AD ADRF6603ACPZ-R7

2100 MHz to 2600 MHz Rx Mixer with
Integrated Fractional-N PLL and VCO
ADRF6603
FEATURES
Table 1.
Rx mixer with integrated fractional-N PLL
RF input frequency range: 1100 MHz to 3200 MHz
Internal LO frequency range: 2100 MHz to 2600 MHz
Input P1dB: 14.6 dBm
Input IP3: 27 dBm
Input IP3 optimization via external pin
SSB noise figure
IP3SET pin open: 14.2 dB
IP3SET pin at 3.3 V: 15.2 dB
Voltage conversion gain: 6.9 dB
Matched 200 Ω IF output impedance
IF 3 dB bandwidth: 500 MHz
Programmable via 3-wire SPI interface
40-lead, 6 mm × 6 mm LFCSP
Part No.
ADRF6602
ADRF6603
Internal LO
Range
1550 MHz
2150 MHz
2100 MHz
2600 MHz
±3 dB RFIN
Balun Range
1000 MHz
3100 MHz
1100 MHz
3200 MHz
±1 dB RFIN
Balun Range
1350 MHz
2750 MHz
1450 MHz
2850 MHz
The PLL reference input can support input frequencies from
12 MHz to 160 MHz. The PFD output controls a charge pump
whose output drives an off-chip loop filter.
The loop filter output is then applied to an integrated VCO. The
VCO output at 2× fLO is applied to an LO divider, as well as to a
programmable PLL divider. The programmable PLL divider is
controlled by a sigma-delta modulator (SDM). The modulus of
the SDM can be programmed from 1 to 2047.
APPLICATIONS
The active mixer converts the single-ended 50 Ω RF input to
a 200 Ω differential IF output. The IF output can operate up
to 500 MHz.
Cellular base stations
GENERAL DESCRIPTION
The ADRF6603 is fabricated using an advanced silicon-germanium
BiCMOS process. It is available in a 40-lead, RoHS-compliant,
6 mm × 6 mm LFCSP with an exposed paddle. Performance is
specified over the −40°C to +85°C temperature range.
The ADRF6603 is a high dynamic range active mixer with
integrated fractional-N phase-locked loop (PLL) and voltagecontrolled oscillator (VCO) for internal mixer LO generation.
Along with the ADRF6602, the ADRF6603 forms a family of
integrated PLL/mixers that cover the frequency range of 2100 MHz
to 2600 MHz.
FUNCTIONAL BLOCK DIAGRAM
VCC1
VCC2
VCC_LO
VCC_MIX
VCC_V2I
VCC_LO
1
10
17
22
27
34
NC NC
32
33
ADRF6603
INTERNAL LO RANGE
2100MHz TO 2600MHz
LODRV_EN 36
LON 37
BUFFER
LOP 38
BUFFER
PLL_EN 16
FRACTION MODULUS
REG
CLK 13
SPI
INTERFACE
LE 14
2:1
MUX
INTEGER
REG
REF_IN 6
÷2
÷4
N COUNTER
21 TO 123
MUX
TEMP
SENSOR
7
9
DECL2P5
VCO
LDO
40 DECLVCO
VCO
CORE
PRESCALER
÷2
29 IP3SET
CHARGE PUMP
250µA,
500µA (DEFAULT),
750µA,
1000µA
–
PHASE
+ FREQUENCY
DETECTOR
MUXOUT 8
4
DECL3P3
2.5V
LDO
26 RF
IN
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
×2
DIV
BY
2, 1
2
11 15 20 21 23 24 25 28 30 31 35
5
RSET
GND
3
39
18 19
CP VTUNE IFP IFN
08547-001
DATA 12
3.3V
LDO
Figure 1.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2010 Analog Devices, Inc. All rights reserved.
