CNY117F Vishay Semiconductors Optocoupler, Phototransistor Output, No Base Connection, 110 °C Rated Features • Operating temperature from - 55 °C to + 110 °C • No Base Terminal Connection for Improved Common Mode Interface Immunity • Long Term Stability • Industry Standard Dual-in-Line Package • Lead-free component • Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC A 1 6 NC C 2 5 C NC 3 4 E e3 18216 Agency Approvals • UL1577, File No. E52744 System Code H or J, Double Protection • DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Applications AC adapter SMPS PLC Factory Automation Game Consoles Pb Pb-free Order Information Part Remarks CNY117F-1 CTR 40 - 80 %, DIP-6 CNY117F-2 CTR 63 - 125 %, DIP-6 CNY117F-3 CTR 100 - 200 %, DIP-6 CNY117F-4 CTR 160 - 320 %, DIP-6 For additional information on the available options refer to Option Information. Description The CNY117F is a 110 °C rated optocoupler consisting of a Gallium Arsenide infrared emitting diode optically coupled to a silicon planar phototransistor detector in a plastic plug-in DIP-6 package. The coupling device is suitable for signal transmission between two electrically separated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible reference voltages. In contrast to the CNY117 Series, the base terminal of the F type is not connected, resulting in a substantially improved common-mode interference immunity. Document Number 83598 Rev. 1.4, 26-Oct-04 www.vishay.com 1 CNY117F Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Symbol Value Reverse voltage Parameter VR 6.0 V DC Forward current IF 60 mA IFSM 2.5 A Pdiss 100 mW 1.0 mW/°C Symbol Value Unit BVCEO 70 V IC 50 mA IC 100 mA Pdiss 150 mW 1.5 mW/°C Surge forward current Test condition t ≤ 10 µs Power dissipation Derate linearly from 25 °C Unit Output Parameter Test condition Collector-emitter breakdown voltage Collector current t ≤ 1.0 ms Total power dissipation Derate linearly from 25 °C Coupler Parameter Test condition Isolation test voltage (between emitter and detector referred to standard climate 23/50 DIN 50014) Symbol Value Unit VISO 5300 VRMS Creepage ≥ 7.0 mm Clearance ≥ 7.0 mm Isolation thickness between emitter and detector ≥ 0.4 mm Comparative tracking index per DIN IEC 112/VDE 0303, part 1 175 RIO ≥ 1011 Ω Storage temperature range Tstg - 55 to + 150 °C Ambient temperature range Tamb - 55 to + 110 °C Tsld 260 °C Isolation resistance Soldering temperature www.vishay.com 2 VIO = 500 V max. 10 s, dip soldering: distance to seating plane ≥ 1.5 mm Document Number 83598 Rev. 1.4, 26-Oct-04 CNY117F Vishay Semiconductors Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Parameter Test condition Symbol Min Typ. Max 1.25 1.65 Forward voltage IF = 60 mA VF Breakdown voltage IR = 10 µA VBR Reserve current VR = 6.0 V IR 0.01 Capacitance VR = 0 V, f = 1.0 MHz CO 25 Unit V 6.0 V µA 10 pF Output Parameter Test condition Symbol Min Typ. Max Unit Collector-emitter capacitance VCE = 5.0 V, f = 1.0 MHz CCE 5.2 pF Base - collector capacitance VCE = 5.0 V, f = 1.0 MHz CBC 6.5 pF Emitter - base capacitance VCE = 5.0 V, f = 1.0 MHz CEB 7.5 pF Coupler Parameter Saturation voltage, collectoremitter Test condition Part IF = 10 mA, IC = 2.5 mA VCE = 10 V Typ. Max Unit VCEsat Min 0.25 0.4 V 50 nA CC 0.6 CNY117F-1 