a Dual-Channel, 12-Bit 105 MSPS IF Sampling A/D Converter AD10201 FEATURES Two Independent 12-Bit, 105 MSPS ADCs Channel-to-Channel Isolation, > 90 dB AC-Coupled Signal Conditioning Included Gain Flatness up to Nyquist, < 0.1 dB Input VSWR 1.05:1 to Nyquist 80 dB Spurious-Free Dynamic Range Two’s Complement Output Format 3.3 V or 5 V CMOS-Compatible Output Levels 900 mW Per Channel Single-Ended or Differential Input 250 MHz Input Bandwidth PRODUCT DESCRIPTION The AD10201 offers two complete ADC channels with on-module signal conditioning for improved dynamic performance. Each wide dynamic range ADC has a transformer coupled front end optimized for direct IF sampling. The AD10201 has on-chip track-and-hold circuitry, and uses an innovative architecture to achieve 12-bit, 105 MSPS performance. The AD10201 uses innovative high density circuit design to achieve exceptional performance while still maintaining excellent isolation and providing for board area savings. The AD10201 operates with 5.0 V supply for the analog-to-digital conversion. Each channel is completely independent, allowing operation with independent ENCODE and analog inputs. The AD10201 is available as a 35 mm square 385-lead BGA package. APPLICATIONS Wireless and Wired Broadband Communications Base Stations and “Zero-IF” or Direct IF Sampling Subsystems Wireless Local Loop (WLL) Local Multipoint Distribution Service (LMDS) Radar and Satellite Subsystems PRODUCT HIGHLIGHTS 1. Guaranteed sample rate of 105 MSPS 2. Input signal conditioning included with full-power bandwidth to 250 MHz 3. Industry-leading IF sampling performance FUNCTIONAL BLOCK DIAGRAM AIN A1 AIN A2 AIN B1 AIN B2 D0B (LSB) D0A (LSB) D1B D1A T1A D2A T1B D3A 50⍀ 50⍀ T/H T/H D2B D3B D4A D4B D5A D5B AD10201 D6B D6A D7A ADC D7B ADC D8B D8A D9A D10A D11A (MSB) 12 12 12 OUTPUT RESISTORS 12 D10B OUTPUT RESISTORS TIMING REF REF ENCODEA ENCODEA REF_A_OUT REF_B_OUT D9B D11B (MSB) TIMING ENCODEB ENCODEB REV. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 AD10201–SPECIFICATIONS ELECTRICAL CHARACTERISTICS1 (V Parameter Temp DD = 3.3 V, VCC = 5.0 V; ENCODE = 105 MSPS, unless otherwise noted.) Test Level Min RESOLUTION Typ Max 12 Unit Bits DC ACCURACY Differential Nonlinearity Integral Nonlinearity No Missing Codes Gain Error2 Output Offset Gain Tempco Offset Tempco Full Full Full 25°C 25°C Full Full IV IV IV I I V V ANALOG INPUT Input Voltage Range Input Impedance Input VSWR3 Analog Input Bandwidth, High Analog Input Bandwidth, Low 25°C 25°C Full Full Full V V V V V 1.75 50 1.05:1 250 300 V p-p Ω Ratio MHz kHz ANALOG REFERENCE Output Voltage Load Current Tempco 25°C 25°C Full V V V 2.5 5 50 V mA ppm/°C SWITCHING PERFORMANCE4 Maximum Conversion Rate Minimum Conversion Rate Duty Cycle Aperture Delay (tA) Aperture Uncertainty (Jitter) Output Valid Time (tV)5 Output Propagation Delay (tPD)5 Output Rise Time (tR) Output Fall Time (tF) Full Full Full 25°C 25°C Full Full 25°C 25°C VI IV IV V V IV IV V V DIGITAL INPUTS ENCODE Input Common-Mode Differential Input (ENC, ENC) Logic “1” Voltage Logic “0” Voltage Input Resistance Input Capacitance Full Full Full Full Full 25°C IV IV IV IV IV V 1.2 0.4 2.0 1.6 3 5 4.5 Full Full IV IV 3.1 3.3 0 Two’s Complement 0.2 V V Full Full Full Full VI IV VI VI 1800 ± 0.5 32 340 2200 +5.0 40 410 mW mV/V mA mA DIGITAL OUTPUTS Logic “1” Voltage5 Logic “0” Voltage5 Output Coding POWER SUPPLY6 Power Dissipation7 Power Supply Rejection Ratio Total I (DVDD) Current Total I (AVCC) Current –0.99 ± 1.5 –9 –8 ± 0.5 ± 0.1 Guaranteed ±2 ±2 60 –12 +0.99 +1.5 LSB LSB +9 +8 % FS LSB ppm/°C ppm/°C 105 45 3.0 –5.0 –2– 50 2.0 0.25 6.3 6.5 3.5 3.3 10 55 9.0 2.0 5.0 0.8 8.0 MSPS MSPS % ns ps rms ns ns ns ns V V V V kΩ pF REV. 0 AD10201 Parameter Temp DYNAMIC PERFORMANCE Signal-to-Noise Ratio (SNR)8 (Without Harmonics) fIN = 10 MHz 25°C fIN = 41 MHz 25°C 25°C fIN = 71 MHz fIN = 121 MHz 25°C Signal-to-Noise Ratio (SINAD)9 (With Harmonics) fIN = 10 MHz 25°C 25°C fIN = 41 MHz fIN = 71 MHz 25°C fIN = 121 MHz 25°C Spurious-Free Dynamic Range10 fIN = 10 MHz 25°C fIN = 41 MHz 25°C fIN = 71 MHz 25°C 25°C fIN = 121 MHz Two-Tone Intermodulation Distortion11 (IMD) fIN = 10 MHz; fIN = 12 MHz 25°C 25°C fIN = 71 MHz; fIN = 72 MHz fIN = 121 MHz; fIN = 122 MHz 25°C Channel-to-Channel Isolation12 fIN = 121 MHz Full Test Level Min Typ I V I V 66 68 67 66.5 63 dBFS dBFS dBFS dBFS I V I V 65.5 67.5 67.2 65 59 dBFS dBFS dBFS dBFS I V I V 75.5 81 76 74 63 dBFS dBFS dBFS dBFS V V V 81 66 61 dBc dBc dBc IV 90 dBc 63.5 63 71 Max Unit NOTES 1 All specifications tested by driving ENCODE and ENCODE differentially, with the analog input applied to A INX1 and AINX2 tied to ground. 