ADRF6603
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4)................................................... 13
Register 5—PLL Enable and LO Path Control (Default:
0x0000E5) .................................................................................... 14
Register 6—VCO Control and VCO Enable (Default:
0x1E2106) .................................................................................... 14
RF Specifications .......................................................................... 3
Register 7—Mixer Bias Enable and External VCO Enable
(Default: 0x000007).................................................................... 14
Synthesizer/PLL Specifications ................................................... 4
Theory of Operation ...................................................................... 15
Logic Input and Power Specifications ....................................... 5
Programming the ADRF6603................................................... 15
Timing Characteristics ................................................................ 5
Initialization Sequence .............................................................. 15
Absolute Maximum Ratings............................................................ 6
LO Selection Logic ..................................................................... 16
ESD Caution .................................................................................. 6
Applications Information .............................................................. 17
Pin Configuration and Function Descriptions ............................. 7
Basic Connections for Operation ............................................. 17
Typical Performance Characteristics ............................................. 9
Evaluation Board ............................................................................ 18
Register Structure ........................................................................... 11
Evaluation Board Control Software ......................................... 18
Register 0—Integer Divide Control (Default: 0x0001C0)..... 11
Schematics and Artwork ........................................................... 20
Register 1—Modulus Divide Control (Default: 0x003001) .. 11
Evaluation Board Configuration Options ............................... 22
Register 2—Fractional Divide Control (Default: 0x001802) 12
Outline Dimensions ....................................................................... 23
Register 3—Σ-Δ Modulator Dither Control (Default:
0x10000B) .................................................................................... 12
Ordering Guide .......................................................................... 23
REVISION HISTORY
3/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADRF6603
SPECIFICATIONS
RF SPECIFICATIONS
VS = 5 V; ambient temperature (TA) = 25°C; fREF = 38.4 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
using capacitor DAC (0x1) and IP3SET (3.3 V), unless otherwise noted.
Table 2.
Parameter
INTERNAL LO FREQUENCY RANGE
RF INPUT FREQUENCY RANGE
RF INPUT AT 2140 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Side Band Noise Figure
LO to IF Leakage
RF INPUT AT 2400 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Side Band Noise Figure
LO to IF Leakage
RF INPUT AT 2650 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Side Band Noise Figure
LO to IF Leakage
IF OUTPUT
Voltage Conversion Gain
IF Bandwidth
Output Common-Mode Voltage
Gain Flatness
Gain Variation
Output Swing
Output Return Loss
LO INPUT/OUTPUT (LOP, LON)
Frequency Range
Output Level (LO as Output)
Input Level (LO as Input)
Input Impedance
Test Conditions/Comments
±3 dB RF input range
Min
2100
1100
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Low side Injection
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Differential 200 Ω load
Small-signal 3 dB bandwidth
External pull-up balun or inductors required
Over frequency range, any 5 MHz/50 MHz
Over full temperature range
Differential 200 Ω load
Relative to 200 Ω
Externally applied 1× LO input, internal PLL disabled
Typ
Rev. 0 | Page 3 of 24
Unit
MHz
MHz
−27
14.6
56
28
15.2
14.5
−42
dB
dBm
dBm
dBm
dB
dB
dBm
−16
14.6
55
27.7
15.3
14.2
−43
dB
dBm
dBm
dBm
dB
dB
dBm
−11
14.6
54
28.0
15.3
14.2
−42.5
dB
dBm
dBm
dBm
dB
dB
dBm
6.9
500
5
0.2/1.0
1.0
2
−14
dB
MHz
V
dB
dB
V p-p
dB
250
1× LO into a 50 Ω load, LO output buffer enabled
Max
2600
3200
6000
−7
±6
50
MHz
dBm
dBm
Ω
ADRF6603
SYNTHESIZER/PLL SPECIFICATIONS
VS = 5 V; ambient temperature (TA) = 25°C; fREF = 153.6 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
using capacitor DAC (0x1) and IP3SET (3.3 V), unless otherwise noted.
Table 3.
Parameter
SYNTHESIZER SPECIFICATIONS
Frequency Range
Figure of Merit
Reference Spurs
PHASE NOISE
Integrated Phase Noise
PFD Frequency
REFERENCE CHARACTERISTICS
REF_IN Input Frequency
REF_IN Input Capacitance
MUXOUT Output Level
MUXOUT Duty Cycle
CHARGE PUMP
Pump Current
Output Compliance Range
Test Conditions/Comments
Synthesizer specifications referenced to 1× LO
Internally generated LO
PREF_IN = 0 dBm
fREF = 153.6 MHz
fREF/4
fREF/2
fREF
> fREF
fLO = 2100 MHz to 2600 MHz, fPFD = 38.4 MHz
1 kHz to 10 kHz offset
100 kHz offset
500 kHz offset
1 MHz offset
5 MHz offset
10 MHz offset
20 MHz offset
1 kHz to 40 MHz integration bandwidth
Min
Typ
Max
Unit
2600
−222
MHz
dBc/Hz
−107
−107
−86
−83
dBc
dBc
dBc
dBc
−90
−99.5
−120
−128
−142
−148
−149
0.4
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
°rms
MHz
2100
20
40
REF_IN, MUXOUT pins
12
160
4
VOL (lock detect output selected)
VOH (lock detect output selected)
0.25
2.7
50
Programmable to 250 μA, 500 μA, 750 μA, 1 mA
500
1
Rev. 0 | Page 4 of 24
2.8
MHz
pF
V
V
%
μA
V
ADRF6603
LOGIC INPUT AND POWER SPECIFICATIONS
VS = 5 V; ambient temperature (TA) = 25°C; fREF = 38.4 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
using capacitor DAC (0x1) and IP3SET (3.3 V), unless otherwise noted.
