a LC2MOS 4-/8-Channel High Performance Analog Multiplexers ADG408/ADG409 FEATURES 44 V Supply Maximum Ratings VSS to V DD Analog Signal Range Low On Resistance (100 V max) Low Power (ISUPPLY < 75 mA) Fast Switching Break-Before-Make Switching Action Plug-in Replacement for DG408/DG409 APPLICATIONS Audio and Video Routing Automatic Test Equipment Data Acquisition Systems Battery Powered Systems Sample and Hold Systems Communication Systems FUNCTIONAL BLOCK DIAGRAMS ADG408 ADG409 S1 S1A DA S4A D S1B DB S8 S4B 1 OF 8 DECODER A0 A1 A2 EN 1 OF 4 DECODER A0 A1 EN GENERAL DESCRIPTION PRODUCT HIGHLIGHTS The ADG408 and ADG409 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels respectively. The ADG408 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG409 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. 1. Extended Signal Range The ADG408/ADG409 are fabricated on an enhanced LC2MOS process giving an increased signal range that extends to the supply rails. The ADG408/ADG409 are designed on an enhanced LC2MOS process which provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit breakbefore-make switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs. 2. Low Power Dissipation 3 Low RON 4. Single Supply Operation For applications where the analog signal is unipolar, the ADG408/ADG409 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V. The ADG408/ADG409 are improved replacements for the DG408/DG409 Analog Multiplexers. REV. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998 ADG408/ADG409–SPECIFICATIONS DUAL SUPPLY1 (VDD = +15 V, VSS = –15 V, GND = 0 V, unless otherwise noted) Parameter ANALOG SWITCH Analog Signal Range RON ∆RON LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG408 ADG409 Channel ON Leakage ID, IS (ON) ADG408 ADG409 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance B Version –408C to +258C +858C T Version –558C to +258C +1258C VSS to VDD Units 40 100 15 VSS to VDD V Ω typ 125 Ω max Ω max ± 50 ± 0.5 ± 50 nA max ±1 ±1 ± 100 ± 50 ±1 ±1 ± 100 ± 50 nA max nA max ±1 ±1 ± 100 ± 50 ±1 ±1 ± 100 ± 50 nA max nA max 2.4 0.8 V min V max ± 10 µA max pF typ VIN = 0 or VDD f = 1 MHz 120 250 ns typ ns max RL = 300 Ω, CL = 35 pF; VS1 = ± 10 V, VSS = 710 V; Test Circuit 5 RL = 300 Ω, CL = 35 pF; VS = +5 V; Test Circuit 6 RL = 300 Ω, CL = 35 pF; VS = +5 V; Test Circuit 7 RL = 300 Ω, CL = 35 pF; VS = +5 V; Test Circuit 7 VS = 0 V, RS = 0 Ω, CL = 10 nF; Test Circuit 8 RL = 1 kΩ, f = 100 kHz; VEN = 0 V; Test Circuit 9 RL = 1 kΩ, f = 100 kHz; Test Circuit 10 f = 1 MHz f = 1 MHz 40 100 15 125 ± 0.5 2.4 0.8 ± 10 8 DYNAMIC CHARACTERISTICS2 tTRANSITION 8 120 250 tOPEN 10 10 10 10 ns min tON (EN) 85 150 125 225 65 150 85 150 125 225 65 150 Charge Injection 20 20 ns typ ns max ns typ ns max pC typ OFF Isolation –75 –75 dB typ Channel-to-Channel Crosstalk 85 85 dB typ CS (OFF) CD (OFF) ADG408 ADG409 