2 Gain error measured at 10.3 MHz. 3 Input VSWR, see TPC 12. 4 See Figure 1, Timing Diagram. 5 tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 10 pF or a dc current of ± 40 A. 6 Supply voltages should remain stable within ± 5% for normal operation. 7 Power dissipation measures with encode at rated speed. 8 Analog input signal power at –1 dBFS; signal-to-noise (SNR) is the ratio of signal level to total noise (first six harmonics removed). ENCODE = 105 MSPS. SNR is reported in dBFS, related back to converter full scale. 9 Analog input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. ENCODE = 105 MSPS. SINAD is reported in dBFS, related back to converter full scale. 10 Analog input signal equals –1 dBFS; SFDR is ratio of converter full scale to worst spur. 11 Both input tones at –7 dBFS; two-tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product. 12 Channel-to-channel isolation tested with A channel/50 Ω terminated (AIN A2 grounded) and a full-scale signal applied to B channel (A IN B2). Specifications subject to change without notice. REV. 0 –3– AD10201 ABSOLUTE MAXIMUM RATINGS* EXPLANATION OF TEST LEVELS VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V Analog Inputs . . . . . . . . . . . . . . . . . . . . . . 5 V p-p (18 dBm) Digital Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD +0.5 V Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Operating Temperature (Ambient) . . . . . . . –55°C to +125°C Storage Temperature (Ambient) . . . . . . . . . –65°C to +150°C Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C Test Level I 100% production tested II 100% production tested at 25°C and sample tested at specific temperatures III Sample tested only IV Parameter is guaranteed by design and characterization testing V Parameter is a typical value only VI 100% production tested at 25°C; guaranteed by design and characterization testing for industrial temperature range * Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Table I. Output Coding (VREF = 2.5 V) (Two’s Complement) THERMAL CHARACTERISTICS Code AIN (V) Digital Output 385-Lead BGA Package: The typical θJA of the module as determined by an IR scan is 25.33°C/W. +2047 · · 0 –1 · · –2048 +0.875 · · 0 –0.000427 · · –0.875 0111 1111 1111 · · 0000 0000 0000 1111 1111 1111 · · 1000 0000 0000 SAMPLE Nⴚ1 SAMPLE N SAMPLE Nⴙ10 SAMPLE Nⴙ11 AIN SAMPLE Nⴙ1 SAMPLE Nⴙ9 1/f S ENCODE ENCODE t PD tV D11ⴚD0 DATA Nⴚ11 DATA Nⴚ10 Nⴚ9 Nⴚ2 DATA Nⴚ1 DATA N DATA N ⴙ 1 Figure 1. Timing Diagram ORDERING GUIDE Model Temperature Range Package Description Package Option AD10201AB AD10201/PCB –25°C to +85°C (Ambient) +25°C 385-Lead BGA (35 mm 35 mm) Evaluation Board with AD10201AB B-385 CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD10201 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. 0 AD10201 PIN CONFIGURATION 25 23 24 21 22 19 20 17 18 15 16 13 14 11 12 9 10 7 8 5 6 3 4 1 2 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE 35 mm square BOTTOM VIEW PIN FUNCTION DESCRIPTIONS Mnemonic Function AGNDA REF_A_OUT NC AIN A1 AIN A2 AVCCA DGNDA D11A–D0A ENCODEA ENCODEA DVCCA DGNDB D11B–D0B AGNDB DVCCB ENCODEB ENCODEB REF_B_OUT AIN B1 AIN B2 AVCCB A Channel Analog Ground. A and B grounds should be connected as close to the device as possible A Channel Internal Voltage Reference No connection Analog Input for A side ADC (ⴚ input) Analog Input for A side ADC (+ input) Analog Positive Supply Voltage (nominally 5.0 V) A Channel Digital Ground Digital Outputs for ADC A. D0 (LSB) Complement of ENCODE Data conversion initiated on the rising edge of ENCODE input Digital Positive Supply Voltage (nominally 3.3 V) B Channel Digital Ground Digital Outputs for ADC B. D0 (LSB) B Channel Analog Ground. A and B grounds should be connected as close to the device as possible. Digital Positive Supply Voltage (nominally 3.3 V) Complement of ENCODE Data conversion initiated on rising edge of ENCODE input B Channel Internal Voltage Reference Analog Input for B side ADC (ⴚ input) Analog Input for B side ADC (+ input) Analog Positive Supply Voltage (nominally 5.0 V) REV. 