Table 4.
Parameter
LOGIC INPUTS
Input High Voltage, VINH
Input Low Voltage, VINL
Input Current, IINH/IINL
Input Capacitance, CIN
POWER SUPPLIES
Voltage Range
Supply Current
Test Conditions/Comments
CLK, DATA, LE
Min
Typ
1.4
0
Max
Unit
3.3
0.7
V
V
μA
pF
5.25
V
mA
mA
0.1
5
VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins
4.75
PLL only
External LO mode (internal PLL disabled,
IP3SET pin = 3.3 V)
Internal LO mode (internal PLL enabled,
IP3SET pin = 3.3 V)
Power-down mode
5
98
163
261
mA
30
mA
TIMING CHARACTERISTICS
VCC2 = 5 V ± 5%.
Table 5.
Parameter
t1
t2
t3
t4
t5
t6
t7
Limit
20
10
10
25
25
10
20
Unit
ns min
ns min
ns min
ns min
ns min
ns min
ns min
Description
LE setup time
DATA to CLK setup time
DATA to CLK hold time
CLK high duration
CLK low duration
CLK to LE setup time
LE pulse width
Timing Diagram
t4
t5
CLK
t2
DATA
DB23 (MSB)
t3
DB22
DB2
(CONTROL BIT C3)
DB1
(CONTROL BIT C2)
t1
DB0 (LSB)
(CONTROL BIT C1)
t7
08547-002
t6
LE
Figure 2. Timing Diagram
Rev. 0 | Page 5 of 24
ADRF6603
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter
Supply Voltage, VCC1, VCC2, VCC_LO,
VCC_MIX, VCC_V2I
Digital I/O, CLK, DATA, LE
IFP, IFN
RFIN
θJA (Exposed Paddle Soldered Down)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
−0.5 V to +5.5 V
−0.3 V to +3.6 V
−0.3 V to VCC + 0.3 V
18 dBm
35°C/W
150°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. 0 | Page 6 of 24
ADRF6603
40
39
38
37
36
35
34
33
32
31
DECLVCO
VTUNE
LOP
LON
LODRV_EN
GND
VCC_LO
NC
NC
GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PIN 1
INDICATOR
ADRF6603
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
GND
IP3SET
GND
VCC_V2I
RFIN
GND
GND
GND
VCC_MIX
GND
NOTES
1. NC = NO CONNECT.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A
LOW IMPEDANCE GROUND PLANE.
08547-003
GND
DATA
CLK
LE
GND
PLL_EN
VCC_LO
IFP
IFN
GND
11
12
13
14
15
16
17
18
19
20
VCC1 1
DECL3P3 2
CP 3
GND 4
RSET 5
REF_IN 6
GND 7
MUXOUT 8
DECL2P5 9
VCC2 10
Figure 3. Pin Configuration
Table 7. Pin Function Descriptions
Pin No.
1
Mnemonic
VCC1
2
3
4, 7, 11, 15, 20,
21, 23, 24, 25,
28, 30, 31, 35
5
DECL3P3
CP
GND
RSET
Description
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Decoupling Node for 3.3 V LDO. Connect a 0.1 μF capacitor between this pin and ground.
Charge Pump Output Pin. Connect to VTUNE through the loop filter.
Ground. Connect these pins to a low impedance ground plane.