CD, CS (ON) ADG408 ADG409 11 11 pF typ 40 20 40 20 pF typ pF typ 54 34 54 34 pF typ pF typ tOFF (EN) VD = ± 10 V, IS = –10 mA VD = +10 V, –10 V VD = ± 10 V, VS = 710 V; Test Circuit 2 VD = ± 10 V; VS = 710 V; Test Circuit 3 VS = VD = ± 10 V; Test Circuit 4 f = 1 MHz POWER REQUIREMENTS IDD 1 5 1 5 ISS IDD Test Conditions/Comments 100 200 500 1 5 1 5 100 200 500 µA typ µA max µA typ µA max µA typ µA max VIN = 0 V, VEN = 0 V VIN = 0 V, VEN = 2.4 V NOTES 1 Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. –2– REV. A ADG408/ADG409 SINGLE SUPPLY1 (VDD = +12 V, VSS = 0 V, GND = 0 V, unless otherwise noted) Parameter B Version –408C to +258C +858C ANALOG SWITCH Analog Signal Range RON 90 LEAKAGE CURRENTS Source OFF Leakage IS (OFF) ± 0.5 ± 50 ± 0.5 ± 50 nA max ±1 ±1 ± 100 ± 50 ±1 ±1 ± 100 ± 50 nA max nA max ±1 ±1 ± 100 ± 50 ±1 ±1 ± 100 ± 50 nA max nA max 2.4 0.8 V min V max ± 10 Drain OFF Leakage ID (OFF) ADG408 ADG409 Channel ON Leakage ID, IS (ON) ADG408 ADG409 T Version –558C to +258C +1258C 0 to VDD 0 to VDD 90 Units Test Conditions/Comments V Ω typ VD = +3 V, +10 V, IS = –1 mA VD =8 V/0 V, VS = 0 V/8 V; Test Circuit 2 VD =8 V/0 V, VS = 0 V/8 V; Test Circuit 3 VS = VD = 8 V/0 V; Test Circuit 4 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance 8 8 µA max pF typ VIN = 0 or VDD f = 1 MHz DYNAMIC CHARACTERISTICS2 tTRANSITION 130 130 ns typ tOPEN 10 10 ns typ tON (EN) 140 140 ns typ tOFF (EN) 60 60 ns typ Charge Injection 5 5 pC typ OFF Isolation –75 –75 dB typ Channel-to-Channel Crosstalk 85 85 dB typ CS (OFF) CD (OFF) ADG408 ADG409 CD, CS (ON) ADG408 ADG409 11 11 pF typ RL = 300 Ω, CL = 35 pF; VS1 = 8 V/0 V, VS8 = 0 V/8 V; Test Circuit 5 RL = 300 Ω, CL = 35 pF; VS = +5 V; Test Circuit 6 RL = 300 Ω, CL = 35 pF; VS = +5 V; Test Circuit 7 RL = 300 Ω, CL = 35 pF; VS = +5 V; Test Circuit 7 VS = 0 V, RS = 0 Ω, CL = 10 nF; Test Circuit 8 RL = 1 kΩ, f = 100 kHz; VEN = 0 V; Test Circuit 9 RL = 1 kΩ, f = 100 kHz; Test Circuit 10 f = 1 MHz f = 1 MHz 40 20 40 20 pF typ pF typ 54 34 54 34 pF typ pF typ 2.4 0.8 ± 10 f = 1 MHz POWER REQUIREMENTS IDD IDD 1 5 100 200 500 1 5 100 200 NOTES 1 Temperature ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. REV. A –3– 500 µA typ µA max µA typ µA max VIN = 0 V, VEN = 0 V VIN = 0 V, VEN = 2.4 V ADG408/ADG409 ABSOLUTE MAXIMUM RATINGS 1 ORDERING INFORMATION (TA = +25°C unless otherwise noted) VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V Analog, Digital Inputs2 . . . . . VSS –2 V to VDD +2 V or 20 mA, Whichever Occurs First Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max) . . . . . . . . . . . 40 mA Operating Temperature Range Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C Extended (T Version) . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C Cerdip Package, Power Dissipation . . . . . . . . . . . . . . . 