0 –5– AD10201 385-LEAD BGA PINOUT Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball No. Signal Name Ball Signal No. Name A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 E1 E2 E3 E4 E22 E23 E24 E25 F1 F2 F3 F4 F22 F23 F24 F25 G1 G2 G3 G4 G22 G23 G24 G25 H1 H2 H3 H4 H22 H23 AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AINA2 AINA1 AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB AINB2 AINB1 AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB H24 H25 J1 J2 J3 J4 J22 J23 J24 J25 K1 K2 K3 K4 K10 K11 K12 K13 K14 K15 K16 K22 K23 K24 K25 L1 L2 L3 L4 L10 L11 L12 L13 L14 L15 L16 L22 L23 L24 L25 M1 M2 M3 M4 M10 M11 M12 M13 M14 M15 M16 M22 M23 M24 M25 N1 N2 N3 N4 N10 N11 N12 N13 N14 N15 AGNDB AGNDB AVCCA AVCCA AVCCA AVCCA REF_B_OUT REF_B_OUT REF_B_OUT REF_B_OUT AGNDA AGNDA AGNDA AGNDA AVCCA AGNDA AGNDA DNC AGNDB AGNDB AVCCB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA DNC AGNDA AGNDA DNC AGNDB AGNDB DNC ENCBB ENCBB ENCBB ENCBB ENCAB ENCAB ENCAB ENCAB AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB ENCB ENCB ENCB ENCB ENCA ENCA ENCA ENCA AGNDA AGNDA AGNDA DNC AGNDB AGNDB N16 N22 N23 N24 N25 P1 P2 P3 P4 P10 P11 P12 P13 P14 P15 P16 P22 P23 P24 P25 P25 R1 R2 R3 R4 R10 R11 R12 R13 R14 R15 R16 R22 R23 R24 R25 T1 T2 T3 T4 T10 T11 T12 T13 T14 T15 T16 T22 T23 T24 T25 U1 U2 U3 U4 U22 U23 U24 U25 V1 V2 V3 V4 V22 V23 AGNDB AGNDB AGNDB AGNDB AGNDB AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB DVCCB DVCCB DVCCB DVCCB DVCCB DVCCA DVCCA DVCCA DVCCA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB DB0 DB0 DB0 DB0 DA11 DA11 DA11 DA11 AVCCA AGNDA AGNDA DNC AVCCB AGNDB AGNDB DB1 DB1 DB1 DB1 DA10 DA10 DA10 DA10 DB2 DB2 DB2 DB2 DA9 DA9 DA9 DA9 DB3 DB3 V24 V25 W1 W2 W3 W4 W22 W23 W24 W25 Y1 Y2 Y3 Y4 Y22 Y23 Y24 Y25 AA1 AA2 AA3 AA4 AA22 AA23 AA24 AA25 AB1 AB2 AB3 AB4 AB5 AB6 AB7 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB24 AB25 AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 DB3 DB3 DA8 DA8 DA8 DA8 DB4 DB4 DB4 DB4 DA7 DA7 DA7 DA7 DB5 DB5 DB5 DB5 DGNDA DGNDA DGNDA DGNDA DGNDB DGNDB DGNDB DGNDB OVRA OVRA OVRA OVRA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB OVRB OVRB OVRB OVRB DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23 AE24 AE25 –6– DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB REV. 0 AD10201 385-LEAD BGA PINOUT (Top View, PCB Footprint) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB B AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB C AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC DNC AGNDA AVCCA REF_A_OUT AGNDA DNC AGNDB AGNDB AVCCB AGNDB AVCCB DNC DNC AGNDB AGNDB AGNDB AGNDB AGNDB D AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AINA2 AINA1 AGNDA AVCCA REF_A_OUT AGNDA DNC AGNCB AGNCB AVCCB AGNCB AVCCB AINB2 AINB1 AGNDB AGNDB AGNDB AGNDB AGNDB E AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB F AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB G AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB H AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB J AGNDA AGNDA AGNDA AGNDA REF_B_OUTREF_B_OUT REF_B_OUTREF_B_OUT K AGNDA AGNDA AGNDA AGNDA AVCCA AGNDA AGNDA DNC AGNDB AGNDB AVCCB AGNDB AGNDB AGNDB AGNDB L AGNDA AGNDA AGNDA AGNDA DNC AGNDA AGNDA DNC AGNDB AGNDB DNC ENCBB ENCBB ENCBB ENCBB M ENCAB ENCAB ENCAB ENCAB AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB N ENCA ENCA ENCA ENCA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB P AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB DVCCB DVCCB R DVCCA DVCCA DVCCA DVCCA AGNDA AGNDA AGNDA DNC AGNDB AGNDB AGNDB DB0 DB0 DB0 DB0 T DA11 DA11 DA11 DA11 AVCCA AGNDA AGNDA DNC AVCCB AGNDB AGNDB DB1 DB1 DB1 DB1 U DA10 DA10 DA10 DA10 DB2 DB2 DB2 DB2 V DA9 DA9 DA9 DA9 DB3 DB3 DB3 DB3 W DA8 DA8 DA8 DA8 DB4 DB4 DB4 DB4 Y DA7 DA7 DA7 DA7 DB5 DB5 DB5 DB5 ENCB AA DGNDA DGNDA DGNDA DGNDA ENCB ENCB ENCB DVCCB DVCCB DGNDB DGNDB DGNDB DGNDB OVRB OVRA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB AC DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB AD DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB AE DGNDA DGNDA DGNDA DGNDA DGNDA DA6 DA5 DA4 DA3 DA2 DA1 DA0 DGNDA DGNDB DB11 DB10 DB9 DB8 DB7 DB6 DGNDB DGNDB DGNDB DGNDB DGNDB AB OVRA OVRA OVRA DNC = DO NOT CONNECT REV. 0 –7– OVRB OVRB OVRB AD10201 – Typical Performance Characteristics 0 0 ⴚ10 ⴚ20 ⴚ30 ENCODE = 105MSPS AIN = 121MHz (–1dBFS) SNR = 