Charge Pump Current. The nominal charge pump current can be set to 250 μA, 500 μA, 750 μA, or 1 mA using
Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 to 0 (internal reference current). In this mode,
no external RSET is required. If Bit DB18 is set to 1, the four nominal charge pump currents (INOMINAL) can be
externally adjusted according to the following equation:
⎛ 217.4 × I CP
R SET = ⎜⎜
⎝ I NOMINAL
6
8
REF_IN
MUXOUT
9
10
DECL2P5
VCC2
12
13
DATA
CLK
14
LE
16
PLL_EN
17, 34
VCC_LO
18, 19
22
IFP, IFN
VCC_MIX
26
RFIN
⎞
⎟ − 37.8 Ω
⎟
⎠
Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz.
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect
signal. The output is selected by programming the appropriate register.
Decoupling Node for 2.5 V LDO. Connect a 0.1 μF capacitor between this pin and ground.
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched
into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz.
Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the
eight registers. The relevant latch is selected by the three control bits of the 24-bit word.
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be
used to switch modes.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
RF Input (Single-Ended, 50 Ω).
Rev. 0 | Page 7 of 24
ADRF6603
Pin No.
27
Mnemonic
VCC_V2I
29
32, 33
36
IP3SET
NC
LODRV_EN
37, 38
LON, LOP
39
VTUNE
40
EP
DECLVCO
EPAD
Description
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Connect a resistor from this pin to a +5 V supply to adjust IIP3. Normally leave open.
No Connection.
LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON
pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin
is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN
pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. The external LO drive
frequency must be 1× LO. This pin should not be left floating.
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO
generation is disabled, an external 1× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. The nominal input voltage
range on this pin is 1.5 V to 2.5 V.
Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 μF capacitor between this pin and ground.
Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Rev. 0 | Page 8 of 24
ADRF6603
TYPICAL PERFORMANCE CHARACTERISTICS
CDAC = 0x1, IP3SET = 3.3 V, internally generated LO, RFIN = −10 dBm, fIF = 140 MHz, unless otherwise noted.
45
5
4
3
–40°C
+25°C
40
+85°C
35
+85°C
INPUT IP3 (dBm)
GAIN (dB)
2
–40°C
+25°C
1
0
–1
30
25
20
–2
15
–3
LO FREQUENCY (MHz)
5
2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
08547-014
–5
2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
LO FREQUENCY (MHz)
Figure 4. Gain vs. LO Frequency
Figure 7. IIP3 vs. LO Frequency, RFIN = −5 dBm
90
20
–40°C
+25°C
18
+85°C
16
70
INPUT P1dB (dBm)
INPUT IP2 (dBm)
80
08547-017
10
–4
60
50
–40°C
+25°C
+85°C
14
12
10
8
6
4
40
08547-015
LO FREQUENCY (MHz)
0
2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
LO FREQUENCY (MHz)
Figure 5. IIP2 vs. LO Frequency, RFIN = −5 dBm
Figure 8. IP1dB vs. LO Frequency
20
0
+85°C
16
15
14
13
12
11
10
2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
LO FREQUENCY (MHz)
Figure 6. Noise Figure vs. LO Frequency
–10
–40°C
+25°C
+85°C
–20
–30
–40
–50
–60
2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
LO FREQUENCY (MHz)
08547-019
–40°C
+25°C
08547-016
NOISE FIGURE (dB)
17
LO FEEDTHROUGH AMPLITUDE (dBm)
19
18
08547-018
2
30
2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600
Figure 9. LO Feedthrough to IF vs. LO Frequency, LO Output Turned Off
Rev. 0 | Page 9 of 24
ADRF6603
Phase noise measurements made at IF output, unless otherwise noted.