ICEO 2.0 CNY117F-2 ICEO 2.0 50 nA CNY117F-3 ICEO 5.0 100 nA CNY117F-4 ICEO 5.0 100 nA Typ. Max Unit Coupling capacitance Collector-emitter leakage current Symbol pF Current Transfer Ratio Current Transfer Ratio IC/IF at VCE = 5.0 V, 25 °C and Collector-Emitter Leakage Current by dash number Parameter Current Transfer Ratio Test condition IF = 10 mA IF = 1.0 mA Document Number 83598 Rev. 1.4, 26-Oct-04 Part Symbol Min CNY117F-1 CTR 40 80 % CNY117F-2 CTR 63 125 % CNY117F-3 CTR 100 200 % CNY117F-4 CTR 160 320 % CNY117F-1 CTR 13 30 % CNY117F-2 CTR 22 45 % CNY117F-3 CTR 34 70 % CNY117F-4 CTR 56 90 % www.vishay.com 3 CNY117F Vishay Semiconductors Switching Characteristics Linear operation (without saturation) Parameter Test condition Symbol Min Typ. Max Unit Turn-on time IF = 10 mA, VCC = 5.0 V, RL = 75 W ton 3.0 µs Rise time IF = 10 mA, VCC = 5.0 V, RL = 75 W tr 2.0 µs Turn-off time IF = 10 mA, VCC = 5.0 V, RL = 75 W toff 2.3 µs Fall time IF = 10 mA, VCC = 5.0 V, RL = 75 W tf 2.0 µs Cut-off frequency IF = 10 mA, VCC = 5.0 V, RL = 75 W fCO 250 kHz Switching operation (with saturation) Parameter Test condition Turn-on time Rise time Turn-off time Fall time Part Symbol IF = 20 mA CNY117F-1 ton Min Typ. 3.0 Max Unit µs IF = 10 mA CNY117F-2 ton 4.2 µs CNY117F-3 ton 4.2 µs IF = 5.0 mA CNY117F-4 ton 6.0 µs IF = 20 mA CNY117F-1 tr 2.0 µs IF = 10 mA CNY117F-2 tr 3.0 µs CNY117F-3 tr 3.0 µs IF = 5.0 mA CNY117F-4 tr 4.6 µs IF = 20 mA CNY117F-1 toff 18 µs IF = 10 mA CNY117F-2 toff 23 µs CNY117F-3 toff 23 µs IF = 5.0 mA CNY117F-4 toff 25 µs IF = 20 mA CNY117F-1 tf 11 µs IF = 10 mA CNY117F-2 tf 14 µs CNY117F-3 tf 14 µs CNY117F-4 tf 15 µs IF = 5.0 mA Typical Characteristics (Tamb = 25 °C unless otherwise specified) 175 1.5 1.4 V F – Forward Voltage ( V ) Ptot–Power Dissipation (mW) 150 125 Detector 100 75 LED 50 25 0 0 18777 20 40 60 80 100 Tamb – Ambient Temperature ( qC ) Figure 1. Permissible Power Dissipation vs. Ambient Temperature www.vishay.com 4 0qC 1.2 1.1 1.0 17577 25qC 0.9 50qC 110qC 0.8 0.7 0.10 120 –55qC 1.3 1.00 10.00 100.00 IF – Forward Current ( mA ) Figure 2. Forward Voltage vs. Forward Current Document Number 83598 Rev. 1.4, 26-Oct-04 CNY117F Vishay Semiconductors CTR Norm – Normalized Output Current 50 IC – Collector Current (mA) 45 IF = 30 mA 40 35 30 IF = 20 mA 25 IF = 15 mA 20 15 IF = 10 mA 10 IF = 5 mA 5 I F = 1 mA 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 VCE – Collector Emitter Voltage (V) Figure 3. Collector Current vs. Collector Emitter Voltage 40 V 1000 I CE0 ( nA ) 100 24 V 12 V 10 1 0.10 –75 18734 25 75 125 Tamb – Ambient Temperature ( °C ) –25 Figure 4. Collector to Emitter Dark Current vs. Ambient Temperature 30 25 mA I C (mA) 20 10 mA 10 5 mA 2 mA 0 0.0 18735 0.1 0.2 0.3 0.4 1 mA 0.5 Figure 5. Normalized Current vs. Collector Emitter Saturation Voltage Document Number 83598 Rev. 1.4, 26-Oct-04 5 mA 0.8 0.6 1 mA 0.4 0.2 Normalized to IF = 10 mA, Tamb = 25_C, VCE= 0.4 V, saturated 0.0 –55 –35 –15 5 25 45 65 85 105 125 Tamb – Ambient Temperature ( qC ) 1.2 IF = 10 mA 1.0 0.8 0.6 5 mA 1 mA 0.4 0.2 Normalized to IF = 10 mA, Tamb = 25_C, VCE= 5 V, non–saturated 0.0 –55 –35 –15 5 25 45 65 85 105 125 Tamb – Ambient Temperature ( qC ) 17579 Figure 7. Normalized Current Transfer Ratio vs. Ambient Temperature 0.6 