64.4dBFS SFDR = 65.4dBFS ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 ⴚ60 dB dB ⴚ10 ENCODE = 105MSPS AIN = 10MHz (–1dBFS) SNR = 67.65dBFS SFDR = 88.14dBFS ⴚ70 ⴚ80 ⴚ70 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 ⴚ130 ⴚ130 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 50 0 TPC 1. Single Tone @ 10 MHz 15 20 25 30 35 FREQUENCY – MHz 40 45 50 0 ENCODE = 105MSPS AIN = 49MHz (–1dBFS) SNR = 66.97dBFS SFDR = 82.66dBFS ⴚ20 ⴚ30 ⴚ10 ENCODE = 105MSPS AIN = 10.3MHz AND 12MHz SFDR = 87.82dBFS ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 ⴚ60 dB dB 10 TPC 4. Single Tone @ 121 MHz 0 ⴚ10 ⴚ70 ⴚ80 ⴚ70 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 ⴚ130 ⴚ130 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 50 0 TPC 2. Single Tone @ 49 MHz 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 50 45 50 TPC 5. Two Tone @ 10/12 MHz 0 0 ENCODE = 105MSPS AIN = 71MHz (–1dBFS) SNR = 66.1dBFS SFDR = 81.3dBFS ⴚ10 ⴚ20 ⴚ30 ⴚ10 ENCODE = 105 MSPS AIN = 71 AND 72 MHz SFDR = 83.03dBFS ⴚ20 ⴚ30 ⴚ40 ⴚ40 ⴚ50 ⴚ50 ⴚ60 ⴚ60 dB dB 5 ⴚ70 ⴚ80 F 22 2 FF 21 • F • • 1 FF 12 ⴚ70 ⴚ80 ⴚ90 ⴚ90 ⴚ100 ⴚ100 ⴚ110 ⴚ110 ⴚ120 ⴚ120 ⴚ130 ⴚ130 0 5 10 15 20 25 30 35 FREQUENCY – MHz 40 45 50 0 TPC 3. Single Tone @ 71 MHz 5 2 F 1 • F 2 10 15 2 F 2 • F 1 20 25 30 35 FREQUENCY – MHz F 1 + F 2 40 TPC 6. Two Tone @ 71/72 MHz –8– REV. 0 AD10201 0 3.0 ⴚ10 ENCODE = 105MSPS AIN = 121MHz AND 122MHz SFDR = 69.05dBFS ⴚ20 ENCODE = 105MSPS INL MIN = 0.586 INL MAX = 0.472 2.0 ⴚ30 ⴚ40 1.0 ⴚ60 LSB dB ⴚ50 ⴚ70 ⴚ80 0.0 ⴚ1.0 ⴚ90 ⴚ100 ⴚ2.0 ⴚ110 ⴚ120 ⴚ130 5 0 10 15 20 25 30 35 FREQUENCY – MHz 40 45 ⴚ3.0 50 0 TPC 7. Two Tone @ 121/122 MHz 512 1024 1536 2048 2560 OUTPUT CODES 3072 3584 4096 TPC 10. Integral Nonlinearity 0 1MHz = 1.007 10MHz = 1.030 50MHz = 1.028 100MHz = 1.042 140MHz = 1.095 160MHz = 1.134 200MHz = 1.254 ⴚ1 GAIN – dB ⴚ2 ⴚ3 ⴚ4 ⴚ5 ⴚ6 100 10 FREQUENCY – MHz 1 1000 TPC 8. Gain Flatness* TPC 11. Input Impedance S11 3.0 10 ENCODE = 105MSPS DNL MIN = 0.244 DNL MAX = 0.306 2.5 9 8 2.0 10MHz = 51.45 ⴙ j 0.09 50MHz = 50.34 ⴙ j 1.21 100MHz = 47.91 ⴙ j 0.05 150MHz = 46.57 ⴙ j 4.13 200MHz = 48.92 ⴙ j 10.0 7 GAIN – dB LSB 1.5 1.0 0.5 6 5 4 3 0.0 2 ⴚ0.5 1 ⴚ1.0 0 512 1024 1536 2048 2560 3072 3584 0 0.1 4096 OUTPUT CODES TPC 9. Differential Nonlinearity 10 FREQUENCY – MHz 100 1000 TPC 12. Voltage Standing Wave Ratio (VSWR) *Gain flatness measurement is performed by applying a constant voltage at the device input. REV. 0 1 –9– AD10201 – Equivalent Circuits VCC VCC VCC 17k⍀ 17k⍀ Q1 NPN ENCODE ENCODE 100⍀ 100⍀ 8k⍀ 8k⍀ VREF OUTPUT Test Circuit 1. Equivalent ENCODE Input Test Circuit 3. Equivalent Voltage Reference Output VCC VCC 5k⍀ 5k⍀ 7k⍀ 7k⍀ AIN2 50⍀ 100⍀ DIGITAL OUTPUT AIN1 Test Circuit 2. Equivalent Digital Output Test Circuit 4. Equivalent Analog Input DEFINITION OF TERMS Analog Bandwidth Output Propagation Delay The delay between the 50% point of the rising edge of ENCODE command and the time when all output data bits are within valid logic levels. The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB. Power Supply Rejection Ratio Aperture Delay The delay between the 50% point on the rising edge of the ENCODE command and the instant at which the analog input is sampled. The sample-to-sample variation in aperture delay. Differential Nonlinearity The deviation of any code from an ideal 1 LSB step. ENCODE Pulsewidth/Duty Cycle Pulsewidth high is the minimum amount of time that the ENCODE pulse should be left in logic “1” state to achieve rated performance; pulsewidth low is the minimum time ENCODE pulse should be left in low state. At a given clock rate, these specs define an acceptable ENCODE duty cycle. Harmonic Distortion Signal-to-Noise Ratio (without Harmonics) The ratio of the rms signal amplitude (set at 1 dB below full-scale) to the rms value of the sum of all other spectral components, excluding the first six harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full-scale).] Spurious-Free Dynamic Range The ratio of the rms signal amplitude to the rms value of the worst harmonic component. Integral Nonlinearity The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a “best straight line” determined by a least square curve fit. Minimum Conversion Rate The ENCODE rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit. The ENCODE rate at which parametric testing is performed. Signal-to-Noise-and-Distortion (SINAD) The ratio