VISHAY CNY117F-2

CNY117F
Vishay Semiconductors
Optocoupler, Phototransistor Output, No Base Connection,
110 °C Rated
Features
• Operating temperature from - 55 °C to + 110 °C
• No Base Terminal Connection for Improved Common Mode Interface Immunity
• Long Term Stability
• Industry Standard Dual-in-Line Package
• Lead-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
A
1
6 NC
C
2
5 C
NC
3
4 E
e3
18216
Agency Approvals
• UL1577, File No. E52744 System Code H or J,
Double Protection
• DIN EN 60747-5-2 (VDE0884)
DIN EN 60747-5-5 pending
Applications
AC adapter
SMPS
PLC
Factory Automation
Game Consoles
Pb
Pb-free
Order Information
Part
Remarks
CNY117F-1
CTR 40 - 80 %, DIP-6
CNY117F-2
CTR 63 - 125 %, DIP-6
CNY117F-3
CTR 100 - 200 %, DIP-6
CNY117F-4
CTR 160 - 320 %, DIP-6
For additional information on the available options refer to
Option Information.
Description
The CNY117F is a 110 °C rated optocoupler consisting of a Gallium Arsenide infrared emitting diode optically coupled to a silicon planar phototransistor
detector in a plastic plug-in DIP-6 package.
The coupling device is suitable for signal transmission
between two electrically separated circuits. The
potential difference between the circuits to be coupled
is not allowed to exceed the maximum permissible
reference voltages.
In contrast to the CNY117 Series, the base terminal
of the F type is not connected, resulting in a substantially improved common-mode interference immunity.
Document Number 83598
Rev. 1.4, 26-Oct-04
www.vishay.com
1
CNY117F
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Symbol
Value
Reverse voltage
Parameter
VR
6.0
V
DC Forward current
IF
60
mA
IFSM
2.5
A
Pdiss
100
mW
1.0
mW/°C
Symbol
Value
Unit
BVCEO
70
V
IC
50
mA
IC
100
mA
Pdiss
150
mW
1.5
mW/°C
Surge forward current
Test condition
t ≤ 10 µs
Power dissipation
Derate linearly from 25 °C
Unit
Output
Parameter
Test condition
Collector-emitter breakdown
voltage
Collector current
t ≤ 1.0 ms
Total power dissipation
Derate linearly from 25 °C
Coupler
Parameter
Test condition
Isolation test voltage (between
emitter and detector referred to
standard climate 23/50 DIN
50014)
Symbol
Value
Unit
VISO
5300
VRMS
Creepage
≥ 7.0
mm
Clearance
≥ 7.0
mm
Isolation thickness between
emitter and detector
≥ 0.4
mm
Comparative tracking index per
DIN IEC 112/VDE 0303, part 1
175
RIO
≥ 1011
Ω
Storage temperature range
Tstg
- 55 to + 150
°C
Ambient temperature range
Tamb
- 55 to + 110
°C
Tsld
260
°C
Isolation resistance
Soldering temperature
www.vishay.com
2
VIO = 500 V
max. 10 s, dip soldering:
distance to seating plane
≥ 1.5 mm
Document Number 83598
Rev. 1.4, 26-Oct-04
CNY117F
Vishay Semiconductors
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Parameter
Test condition
Symbol
Min
Typ.
Max
1.25
1.65
Forward voltage
IF = 60 mA
VF
Breakdown voltage
IR = 10 µA
VBR
Reserve current
VR = 6.0 V
IR
0.01
Capacitance
VR = 0 V, f = 1.0 MHz
CO
25
Unit
V
6.0
V
µA
10
pF
Output
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Collector-emitter capacitance
VCE = 5.0 V, f = 1.0 MHz
CCE
5.2
pF
Base - collector capacitance
VCE = 5.0 V, f = 1.0 MHz
CBC
6.5
pF
Emitter - base capacitance
VCE = 5.0 V, f = 1.0 MHz
CEB
7.5
pF
Coupler
Parameter
Saturation voltage, collectoremitter
Test condition
Part
IF = 10 mA, IC = 2.5 mA
VCE = 10 V
Typ.
Max
Unit
VCEsat
Min
0.25
0.4
V
50
nA
CC
0.6
CNY117F-1
ICEO
2.0
CNY117F-2
ICEO
2.0
50
nA
CNY117F-3
ICEO
5.0
100
nA
CNY117F-4
ICEO
5.0
100
nA
Typ.