VCE – Collector to Emitter Voltage (V) IF = 10 mA 1.0 Figure 6. Normalized Current Transfer Ratio vs. Ambient Temperature CTR Norm – Normalized Output Current 10000 17578 CTR Norm – Normalized Output Current 18733 1.2 17580 1.2 –2 –1 1.0 0.8 –3 –4 0.6 0.4 0.2 0.0 0.10 Normalized to IF = 10 mA, Tamb = 25_C, VCE= 5 V, non–saturated 1.00 10.00 100.00 IF – Forward Current ( mA ) Figure 8. Normalized CTR vs. Forward Current www.vishay.com 5 CNY117F Vishay Semiconductors CTR Norm – Normalized Output Current 1.2 1000 Pulse Width = 100 ms IF = 10 mA Duty Cycle = 50 % –1 1.0 –2 0.6 –3 0.4 –4 Normalized to IF = 10 mA, Tamb = 25_C, VCE= 0.4 V, saturated 0.2 0.0 0.10 100 Switching Time (µs) 0.8 trise 10 tfall 1 1.00 10.00 IF – Forward Current ( mA ) 17584 100.00 0.1 Figure 9. Normalized CTR vs. Forward Current Log t on/off – Switching time, µs fctr – Cut–off Frequency (kHz) 10 CNY–1,–2 25qC 100.00 50qC CNY–3,–4 10.00 0qC 25qC 50qC 1.00 0.10 Tamb = 25_C, VCE= 5 V, non–saturated 100 ton@ IF = 10 mA 9 8 7 toff @ IF = 10 mA 6 5 4 Pulse Width = 100 ms I F = 10 mA R L = 1000 Ω Duty Cycle = 50 % 3 2 1 1.00 10.00 100.00 IC – Collector Current ( mA ) 17583 10 18782 Figure 10. Cut-off Frequency vs. Collector Current 100 1000 10000 Log RBE – Base Emitter Resistance (Ω) Figure 13. Switching Time vs. Base Emitter Resistance 1000 10 Pulse Width = 100 ms IF = 5 mA Pulse Width = 100 ms IF = 10 mA Duty Cycle = 50 % 9 RL = 1000 Ω, Duty Cycle = 50 % 8 Switching Time, ms Switching Time (µs) 10 Figure 12. Time Switching vs. Load Resistance 1000.00 0qC 1 R L – Load Resistance (kΩ) 18781 100 t off 10 ton ton@ IF = 5 mA 7 6 5 toff @ IF = 5 mA 4 3 2 1 1 0.1 18780 1 10 R L – Load Resistance (kΩ) 100 Figure 11. Time Switching vs. Load Resistance www.vishay.com 6 10 18783 100 1000 10000 RBE – Base Emitter Resistance (Ω) Figure 14. Switching Time vs. Base Emitter Resistance Document Number 83598 Rev. 1.4, 26-Oct-04 CNY117F Vishay Semiconductors 1.2 110qC 50qC Normalized h FE 1.1 1.0 25qC 0qC –55qC 0.9 Normalized to IB = 20 PA, Tamb = 25_C, VCE= 5 V, non–saturated 0.8 0.7 0.10 1.00 10.00 IB – Base Current ( mA ) 17581 100.00 Figure 15. Normalized HFE vs. Base Current 1.5 110qC 1.4 Normalized h FE 1.3 50qC 1.2 1.1 1.0 25qC 0.9 0qC –55qC 0.8 Normalized to IB = 20 PA, Tamb = 25_C, VCE= 0.4 V, saturated 0.7 0.6 0.5 0.01 0.10 1.00 10.00 100.00 IB – Base Current ( mA ) 17582 Figure 16. Normalized HFE vs. Base Current 10 Normalized Photocurrent 1 0 °C 0.1 0.01 25 °C Normalized to IF = 10 mA, Temp = 25°C and VCE = 5 V 0.001 0.0001 50 °C 0.00001 0.000001 0.01 18786 75 °C 0.1 1 10 IF – Forward Current (mA) 100 Figure 17. Normalized Photocurrent vs. Forward current Document Number 83598 Rev. 1.4, 26-Oct-04 www.vishay.com 7 CNY117F Vishay Semiconductors Package Dimensions in Inches (mm) 3 2 1 4 5 6 pin one ID .248 (6.30) .256 (6.50) ISO Method A .335 (8.50) .343 (8.70) .039 (1.00) Min. 4° typ. .018 (0.45) .022 (0.55) .300 (7.62) typ. .048 (0.45) .022 (0.55) .130 (3.30) .150 (3.81) 18° .031 (0.80) min. .031 (0.80) .035 (0.90) .100 (2.54) typ. 3°–9° .114 (2.90) .130 (3.0) .010 (.25) typ. .300–.347 (7.62–8.81) i178004 www.vishay.com 8 Document Number 83598 Rev. 1.4, 26-Oct-04 CNY117F Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 83598 Rev. 1.4, 26-Oct-04 www.vishay.com 9