of the rms signal amplitude (set at 1 dB below full-scale) to the rms value of the sum of all other spectral components, excluding the first six harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full-scale).] Aperture Uncertainty (Jitter) Maximum Conversion Rate The ratio of a change in output offset voltage to a change in power supply voltage. The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full-scale).] Two-Tone Intermodulation Distortion Rejection The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc. Voltage Standing Wave Ratio (VSWR) The ratio of the amplitude of the electric field at a voltage maximum to that at an adjacent voltage minimum. –10– REV. 0 AD10201 APPLICATION NOTES Theory of Operation Often, the cleanest clock source is a crystal oscillator producing a pure sine wave. In this configuration, or with any roughly symmetrical clock input, the input can be ac-coupled and biased to a reference voltage that also provides the ENCODE. This ensures that the reference voltage is centered on the encode signal. The AD10201 is a high-dynamic-range dual 12-bit, 105 MHz subrange pipeline converter that uses switched capacitor architecture. The analog input section uses AINA2/B2 at 1.75 V p-p with an input impedance of 50 Ω. The analog input includes an ac-coupled wideband 1:1 transformer, which provides high dynamic range and SNR while maintaining VSWR and gain flatness. The ADC includes a high bandwidth linear track/hold that gives excellent spurious performance up to and beyond the Nyquist rate. The high bandwidth track/hold has a low jitter of 0.25 ps rms, leading to excellent SNR and SFDR performance. AC-coupled differential PECL/ECL encode inputs are recommended for optimum performance. The analog input is a single-ended ac-coupled high performance 1:1 transformer with an input impedance of 50 Ω to 250 MHz. The nominal full-scale input is 1.75 V p-p. USING THE AD10201 ENCODE Input Special care was taken in the design of the analog input section of the AD10201 to prevent damage and corruption of data when the input is overdriven. Any high speed A/D converter is extremely sensitive to the quality of the sampling clock provided by the user. A track/hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock will be combined with the desired signal at the A/D output. For that reason, considerable care has been taken in the design of the ENCODE input of the AD10201, and the user is advised to give commensurate thought to the clock source. The ENCODE inputs are fully TTL/CMOS compatible. For optimum performance, the AD10201 must be clocked differentially. Note that the ENCODE inputs cannot be driven directly from PECL level signals (VIHD is 3.5 V max). PECL level signals can easily be accommodated by ac-coupling as shown in Figure 2. Good performance is obtained using an MC10EL16 in the circuit to drive the encode inputs. 0.1F 510⍀ Analog Input Voltage Reference A stable and accurate 2.5 V voltage reference is designed into the AD10201 (VREFOUT). An external voltage reference is not required. Timing The AD10201 provides latched data outputs, with 10 pipeline delays. Data outputs are available one propagation delay (tPD) after the rising edge of the ENCODE command (see Figure 1). The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD10201; these transients can detract from the converter’s dynamic performance. The minimum guaranteed conversion rate of the AD10201 is 10 MSPS. At internal clock rates below 10 MSPS dynamic performance may degrade. Therefore, input clock rates below 10 MHz should be avoided. GROUNDING AND DECOUPLING Analog and Digital Grounding ENCODE 510⍀ The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL/CMOScompatible for lower power consumption. AD10201 ENCODE PECL GATE Digital Outputs Proper grounding is essential in any high speed, high resolution system. Multilayer printed circuit boards (PCBs) are recommended to provide optimal grounding and power schemes. The use of ground and power planes offers distinct advantages: 0.1F GND Figure 2. AC-Coupling to ENCODE Inputs ENCODE Voltage Level Definition 1. The minimization of the loop area encompassed by a signal and its return path. The voltage level definitions for driving ENCODE and ENCODE in differential mode are shown in Figure 3 and Table II. 2. The minimization of the impedance associated with