1.0
1kHz OFFSET
0.9
0.7
100kHz OFFSET
0.6
10kHz OFFSET
0.5
–120
1MHz OFFSET
0.4
–130
INTERGRATED PHASE NOISE
–140
0.3
0.2
–150
10MHz OFFSET
–160
2100
2200
2300
2400
2500
0
2600
LO FREQUENCY (MHz)
Figure 10. PLL Spot Phase Noise at Various Offsets
and Integrated Phase Noise vs. LO Frequency
2× PFD OFFSET
–85
–90
1× PFD OFFSET
–95
4× PFD OFFSET
–100
–110
2100
2200
2300
2400
2500
LO FREQUENCY (MHz)
2600
08547-021
0.25× AND
0.5× PFD OFFSET
–105
–110
–120
–130
LO
LO
LO
LO
LO
LO
= 2115.2MHz
= 2211.2MHz
= 2307.2MHz
= 2403.2MHz
= 2499.2MHz
= 2595.2MHz
–140
–160
1k
10k
100k
1M
10M
100M
OFFSET FREQUENCY (Hz)
Figure 12. Phase Noise vs. Offset Frequency and LO Frequency
(LO Frequency Varies from 2100 MHz to 2600 MHz)
–75
–80
–100
–150
0.1
08547-020
–110
PHASE NOISE (dBc/Hz)
–100
–90
INTEGRATED PHASE NOISE (°rms)
0.8
SPURS LEVEL (dBc)
SPOT PHASE NOISE (dBc/Hz)
–90
–80
Figure 11. PLL Reference Spurs vs. LO Frequency
Rev. 0 | Page 10 of 24
08547-022
–80
ADRF6603
REGISTER STRUCTURE
This section provides the register maps for the ADRF6603. The three LSBs determine the register that is programmed.
REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)
DIVIDE
MODE
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11
0
0
0
0
0
0
0
0
0
0
0
INTEGER DIVIDE RATIO
CONTROL BITS
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DM
ID6
ID5
ID4
ID3
ID2
ID1
ID0
C3(0) C2(0) C1(0)
0
0
DM
DIVIDE MODE
0
FRACTIONAL (DEFAULT)
1
INTEGER
DB1
ID6
ID5
ID4
ID3
ID2
ID1
ID0
INTEGER DIVIDE RATIO
0
0
1
0
1
0
1
21 (INTEGER MODE ONLY)
0
0
1
0
1
1
0
22 (INTEGER MODE ONLY)
0
0
1
0
1
1
1
23 (INTEGER MODE ONLY)
0
0
1
1
0
0
0
24
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
0
1
1
1
0
0
0
56 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
1
0
1
1
1
119
1
1
1
1
0
0
0
120 (INTEGER MODE ONLY)
1
1
1
1
0
0
1
121 (INTEGER MODE ONLY)
1
1
1
1
0
1
0
122 (INTEGER MODE ONLY)
1
1
1
1
0
1
1
123 (INTEGER MODE ONLY)
DB0
08547-004
RESERVED
Figure 13. Register 0—Integer Divide Control Register Map
REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)
MODULUS VALUE
0
0
0
0
0
0
0
0
0
0
MD10
CONTROL BITS
DB12 DB11 DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
MD9
MD6
MD5
MD4
MD3
MD2
MD1
MD0
C3(0) C2(0) C1(1)
MD8
MD7
DB1
DB0
MD10
MD9
MD8
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
MODULUS VALUE
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
2
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
0
0
0
0
0
0
0
0
0
1536 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
1
1
1
1
1
1
1
1
1
2047
Figure 14. Register 1—Modulus Divide Control Register Map
Rev. 0 | Page 11 of 24
08547-005
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13
ADRF6603
REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)
RESERVED
0
0
0
0
0
0
0
FD10
DB12 DB11 DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
FD9
FD6
FD5
FD4
FD3
FD2
FD1
FD0
FD8
FD7
DB2
DB1
0
0
FD10
FD9
FD8
FD7
FD6
FD5
FD4
FD3
FD2
FD1
FD0
FRACTIONAL VALUE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
0
1
1
0
0
0
0
0
0
0
0
768 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
DB0
C3(0) C2(1) C1(0)
08547-006
0
CONTROL BITS
FRACTIONAL VALUE
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13
<MDR
FRACTIONAL VALUE MUST BE LESS THAN MODULUS
Figure 15. Register 2—Fractional Divide Control Register Map
REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)
DITHER
DITHER RESTART VALUE
CONTROL BITS
ENABLE
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DEN
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)
DITH1
0
0
DITH0
0
1
DITHER MAGNITUDE
15 (DEFAULT)
7
1
0
3
1
1
1 (RECOMMENDED)
DEN
0
1
DITHER ENABLE
DISABLE
ENABLE (DEFAULT, RECOMMENDED)
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9
DV8
DV7
DV6
DV5
DV4
DV3
DV2 DV1 DV0
DITHER RESTART
VALUE
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0x00001 (DEFAULT)
...
...
0x1FFFF
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
Figure 16. Register 3—Σ-Δ Modulator Dither Control Register Map
Rev. 0 | Page 12 of 24
0
...
...
1
1
...
...