900 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 76°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +300°C Plastic Package, Power Dissipation . . . . . . . . . . . . . . . 470 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 117°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C TSSOP Package, Power Dissipation . . . . . . . . . . . . . . 450 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . 155°C/W θJC, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 50°C/W SOIC Package, Power Dissipation . . . . . . . . . . . . . . . . 600 mW θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 77°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C Model1 Temperature Range Package Option2 ADG408BN ADG408BR ADG408BRU ADG408TQ –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C N-16 R-16A RU-16 Q-16 ADG409BN ADG409BR ADG409TQ –40°C to +85°C –40°C to +85°C –55°C to +125°C N-16 R-16A Q-16 NOTES 1 To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers. 2 N = Plastic DIP; Q = Cerdip; R = 0.15" Small Outline IC (SOIC); RU = Think Shrink Small Outline Package (TSSOP). NOTES 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. 2 Overvoltages at A, EN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG408/ADG409 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. A ADG408/ADG409 PIN CONFIGURATIONS (DIP/SOIC/TSSOP) A0 1 16 15 A2 EN 2 15 14 GND VSS 3 14 VDD 13 VDD S1A 13 S1B 16 EN 2 VSS 3 S1 4 ADG408 A1 A1 A0 1 ADG409 4 TERMINOLOGY GND VDD Most positive power supply potential. VSS Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground. TOP VIEW S2 5 (Not to Scale) 12 S5 TOP VIEW S2A 5 (Not to Scale) 12 S2B GND Ground (0 V) reference. Ohmic resistance between D and S. Difference between the RON of any two channels. S3 6 11 S6 S4 7 10 S7 D 8 9 S8 S3A 6 11 S3B RON S4A 7 10 S4B ∆RON DA 8 9 DB ADG408 Truth Table A2 A1 A0 EN ON SWITCH X 0 0 0 0 1 1 1 1 X 0 0 1 1 0 0 1 1 X 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 NONE 1 2 3 4 5 6 7 8 IS (OFF) Source leakage current when the switch is off. ID (OFF) Drain leakage current when the switch is off. ID, IS (ON) Channel leakage current when the switch is on. VD (VS) Analog voltage on terminals D, S. CS (OFF) Channel input capacitance for “OFF” condition. CD (OFF) Channel output capacitance for “OFF” condition. CD, CS (ON) “ON” switch capacitance. CIN Digital input capacitance. tON (EN) Delay time between the 50% and 90% points of the digital input and switch “ON” condition. tOFF (EN) Delay time between the 50% and 90% points of the digital input and switch “OFF” condition. tTRANSITION Delay time between the 50% and 90% points of the digital inputs and the switch “ON” condition when switching from one address state to another. tOPEN “OFF” time measured between the 80% point of both switches when switching from one address state to another. VINL Maximum input voltage for Logic “0.” VINH Minimum input voltage for Logic “1.” IINL (IINH) Input current of the digital input. Crosstalk A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. Off Isolation A measure of unwanted signal coupling through an “OFF” channel. Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching. IDD Positive supply current. ISS Negative supply current. ADG409 Truth Table Al A0 EN ON SWITCH PAIR X 0 0 1 1 X 0 1 0 1 0 1 1 1 1 NONE 1 2 3 4 REV. A –5– ADG408/ADG409 Typical Performance Characteristics 120 180 TA = +258C TA = +258C 100 VDD = +5V VSS = 0V 160 VDD = +5V VSS = –5V VDD = +12V VSS = –12V 80 VDD = +10V VSS = –10V RON – V RON – V 140 60 120 VDD = +12V VSS = 0V VDD = +10V VSS = 0V 100 80 40 VDD = +15V VSS = –15V 20 –15 40 –10 –5 0 5 VD (VS) – Volts 10 15 90 6 9 VD (VS) – Volts 3 12 15 130 VDD = +15V VSS = –15V VDD = +12V VSS = 0V 120 80 RON – V 110 70 RON – V 0 Figure 4. RON as a Function of VD (VS): Single Supply Voltage Figure 1. RON as a Function of VD (VS): Dual Supply Voltage 100 VDD = +15V VSS = 0V 60 +1258C 60 +858C 50 100 +1258C 90 +858C 80 +258C 40 70 +258C 30 –15 –10 –5 0 5 VD (VS) – Volts 10 60 15 Figure 2. RON as a Function of VD (VS) for Different Temperatures 2 4 6 8 VD (VS) – Volts 10 12 Figure 5. RON as a Function of VD (VS) for Different Temperatures 0.2 0.04 TA = +258C VDD = +15V VSS = –15V TA = +258C VDD = +12V VSS = 0V 0.02 0.1 LEAKAGE CURRENT – nA LEAKAGE CURRENT – nA 0 IS (OFF) 0 ID (OFF) ID (ON) –0.1 ID (ON) 0 ID (OFF) IS (OFF) –0.02 –0.04 –0.2 –15 –10 –5 0 VD (VS) – Volts 5 10 –0.06 15 Figure 3. Leakage Currents as a Function of VD (VS) 0 2 4 6 VD (VS) – Volts 8 10 12 Figure 6. Leakage Currents as a Function of VD (VS) –6– REV. A ADG408/ADG409 120 140 VDD = +12V VSS = 0V VDD = +15V VSS = –15V 100 tTRANSITION 120 tTRANSITION tON (EN) 80 t – ns t – ns 100 tON (EN) 60 80 tOFF (EN) 40 20 60 1 5 3 7 9 VIN – Volts 11 13 40 15 Figure 7. Switching Time vs. VIN (Bipolar Supply) tOFF (EN) 1 3 5 7 VIN – Volts 9 13 11 Figure 10. Switching Time vs. VIN (Single Supply) 300 400 VIN = +5V VIN = +5V 300 200 tON (EN) 200 tTRANSITION t – ns t – ns tTRANSITION 100 tON (EN) 100 tOFF (EN) tOFF (EN) 0 5 7 9 11 VSUPPLY – Volts 0 65 15 13 Figure 8. Switching Time vs. Single Supply 67 69 611 VSUPPLY – Volts 613 615 Figure 11. Switching Time vs. Bipolar Supply 104 104 VDD = +15V VSS = –15V VDD = +15V VSS = –15V ISS – mA IDD – mA 103 103 102 EN = 2.4V 101 EN = 0V EN = 2.4V 100 EN = 0V 102 10 100 1k 10k 100k FREQUENCY – Hz 1M 10–1 10M Figure 9. Positive Supply Current vs. Switching Frequency REV. A 10 100 1k 10k 100k FREQUENCY – Hz 1M 10M Figure 12. Negative Supply Current vs. Switching Frequency –7– ADG408/ADG409 110 110 VDD = +15V VSS = –15V VDD = +15V VSS = –15V 100 CROSSTALK – dB OFF ISOLATION – dB 100 90 90 80 80 70 70 1k 10k 100k FREQUENCY – Hz 60 1M Figure 13. Off Isolation vs. Frequency 1k 10k 100k FREQUENCY – Hz 1M