ground and power paths. ENCODE ENCODE 3. The inherent distributed capacitor formed by the powerplane, PCB insulation, and ground plane. VIHD VID VICM These characteristics result in both a reduction of electromagnetic interference (EMI) and an overall improvement in performance. VILD Figure 3. Differential Input Levels Table II. ENCODE Inputs Description Differential Signal Amplitude (VID) Differential Signal Amplitude (VID) Low Differential Input Voltage (VILD) Common-Mode Input (VICN) REV. 0 Min Nom 500 mV 750 mV Max It is important to design a layout that prevents noise from coupling to the input signal. Digital signals should not be run in parallel with input signal traces and should be routed away from the input circuitry. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance path and manage the power and ground currents. The ground plane should be removed from the area near the input pins to reduce stray capacitance. 5V 0V 1.25 V 1.6 V –11– AD10201 It is recommended that high quality ceramic chip capacitors be used to decouple each supply pin to ground directly at the device. All capacitors can be standard high quality ceramic chip capacitors. Solder Reflow Profile The solder reflow profile provided in Figure 4 is recommended. 250 Care should be taken when placing the digital output runs. Because the digital outputs have such a high slew rate, the capacitive loading on the digital outputs should be minimized. Circuit traces for the digital outputs should be kept short and connect directly to the receiving gate. Internal circuitry buffers the outputs of the AD9432 ADC through a resistor network to eliminate the need to externally buffer the device from the receiving gate. TEMPERATURE – ⴗC 200 150 100 EVALUATION BOARD The AD10201 evaluation board (Figures 6a–6f) is designed to provide optimal performance for evaluation of the AD10201 analog-to-digital converter. The board encompasses everything needed to ensure the highest level of performance for evaluating the AD10201. The board requires an analog input signal, encode clock, and power supply inputs. The clock is buffered on-board to provide clocks for the latches. The digital outputs and out clocks are available at the standard 40-pin connectors J1 and J2. 50 0 0 50 100 150 200 250 TIME – Seconds 300 350 400 Figure 4. Typical Solder Reflow Profile LAYOUT INFORMATION The schematic of the evaluation board (Figures 5a–5d) represents a typical implementation of the AD10201. The pinout of the AD10201 is very straightforward and facilitates ease of use and the implementation of high-frequency/high resolution design practices. Power to the analog supply pins is connected via banana jacks. The analog supply powers the associated components and the analog section of the AD10201. The digital outputs of the AD10201 are powered via banana jacks with 3.3 V. Contact the factory if additional layout or applications assistance is required. BILL OF MATERIALS LIST FOR AD10201 EVALUATION BOARD Quantity Reference Designator 2 U16, U17 1 2 U1 U14, U15 4 8 32 2 2 4 4 R38, R39, R56, R58 R1, R7, R8, R41, R60, R61, R71, R72 R3, R4, R9–R18, R23–R30, R35, R36, R40, R42–R46, R63–R66 C1, C2, C5–C10, C12, C16–C18, C20–C26, C28, C33–C35 C13, C27 J1, J2 L1, L2, L3, L4 U2, U3, U9, U11 8 2 E3–E6, E25, E26, E33, E34 U4, U10 10 C3, C4, C11, C14, C15, C19, C29, C30–C32 J3–J7, J10–J12 23 8 4 4 1 2 4 AD10201/AD10226 Evaluation Board C36, C37 JP3, JP6, JP8, JP12 Value Description Part Number 33 kΩ 51 Ω 100 Ω IC, Low Voltage 16-Bit D-Type Flip-Flop with 5 V Tolerant Inputs and Outputs IC, BGA 35 35 385 IC, Precision Low Dropout any CAP Voltage Regulator RES 33 kΩ 1/10W 0.1% 0805 SMD RES 51 Ω 1/10W 5% 0805 SMD RES 100 Ω 1/10W 1% 0805 SMD 0.1 µF CAP 0.1 µF 50 V Ceramic Y5V 0805 74LCX16374MTD (Fairchild) AD10201AB ADP3330ART-3.3-RL7 (Analog) ERA-6YEB333V (Panasonic) ERJ-6GEYJ510V (Panasonic) ERJ-6ENF1000V (Panasonic) ECJ-2VF1H104Z (Panasonic) ECJ-2YF1E474Z (Panasonic) TSW-120-08G-D (Samtec) 2743019447 (Fair Rite) MC10EP16D (Motorola) 108-0740-001 (Johnson Company) SY100ELT23L (Micrel-Synergy) T491C106M016AS (KEMET) 142-0801-201 (Johnson Components Inc.) 0.47 µF CAP 0.47 µF 25 V Ceramic Y5V 0805 2 20 Male Connector Strip, 100 Centers 47 Ω SMT Ferrite Bead IC, 3.3 V/5 V ECL Differential Receiver/Driver Power Jack, Banana Plug 3.3 V Dual Differential LVPECL-to-LVTTL Translator 10 µF