Max
Unit
Coupling capacitance
Collector-emitter leakage
current
Symbol
pF
Current Transfer Ratio
Current Transfer Ratio IC/IF at VCE = 5.0 V, 25 °C and Collector-Emitter Leakage Current by dash number
Parameter
Current Transfer Ratio
Test condition
IF = 10 mA
IF = 1.0 mA
Document Number 83598
Rev. 1.4, 26-Oct-04
Part
Symbol
Min
CNY117F-1
CTR
40
80
%
CNY117F-2
CTR
63
125
%
CNY117F-3
CTR
100
200
%
CNY117F-4
CTR
160
320
%
CNY117F-1
CTR
13
30
%
CNY117F-2
CTR
22
45
%
CNY117F-3
CTR
34
70
%
CNY117F-4
CTR
56
90
%
www.vishay.com
3
CNY117F
Vishay Semiconductors
Switching Characteristics
Linear operation (without saturation)
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
Turn-on time
IF = 10 mA, VCC = 5.0 V,
RL = 75 W
ton
3.0
µs
Rise time
IF = 10 mA, VCC = 5.0 V,
RL = 75 W
tr
2.0
µs
Turn-off time
IF = 10 mA, VCC = 5.0 V,
RL = 75 W
toff
2.3
µs
Fall time
IF = 10 mA, VCC = 5.0 V,
RL = 75 W
tf
2.0
µs
Cut-off frequency
IF = 10 mA, VCC = 5.0 V,
RL = 75 W
fCO
250
kHz
Switching operation (with saturation)
Parameter
Test condition
Turn-on time
Rise time
Turn-off time
Fall time
Part
Symbol
IF = 20 mA
CNY117F-1
ton
Min
Typ.
3.0
Max
Unit
µs
IF = 10 mA
CNY117F-2
ton
4.2
µs
CNY117F-3
ton
4.2
µs
IF = 5.0 mA
CNY117F-4
ton
6.0
µs
IF = 20 mA
CNY117F-1
tr
2.0
µs
IF = 10 mA
CNY117F-2
tr
3.0
µs
CNY117F-3
tr
3.0
µs
IF = 5.0 mA
CNY117F-4
tr
4.6
µs
IF = 20 mA
CNY117F-1
toff
18
µs
IF = 10 mA
CNY117F-2
toff
23
µs
CNY117F-3
toff
23
µs
IF = 5.0 mA
CNY117F-4
toff
25
µs
IF = 20 mA
CNY117F-1
tf
11
µs
IF = 10 mA
CNY117F-2
tf
14
µs
CNY117F-3
tf
14
µs
CNY117F-4
tf
15
µs
IF = 5.0 mA
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
175
1.5
1.4
V F – Forward Voltage ( V )
Ptot–Power Dissipation (mW)
150
125
Detector
100
75
LED
50
25
0
0
18777
20
40
60
80
100
Tamb – Ambient Temperature ( qC )
Figure 1. Permissible Power Dissipation vs. Ambient Temperature
www.vishay.com
4
0qC
1.2
1.1
1.0
17577
25qC
0.9
50qC
110qC
0.8
0.7
0.10
120
–55qC
1.3
1.00
10.00
100.00
IF – Forward Current ( mA )
Figure 2. Forward Voltage vs. Forward Current
Document Number 83598
Rev. 1.4, 26-Oct-04
CNY117F
Vishay Semiconductors
CTR Norm – Normalized Output Current
50
IC – Collector Current (mA)
45
IF = 30 mA
40
35
30
IF = 20 mA
25
IF = 15 mA
20
15
IF = 10 mA
10
IF = 5 mA
5
I F = 1 mA
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
VCE – Collector Emitter Voltage (V)
Figure 3. Collector Current vs. Collector Emitter Voltage
40 V
1000
I CE0 ( nA )
100
24 V
12 V
10
1
0.10
–75
18734
25
75
125
Tamb – Ambient Temperature ( °C )
–25
Figure 4. Collector to Emitter Dark Current vs. Ambient
Temperature
30
25 mA
I C (mA)
20
10 mA
10
5 mA
2 mA
0
0.0
18735
0.1
0.2
0.3
0.4
1 mA
0.5
Figure 5. Normalized Current vs. Collector Emitter Saturation
Voltage
Document Number 83598
Rev. 1.4, 26-Oct-04
5 mA
0.8
0.6
1 mA
0.4
0.2
Normalized to
IF = 10 mA, Tamb = 25_C,
VCE= 0.4 V, saturated
0.0
–55 –35 –15 5 25 45 65 85 105 125
Tamb – Ambient Temperature ( qC )
1.2
IF = 10 mA
1.0
0.8
0.6
5 mA
1 mA
0.4
0.2
Normalized to
IF = 10 mA, Tamb = 25_C,
VCE= 5 V, non–saturated
0.0
–55 –35 –15 5
25 45 65 85 105 125
Tamb – Ambient Temperature ( qC )
17579
Figure 7. Normalized Current Transfer Ratio vs. Ambient
Temperature
0.6
VCE – Collector to Emitter Voltage (V)
IF = 10 mA
1.0