Figure 14. Crosstalk vs. Frequency Test Circuits I DS V1 S1 VDD VSS VDD VSS S2 S D S8 D GND VS VS EN ID (OFF) +0.8V A VD RON = V1/I DS Test Circuit 1. On Resistance S1 IS (OFF) VDD VSS VDD VSS S2 A VD VDD VSS VDD VSS S1 D S8 2.4V ID (ON) D S8 VS Test Circuit 3. ID (OFF) GND EN +0.8V VS GND EN A VD Test Circuit 4. ID (ON) Test Circuit 2. IS (OFF) –8– REV. A ADG408/ADG409 3V ENABLE DRIVE (VIN) 50% VDD VSS VDD VSS tr < 20ns tf < 20ns 50% A0 VS1 S1 0V VIN A1 50V S2 THRU S7 A2 tTRANSITION tTRANSITION VS8 S8 90% ADG408* OUTPUT 2.4V OUTPUT D EN 300V GND 35pF 90% *SIMILAR CONNECTION FOR ADG409 Test Circuit 5. Switching Time of Multiplexer, tTRANSlTlON 3V ADDRESS DRIVE (VIN) VDD VSS VDD VSS A0 S1 VIN 0V VS A1 50V S2 THRU S7 A2 S8 80% ADG408* 80% OUTPUT 2.4V OUTPUT D EN 300V GND 35pF tOPEN *SIMILAR CONNECTION FOR ADG409 Test Circuit 6. Break-Before-Make Delay, tOPEN 3V ENABLE DRIVE (VIN) 50% VDD VSS VDD VSS A0 50% S1 VS A1 0V A2 tOFF (EN) tON (EN) 0.9VO S2 THRU S8 ADG408* 0.9VO OUTPUT D EN OUTPUT VIN 50V GND *SIMILAR CONNECTION FOR ADG409 Test Circuit 7. Enable Delay, tON (EN), tOFF (EN) REV. A –9– 300V 35pF ADG408/ADG409 3V VDD VSS VDD VSS A0 A1 VIN A2 VOUT RS D VOUT ADG408* S D VOUT EN QINJ = CL 3 D VOUT VS CL 10nF GND VIN *SIMILAR CONNECTION FOR ADG409 Test Circuit 8. Charge Injection VDD VSS VDD VSS A0 A0 A1 A1 A2 ADG408 A2 VOUT D S1 0V VSS VDD VSS EN 2.4V ADG408 D S1 VOUT 1kV 1kV S8 VS VDD EN 1kV S2 S8 GND VS OFF ISOLATION = 20 LOG VOUT/VIN GND CROSSTALK = 20 LOG VOUT/VIN Test Circuit 9. OFF Isolation Test Circuit 10. Channel-to-Channel Crosstalk –10– REV. A ADG408/ADG409 OUTLINE DIMENSIONS Dimensions shown in inches and (mm). SO (Narrow Body) (R-16A) C1824a–0–4/98 Plastic DIP (N-16) 0.3937 (10.00) 0.3859 (9.80) 0.87 (22.1) MAX 16 9 1 8 0.25 0.31 (6.35) (7.87) 0.1574 (4.00) 0.1497 (3.80) 16 9 1 8 0.2440 (6.20) 0.2284 (5.80) PIN 1 0.035 (0.89) 0.125 (3.18) MIN 0.18 (4.57) SEATING PLANE 0.033 (0.84) 0.100 (2.54) BSC 0.011 (0.28) 0.0500 (1.27) BSC SEATING PLANE 0.310 (7.87) 0.220 (5.59) 16 0.840 (21.34) MAX 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.022 (0.558) 0.014 (0.356) 0.100 (2.54) BSC 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 8° 0° 0.0500 (1.27) 0.0160 (0.41) 0.320 (8.13) 0.290 (7.37) 1 15° 0° 9 0.177 (4.50) 0.169 (4.30) 8 PIN 1 0.0099 (0.25) 0.0075 (0.19) 0.201 (5.10) 0.193 (4.90) 9 1 0.0192 (0.49) 0.0138 (0.35) Thin Shrink Small Outline Package (TSSOP) (RU-16) 0.080 (2.03) MAX 16 0.0196 (0.50) x 45° 0.0099 (0.25) 0.3 (7.62) Cerdip (Q-16) 0.005 (0.13) MIN 0.0688 (1.75) 0.0532 (1.35) PIN 1 0.0098 (0.25) 0.0040 (0.10) 0.256 (6.50) 0.246 (6.25) 0.018 (0.46) 0.18 (4.57) MAX 0.015 (0.38) 0.008 (0.20) 8 PIN 1 0.006 (0.15) 0.002 (0.05) 0.0256 (0.65) BSC 0.0118 (0.30) 0.0075 (0.19) 0.0079 (0.20) 0.0035 (0.090) 8° 0° 0.028 (0.70) 0.020 (0.50) PRINTED IN U.S.A. SEATING PLANE 0.0433 (1.10) MAX REV. A –11–