Solid Tantalum Chip Capacitor, 10 µF, 16 V, 20% SMA PLUG 200Mil STR GOLD 0Ω Spacer Aluminum, Hex M–F (Standoff) Nut Hex Stl #4-40 UNC-2B GS03983 Rev. A (PCB) CAP 0.047 µF 25 V Ceramic Y5V 0603 RES 0 Ω 1/16 W 5% 0402 –12– ECJ-1VB1C473K ER J-2GEOR00 REV. 0 AD10201 R18 100⍀ DUT_3.3VDA U16 R7 51⍀ LATCHA MSB D11A D10A D9A D8A D7A D6A D5A D4A D3A D2A D1A LSB D0A 25 24 26 27 29 30 32 33 35 36 48 1 37 38 40 41 43 44 46 47 28 34 39 45 CP2 OE2 I15 I14 I13 I12 I11 I10 I9 I8 CP1 OE1 I7 I6 I5 I4 I3 I2 I1 I0 GND GND GND GND VCC VCC VCC VCC O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0 GND GND GND GND 42 31 7 18 23 22 20 19 17 16 14 13 B11A MSB R17 100⍀ B10A R16 100⍀ R40 100⍀ B8A R44 100⍀ B7A R45 100⍀ B6A R46 100⍀ 12 11 9 8 6 5 3 2 21 15 10 4 J1 MSB B11A B10A + C15 B9A 10F 16V B8A B7A DGNDA B6A B5A R71 51⍀ B4A BUFLATA B5A R15 100⍀ R14 100⍀ R13 100⍀ R24 100⍀ B3A B2A B1A LSB B0A B4A B3A B2A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 B1A R23 100⍀ DGNDA DGNDA B0A LSB 74LCX16374MTD DGNDA 3.3VDA B9A DGNDA R11 100⍀ DUT_3.3VDB U17 R8 51⍀ LATCHB MSB D11B D10B D9B D8B D7B D6B D5B D4B D3B D2B D1B LSB D0B 25 24 26 27 29 30 32 33 35 36 48 1 37 38 40 41 43 44 46 47 28 34 39 45 CP2 OE2 I15 I14 I13 I12 I11 I10 I9 I8 CP1 OE1 I7 I6 I5 I4 I3 I2 I1 I0 GND GND GND GND VCC VCC VCC VCC O15 O14 O13 O12 O11 O10 O9 O8 O7 O6 O5 O4 O3 O2 O1 O0 GND GND GND GND 42 31 7 18 23 22 20 19 17 16 14 13 B11B MSB R10 100⍀ B10B R30 100⍀ R29 100⍀ B8B R28 100⍀ B7B R27 100⍀ B6B R26 100⍀ 12 11 9 8 6 5 3 2 21 15 10 4 R9 100⍀ R25 100⍀ R36 100⍀ B4B B3B B2B MSB B11B B10B + C14 B9B 10F 16V B8B B7B DGNDB B6B B5B R72 51⍀ B4B BUFLATB DGNDB B0B LSB DGNDB –13– B3B B2B B1B LSB B0B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 B1B R35 100⍀ Figure 5a. Evaluation Board Schematic REV. 0 J2 B5B R12 100⍀ 74LCX16374MTD DGNDB 3.3VDB B9B DGNDB AD10201 E4 E6 AGNDA 5VAA L3 1 2 J3 5VAA AINA1 AINA1 47⍀ @ 100MHz + C3 10F 16V C20 0.1F + C11 10F 16V JP1 STITCHES TO TIE GROUNDS TOGETHER AGNDA AGNDA AGNDA DGNDA DGNDA DGNDA AGNDA DGNDB E3 E5 AGNDB 5VAB E77 E12 E9 E11 E2 E42 E44 E48 E66 E67 E70 E72 E73 E76 E81 E41 E43 E47 E65 E68 E69 E71 E74 E75 E82 2 AINA2 5VAB 47⍀ @ 100MHz + C4 10F 16V AINA2 AGNDA C21 0.1F AGNDB + C19 10F 16V J7 AINB2 AINB2 AGNDB AGNDB E34 DGNDA E25 DGNDA 3.3VDA L1 1 2 AINB1 AINB1 + C31 10F 16V C12 0.1F JP2 DGNDB E30 E35 E37 E39 E46 E80 E83 AGNDB AGNDB DGNDA DGNDA AGNDA E29 E36 E38 E40 E45 E79 E84 J6 DUT_3.3VDA 47⍀ @ 100MHz + C29 10F 16V DGNDB DGNDB AGNDA AGNDB AGNDB J4 L4 1 E78 E7 E10 E8 E1 E33 E26 DGNDB 3.3VDB L2 1 2 DUT_3.3VDB 47⍀ @ 100MHz + C30 10F 16V C16 0.1F DGNDB 5VAA + C32 10F 16V DGNDB C34 0.1F DUT_3.3VDA C10 0.1F AGNDA DUT_3.3VDB C9 0.1F C18 0.1F DGNDA C17 0.1F DGNDB Figure 5b. Evaluation Board Schematic –14– REV. 0 AD10201 3.3VA U14 5VAA 2 IN 6 OUT NR SD ERR 1 5 3 GND 4 AGNDA C1 0.1F J5 C7 0.1F U2 ENCODE R1 51⍀ AGNDA R56 33k⍀ 3.3VA 1 2 3 4 AGNDA NC ENCAB 8 VCC D 7 Q D 6 Q VBB 5 VEE C13 0.1F 25V MC10EP16D AGNDA 3.3VDA 1 2 3 4 C2 0.1F J12 NC D Q D Q AGNDA 7 2 5 VEE R41 51⍀ C6 0.1F 3 R3 100⍀ R4 100⍀ 4 D0 VCC D0 Q D1 Q D1 GND 8 LATCHA 7 E23 6 E19 5 C5 0.1F SY100EPT23L DGNDA AGNDA 3.3VDA U4 1 6 MC10EP16D ENCA ENCA 8 VCC VBB C8 0.1F R43 100⍀ 3.3VDA U3 R58 33k⍀ R42 100⍀ BUFLATA DGNDA AGNDA DGNDA 3.3VB U15 5VAB 2 IN 6 OUT NR SD ERR 1 5 3 GND 4 AGNDB C22 0.1F J10 C24 0.1F U11 ENCODE R60 51⍀ AGNDB R38 33k⍀ 3.3VB 1 2 3 4 AGNDB NC ENCBB VCC D Q D Q VBB VEE 8 7 6 5 C27 0.47F 25V MC10EP16D AGNDB R39 33k⍀ 1 2 3 C23 0.1F J11 4 NC D D VBB VCC Q R61 51⍀ AGNDB AGNDB Q VEE 7 3.3VDB U10 6 1 5 2 C25 0.1F 3 R65 100⍀ R66 100⍀ 4 D0 VCC D0 Q D1 Q D1 GND 8 E22 5 DGNDB –15– E24 6 DGNDB Figure 5c. Evaluation Board Schematic LATCHB 7 SY100EPT23L DGNDB AGNDB REV. 0 ENCB 8 MC10EP16D ENCB C28 0.1F R64 100⍀ 3.3VDB U9 3.3VDB R63 100⍀ C26 0.1F BUFLATB AD10201 C33 0.1F AINA1 ENCAB ENCA D11A D10A D9A D8A D7A D6A D5A D4A D3A D2A D1A AGNDA +5VAA AD10201 JP6 AGNDA AGNDA AGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA DGNDA JP8 AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB +5VAB C37 AGNDB 0.047F JP9 AGNDB +5VAB JP12 AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB J1 J2 J3 J4 A10 B10 C10 D10 +5VAA R1 R2 R3 R4 DUT_3.3VDA A13 B13 C13 D13 K13 L13 M13 N13 P13 R13 T13 P22 P23 P24 P25 DUT_3.3VDB A16 B16 C16 D16 A18 B18 C18 D18 +5VAB A14 A15 A17 A21 A22 A23 A24 A25 B14 B15 B17 B21 B22 B23 B24 B25 C14 C15 C17 C21 C22 C23 C24 C25 D14 D15 D17 D21 D22 