gate-Body Leakage Current,
Forward
VGS = 30 V, VDS = 0 V
--
--
100
㎁
IGSSR
Gate-Body Leakage Current,
Reverse
VGS = -30 V, VDS = 0 V
--
--
-100
㎁
--
760
990
㎊
--
95
125
㎊
--
15
20
㎊
--
12
15
㎱
--
40
90
㎱
--
60
130
㎱
--
40
90
㎱
--
18
23
nC
--
4.0
--
nC
--
8.3
--
nC
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz
Switching Characteristics
td(on)
Turn-On Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
VDS = 200 V, ID = 5.5 A,
RG = 25 Ω
(Note 4,5)
VDS = 320 V, ID = 5.5 A,
VGS = 10 V
(Note 4,5)
Gate-Drain Charge
Source-Drain Diode Maximum Ratings and Characteristics
IS
Continuous Source-Drain Diode Forward Current
--
--
5.5
ISM
Pulsed Source-Drain Diode Forward Current
--
--
22
VSD
Source-Drain Diode Forward Voltage
IS = 5.5 A, VGS = 0 V
--
--
1.5
V
trr
Reverse Recovery Time
--
235
--
㎱
Qrr
Reverse Recovery Charge
IS = 5.5 A, VGS = 0 V
diF/dt = 100 A/μs (Note 4)
--
1.5
--
μC
A
Notes ;
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. IAS=5.5A, VDD=50V, RG=25Ω, Starting TJ =25°C
3. ISD≤5.5A, di/dt≤300A/μs, VDD≤BVDSS , Starting TJ =25 °C
4. Pulse Test : Pulse Width ≤ 300μs, Duty Cycle ≤ 2%
5. Essentially Independent of Operating Temperature
◎ SEMIHOW REV.A0,May 2006
HFP730
Electrical Characteristics TC=25 °C
HFP730
Typical Characteristics
VGS
15.0 V
10.0 V
8.0 V
7.0 V
6.5 V
6.0 V
Bottom : 5.5 V
Top :
ID, Drain Current [A]
1
10
ID , Drain Current [A]
1
10
0
10
150℃
-55℃
0
10
25℃
※ Note
1. VDS = 50V
2. 250μ s Pulse Test
※ Note :
1. 250μ s Pulse Test
2. TC = 25℃
-1
10
-1
-1
0
10
10
1
10
10
2
4
6
8
10
VGS , Gate-Source Voltage [V]
VDS, Drain-Source Voltage [V]
Figure 1. On Region Characteristics
Figure 2. Transfer Characteristics
IDR , Reverse Drain Current [A]
RDS(on) , [Ω]
Drain-Source On-Resistance
4
3
VGS = 10V
VGS = 20V
2
1
1
10
0
10
150℃
25℃
※ Note :
1. VGS = 0V
2. 250μ s Pulse Test
※ Note : TJ = 25℃
-1
0
3
6
9
12
15
18
21
24
0.2
0.4
0.6
0.8
1.0
1.2
1.4
ID , Drain Current [A]
VSD , Source-Drain Voltage [V]
Figure 3. On Resistance Variation vs
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation with Source Current
and Temperature
1400
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
1200
Ciss
1000
Capacitances [pF]
10
800
Coss
600
※ Note ;
1. VGS = 0 V
2. f = 1 MHz
Crss
400
200
12
VGS, Gate-Source Voltage [V]
0
VDS = 80V
10
VDS = 200V
VDS = 320V
8
6
4
2
※ Note : ID = 5.5A
0
-1
10
0
0
10
1
10
0
4
8
12
16
20
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
Figure 5. Capacitance Characteristics
Figure 6. Gate Charge Characteristics
◎ SEMIHOW REV.A0,May 2006
(continued)
3.0
RDS(ON), (Normalized)
Drain-Source On-Resistance
1.2
BVDSS, (Normalized)
Drain-Source Breakdown Voltage
HFP730
Typical Characteristics
1.1
1.0
※ Note :
1. VGS = 0 V
2. ID = 250 μA
0.9
0.8
-100
-50
0
50
100
150
2.5
2.0
1.5
1.0
※ Note :
1. VGS = 10 V
2. ID = 2.25 A
0.5
0.0
-100
200
-50
0
50
100
150
200
o
TJ, Junction Temperature [ C]
TJ, Junction Temperature [ C]
Figure 7. Breakdown Voltage Variation
vs Temperature
Figure 8. On-Resistance Variation
vs Temperature
o
2
6
10
Operation in This Area
is Limited by R DS(on)
5
1
1 ms
10 ms
DC
0
10
4
3
2
-1
10
※ Notes :
1
o
1. TC = 25 C
o
2. TJ = 150 C
3. Single Pulse
0
25
-2
10
0
10
1
2
10
3
10
10
50
75
Figure 9. Maximum Safe Operating Area
10
100
125
150
TC, Case Temperature [℃]
VDS, Drain-Source Voltage [V]
Figure 10. Maximum Drain Current
vs Case Temperature
0
D = 0 .5
Zθ JC(t), Thermal Response
ID, Drain Current [A]
ID, Drain Current [A]
100 μs
10
0 .2
※ N o te s :
1 . Z θ J C( t) = 1 .7 1 ℃ /W M a x .