Figure 6. Normalized Current Transfer Ratio vs. Ambient
Temperature
CTR Norm – Normalized Output Current
10000
17578
CTR Norm – Normalized Output Current
18733
1.2
17580
1.2
–2 –1
1.0
0.8
–3
–4
0.6
0.4
0.2
0.0
0.10
Normalized to
IF = 10 mA, Tamb = 25_C,
VCE= 5 V, non–saturated
1.00
10.00
100.00
IF – Forward Current ( mA )
Figure 8. Normalized CTR vs. Forward Current
www.vishay.com
5
CNY117F
Vishay Semiconductors
CTR Norm – Normalized Output Current
1.2
1000
Pulse Width = 100 ms
IF = 10 mA
Duty Cycle = 50 %
–1
1.0
–2
0.6
–3
0.4
–4
Normalized to
IF = 10 mA, Tamb = 25_C,
VCE= 0.4 V, saturated
0.2
0.0
0.10
100
Switching Time (µs)
0.8
trise
10
tfall
1
1.00
10.00
IF – Forward Current ( mA )
17584
100.00
0.1
Figure 9. Normalized CTR vs. Forward Current
Log t on/off – Switching time, µs
fctr – Cut–off Frequency (kHz)
10
CNY–1,–2
25qC
100.00
50qC
CNY–3,–4
10.00
0qC
25qC
50qC
1.00
0.10
Tamb = 25_C,
VCE= 5 V,
non–saturated
100
ton@ IF = 10 mA
9
8
7
toff @ IF = 10 mA
6
5
4
Pulse Width = 100 ms
I F = 10 mA
R L = 1000 Ω
Duty Cycle = 50 %
3
2
1
1.00
10.00
100.00
IC – Collector Current ( mA )
17583
10
18782
Figure 10. Cut-off Frequency vs. Collector Current
100
1000
10000
Log RBE – Base Emitter Resistance (Ω)
Figure 13. Switching Time vs. Base Emitter Resistance
1000
10
Pulse Width = 100 ms IF = 5 mA
Pulse Width = 100 ms
IF = 10 mA
Duty Cycle = 50 %
9
RL = 1000 Ω, Duty Cycle = 50 %
8
Switching Time, ms
Switching Time (µs)
10
Figure 12. Time Switching vs. Load Resistance
1000.00
0qC
1
R L – Load Resistance (kΩ)
18781
100
t off
10
ton
ton@ IF = 5 mA
7
6
5
toff @ IF = 5 mA
4
3
2
1
1
0.1
18780
1
10
R L – Load Resistance (kΩ)
100
Figure 11. Time Switching vs. Load Resistance
www.vishay.com
6
10
18783
100
1000
10000
RBE – Base Emitter Resistance (Ω)
Figure 14. Switching Time vs. Base Emitter Resistance
Document Number 83598
Rev. 1.4, 26-Oct-04
CNY117F
Vishay Semiconductors
1.2
110qC
50qC
Normalized h FE
1.1
1.0
25qC
0qC
–55qC
0.9
Normalized to
IB = 20 PA, Tamb = 25_C,
VCE= 5 V, non–saturated
0.8
0.7
0.10
1.00
10.00
IB – Base Current ( mA )
17581
100.00
Figure 15. Normalized HFE vs. Base Current
1.5
110qC
1.4
Normalized h FE
1.3
50qC
1.2
1.1
1.0
25qC
0.9
0qC
–55qC
0.8
Normalized to
IB = 20 PA, Tamb = 25_C,
VCE= 0.4 V, saturated
0.7
0.6
0.5
0.01
0.10
1.00
10.00
100.00
IB – Base Current ( mA )
17582
Figure 16. Normalized HFE vs. Base Current
10
Normalized Photocurrent
1
0 °C
0.1
0.01
25 °C
Normalized to IF = 10 mA,
Temp = 25°C and
VCE = 5 V
0.001
0.0001
50 °C
0.00001
0.000001
0.01
18786
75 °C
0.1
1
10
IF – Forward Current (mA)
100
Figure 17. Normalized Photocurrent vs. Forward current
Document Number 83598
Rev. 1.4, 26-Oct-04
www.vishay.com
7
CNY117F
Vishay Semiconductors
Package Dimensions in Inches (mm)
3
2
1
4
5
6
pin one ID
.248 (6.30)
.256 (6.50)
ISO Method A
.335 (8.50)
.343 (8.70)
.039
(1.00)
Min.
4°
typ.
.018 (0.45)
.022 (0.55)
.300 (7.62)
typ.
.048 (0.45)
.022 (0.55)
.130 (3.30)
.150 (3.81)
18°
.031 (0.80) min.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
3°–9°
.114 (2.90)
.130 (3.0)
.010 (.25)
typ.
.300–.347
(7.62–8.81)
i178004
www.vishay.com
8
Document Number 83598
Rev. 1.4, 26-Oct-04
CNY117F
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83598
Rev. 1.4, 26-Oct-04
www.vishay.com
9