D23 D24 D25 E22 E23 E24 E25 F22 F23 F24 F25 G22 G23 G24 G25 H22 H23 H24 H25 K14 K15 K16 K22 K23 K24 K25 L14 L15 L16 M14 M15 M16 N14 N15 N16 N22 N23 N24 N25 P14 P15 P16 R14 R15 R16 T14 T15 T16 +5VAB AGNDB AGNDB C35 0.1F E50 AINB2 AINB1 ENCBB ENCB D0B D1B D2B D3B D4B D5B D6B DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB DGNDB +5VAB D7B DGNDB AA22 AA23 AA24 AA25 AB14 AB21 AC14 AC21 AC22 AC23 AC24 AC25 AD14 AD21 AD22 AD23 AD24 AD25 AE14 AE21 AE22 AE23 AE24 AE25 JP3 AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB AGNDB +5VAA D8B DGNDA AA1 AA2 AA3 AA4 AB5 AB13 AC1 AC2 AC3 AC4 AC5 AC13 AD1 AD2 AD3 AD4 AD5 AD13 AE1 AE2 AE3 AE4 AE5 AE13 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB 5VAB D9B +5VAA 3.3VDB 3.3VDB 3.3VDB 3.3VDB D10B AGNDA SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD SHEILD D11B JP4 3.3VDA 3.3VDA 3.3VDA 3.3VDA OVRB +5VAA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA 5VAA OVRB OVRB OVRB OVRB D11B (MSBB) D11B (MSBB) D11B (MSBB) D11B (MSBB) D10B D10B D10B D10B D9B D9B D9B D9B D8B D8B D8B D8B D7B D7B D7B D7B D6B D6B D6B D6B D5B D5B D5B D5B D4B D4B D4B D4B D3B D3B D3B D3B D2B D2B D2B D2B D1B D1B D1B D1B D0B (LSBB) D0B (LSBB) D0B (LSBB) D0B (LSBB) ENCB ENCB ENCB ENCB ENCBB ENCBB ENCBB ENCBB REF_B REF_B REF_B REF_B AINB1 AINB1 AINB1 AINB1 AINB2 AINB2 AINB2 AINB2 C36 0.047F AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AGNDA AB25 AB24 AB23 AB22 AE15 AD15 AC15 AB15 AE16 AD16 AC16 AB16 AE17 AD17 AC17 AB17 AE18 AD18 AC18 AB18 AE19 AD19 AC19 AB19 AE20 AD20 AC20 AB20 Y25 Y24 Y23 Y22 W25 W24 W23 W22 V25 V24 V23 V22 U25 U24 U23 U22 T25 T24 T23 T22 R25 R24 R23 R22 M25 M24 M23 M22 L25 L24 L23 L22 J25 J24 J23 J22 D20 C20 B20 A20 D19 C19 B19 A19 AGNDA A1 A2 A3 A4 A5 A6 A9 A12 B1 B2 B3 B4 B5 B6 B9 B12 C1 C2 C3 C4 C5 C6 C9 C12 D1 D2 D3 D4 D5 D6 D9 D12 E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3 H4 K1 K2 K3 K4 K10 K11 K12 L1 L2 L3 L4 L10 L11 L12 M10 M11 M12 N10 N11 N12 P1 P2 P3 P4 P10 P11 P12 R10 R11 R12 T10 T11 T12 OVRA OVRA OVRA OVRA D0A (LSBA) D0A (LSBA) D0A (LSBA) D0A (LSBA) D1A D1A D1A D1A D2A D2A D2A D2A D3A D3A D3A D3A D4A D4A D4A D4A D5A D5A D5A D5A D6A D6A D6A D6A D7A D7A D7A D7A D8A D8A D8A D8A D9A D9A D9A D9A D10A D10A D10A D10A D11A (MSBA) D11A (MSBA) D11A (MSBA) D11A (MSBA) ENCA ENCA ENCA ENCA ENCAB ENCAB ENCAB ENCAB AINA2 AINA2 AINA2 AINA2 AINA1 AINA1 AINA1 AINA1 REF_A REF_A REF_A REF_A AB4 AB3 AB2 AB1 AE12 AD12 AC12 AB12 AE11 AD11 AC11 AB11 AE10 AD10 AC10 AB10 AE9 AD9 AC9 AB9 AE8 AD8 AC8 AB8 AE7 AD7 AC7 AB7 AE6 AD6 AC6 AB6 Y4 Y3 Y2 Y1 W4 W3 W2 W1 V4 V3 V2 V1 U4 U3 U2 U1 T4 T3 T2 T1 N4 N3 N2 N1 M4 M3 M2 M1 D7 C7 B7 A7 D8 C8 B8 A8 D11 C11 B11 A11 D0A OVRA AINA2 E49 AGNDA AGNDB Figure 5d. Evaluation Board Schematic –16– REV. 0 AD10201 E5 +5VAB E33 DGNDB E3 AGNDB E37 E38 E29 E30 + C4 C30 + E1 E2 J2 E26 +3.3VDB C16 L2 L4 ENCB E80 J11 + C32 R R 11 R 10 R 30 R 29 R 28 R 27 R 26 12 R R9 R 25 R 36 35 J10 ENCB E36 GNDTIES E35 C19 + E79 E46 E45 E83 E84 E22 BUFLATB LATCHB E24 E50 JP2 REF_B J6 AINB2 E11 E39 GNDTIE AINB1 J7 GNDTIE J3 E49 E8 E47 E12 E77 AINA1 GNDTIE GNDTIE E78 E7 REF_A J1 JP1 18 R 17 R 16 R 40 R 44 R 45 R 46 R 5 1 R 14 R 13 R 24 R 23 R J4 U1 AINA2 ENCA ENCA L3 J5 E82 E81 E65 E66 E9 E10 E41 E42 J12 + C11 GNDTIES GS03983 REV: A AD10201/ AD10206 EVALUATION BOARD E43 E68 C3 + +5VAA E6 AGNDA E4 E44 BUFLATA E19 E23 LATCHA C31 + L1 C29 + E67 E74 E73 E71 E72 E69 E70 E75 E76 C12 E34 DGNDA E25 +3.3VDA Figure 6a. Mechanical Layout Top View GNDTIES + C14 Figure 6c. Top View R72 R61 U10 C23 C17 R8 R38 R66 C27 R65 C25 U17 R60 C22 U11 R39 C26 U9 R63 R64 U15 C18 C28 C24 C21 JP12 JP9 C35 GNDTIE C37 JP8 JP3 +5V GNDTIE JP6 U16 JP4 R43 C9 GNDTIE C33 C8 C10 C7 R42 C15 GNDTIE C36 C20 C34 U3 R7 U14 R56 R58 U2 C13 R4 R3 C1 R1 C6 U4 R71 R41 C2 GNDTIES C5 Figure 6b. Mechanical Layout Bottom View REV. 0 Figure 6d. Layer 2 –17– AD10201 Figure 6f. Bottom View Figure 6e. Layer 3 –18– REV. 0 AD10201 OUTLINE DIMENSIONS Dimensions shown in millimeters (mm). 385-Lead Ball Grid Array (BGA) (B-385) 37.00 35.00 BSC SQ 33.00 24 22 20 18 16 14 12 10 8 6 4 2 25 23 21 19 17 15 13 11 9 7 5 3 1 A B C E D G F H J K L M N P R T U V W Y AA AB AC AD AE AD10201AB XXXX DETAIL C 30.48 BSC SQ DETAIL A 1.27 TYP COMPONENT VOLUME DETAIL A 3.20 MAX 1.15 1.02 0.89 0.90 0.75 0.60 0.75 0.60 0.50 DETAIL B REV. 0 –19– AD10201AB XXXX DETAIL B DETAIL C –20– PRINTED IN U.S.A. C02860–0–5/02(0)