2 . D u ty F a c to r , D = t 1 /t 2
3 . T J M - T C = P D M * Z θ J C( t)
0 .1
10
-1
0 .0 5
0 .0 2
0 .0 1
10
PDM
s in g le p u ls e
t1
-2
10
-5
10
-4
10
-3
10
-2
10
-1
t2
10
0
10
1
t 1 , S q u a r e W a v e P u ls e D u r a tio n [s e c ]
Figure 11. Transient Thermal Response Curve
◎ SEMIHOW REV.A0,May 2006
HFP730
Fig 12. Gate Charge Test Circuit & Waveform
50KΩ
12V
VGS
Same Type
as DUT
200nF
Qg
10V
300nF
VDS
VGS
Qgs
Qgd
DUT
3mA
Charge
Fig 13. Resistive Switching Test Circuit & Waveforms
RL
VDS
VDS
90%
VDD
RG
( 0.5 rated VDS )
Vin
DUT
10V
10%
tr
td(on)
td(off)
t on
tf
t off
Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms
BVDSS
1
EAS = ---- LL IAS2 -------------------2
BVDSS -- VDD
L
VDS
VDD
ID
BVDSS
IAS
RG
10V
ID (t)
DUT
VDS (t)
VDD
tp
Time
◎ SEMIHOW REV.A0,May 2006
HFP730
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+
VDS
_
IS
L
Driver
RG
VGS
VGS
( Driver )
Same Type
as DUT
VDD
• dv/dt controlled by RG
• IS controlled by pulse period
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
IS
( DUT )
di/dt
IRM
Body Diode Reverse Current
VDS
( DUT )
Body Diode Recovery dv/dt
Vf
VDD
Body Diode
Forward Voltage Drop
◎ SEMIHOW REV.A0,May 2006
HFP730
Package Dimension
◎ SEMIHOW REV.A0,May 2006
HFP730
Reliability Qualification
A. High Temperature Reverse Bias ( HTRB )
The purpose of this test is to determine the sensitivity of the product to mobile ion contamination and
related failure mechanisms.
Conditions: JESD22-A108, JIS C 7021 B-8
TA=150℃ VDS=80% max rated VDS
Sample Size
#of Fail
Cum. Fail%
168hrs
300hrs
45
0
0.0%
0
0
B. High Temperature Gate Bias ( HTGB )
The purpose of this test is to determine the sensitivity of the product to mobile ion contamination
between gate and source and related failure mechanisms.
TA=150℃ VDS= VGSS max
Sample Size
#of Fail
Cum. Fail%
168hrs
300hrs
45
0
0.0%
0
0
C. Pressure Cooker Test ( PCT )
Autoclave ( ACLV )
The purpose of this test is to evaluate the moisture resistance of non-hermetic components under
pressure/temperature conditions.
Conditions: JESD22-A102, JIS C 7021 A-6
TA=121℃ RH=100% P=1 atmosphere (15psig)
Sample Size
#of Fail
Cum. Fail%
48hrs
45
0
0.0%
0
◎ SEMIHOW REV.A0,May 2006
HFP730
Reliability Qualification ( Continued )
D. Temperature Humidity Bias ( THBT )
The purpose of this test is to evaluate the moisture resistance of non-hermetic components.
The addition of voltage bias accelerates the corrosive effect after moisture penetration has taken place.
with time, this is a catastrophically destructive test.
Conditions: JESD22-A101
TA=85℃ RH=85% VDS=80% max rated VDS
Sample Size
#of Fail
Cum. Fail%
168hrs
300hrs
45
0
0.0%
0
0
E. High Temperature Storage Life ( HTSL )
The purpose of this test is to expose time/temperature failure mechanisms and to evaluate
long-term strong stability.
Conditions: JESD22-A103, JIS C 7021 B-10
TA=Tstg(max)
Sample Size
#of Fail
Cum. Fail%
168hrs
300hrs
45
0
0.0%
0
0
F. Temperature Cycle Air-to Air ( TMCL )
The purpose of this test is to evaluate the ability of the device to withstand both exposure to
extreme temperature and the transition between temperature extreme, and to exposure excessive
thermal mismatch between materials.
Conditions: JESD22-A104, JIS C 7021 A-4
Air to air, -65℃~150℃, 15 minutes dwell time at each temperature
Sample Size
#of Fail
Cum. Fail%
100cycles
200cycles
45
0
0.0%
0
0
◎ SEMIHOW REV.A0,May 2006