1
08547-007
DB23
0
DITHER
MAGNITUDE
DB22
DB21
DITH1
DITH0
ADRF6603
REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)
REF OUPUT
MUX SELECT
DB23 DB22
CP
INPUT REF CURRENT
REF
PATH
SOURCE
DB21 DB20 DB19
RMS2 RMS1 RMS0 RS1
RS0
PFD PHASE OFFSET
MULTIPLIER
PFD
POL
CP
CURRENT
CP
CP
SRC CONTROL
DB8
PFD EDGE
DB18
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9
DB7
DB6
DB5
CPM
CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0
PE1
PE0
PFD ANTI
BACKLASH
DELAY
DB4
DB3
CONTROL BITS
DB2
DB1
DB0
PAB1 PAB0 C3(1)
C2(0)
C1(0)
PAB0 PAB1 PFD ANTI BACKLASH
DELAY
0
0
0ns (DEFAULT)
0
1
0.5ns
1
0
0.75ns
1
1
0.9ns
PE1
0
1
PE0
REFERENCE PATH EDGE
SENSITIVITY
0
1
FALLING EDGE
RISING EDGE (DEFAULT)
DIVIDER PATH EDGE
SENSITIVITY
FALLING EDGE
RISING EDGE (DEFAULT)
CPC1 CPC0 CHARGE PUMP CONTROL
0
0
1
1
0
1
0
1
BOTH ON
PUMP DOWN
PUMP UP
TRISTATE (DEFAULT)
CPS
CHARGE PUMP CONTROL SOURCE
0
1
CONTROL BASED ON STATE OF DB7/DB8 (CP CONTROL)
CONTROL FROM PFD (DEFAULT)
CPP1 CPP0 CHARGE PUMP CURRENT
0
0
1
1
0
1
0
1
250µA
500µA (DEFAULT)
750µA
1000µA
CPB4 CPB3 CPB2 CPB1 CPB0 PFD PHASE OFFSET MULTIPLIER
0
0
0
0
1
1
CPM
0
1
0
0
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
0
0
0
1
CPBD
PFD PHASE OFFSET POLARITY
0
1
NEGATIVE
POSITIVE (DEFAULT)
0 × 22.5°/ICPMULT
1 × 22.5°/ICPMULT
6 × 22.5°/ICPMULT (RECOMMENDED)
10 × 22.5°/ICPMULT (DEFAULT)
16 × 22.5°/ICPMULT
31 × 22.5°/ICPMULT
CHARGE PUMP CURRENT
REFERENCE SOURCE
INTERNAL (DEFAULT)
EXTERNAL
RS0
INPUT REFERENCE
RS1 PATH SOURCE
0
0
1
1
0
1
0
1
2× REFIN
REFIN (DEFAULT)
0.5× REFIN
0.25× REFIN
RMS2 RMS1 RMS0 REF OUTPUT MUX SELECT
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LOCK DETECT (DEFAULT)
VPTAT
REFIN (BUFFERED)
0.5× REFIN (BUFFERED)
2× REFIN (BUFFERED)
TRISTATE
RESERVED
RESERVED
08547-008
0
0
0
0
1
1
1
1
Figure 17. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map
Rev. 0 | Page 13 of 24
ADRF6603
REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)
CAP DAC
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8
0
0
0
0
0
0
0
0
0
0
0
CD3
0
CD2 CD1 CD0
RES
PLL
EN
LO
DIV1
LO
EXT
LO
DRV
DB7
DB6
DB5
DB4
DB3
0
PLEN
LDV1
LXL
CONTROL BITS
DB2
DB1
DB0
LDRV C3(1) C2(0) C1(1)
CD3
CD2
CD1
CD0
CAPACITOR DAC
CONTROL FOR IIP3
OPTIMIZATION
LO OUTPUT DRIVER
LDRV ENABLE
0
1
0
1
0
1
0
1
MIN
MAX
0
1
DRIVER OFF (DEFAULT)
DRIVER ON
EXTERNAL LO DRIVE
LXL ENABLE (PIN 37, PIN 38)
INTERNAL LO OUTPUT (DEFAULT)
EXTERNAL LO INPUT
0
1
DIVIDE-BY-2 IN LO CHAIN ENABLE
0
1
DIVIDE BY 1
DIVIDE BY 2 (DEFAULT)
PLEN
PLL ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
08547-009
LDV1
Figure 18. Register 5—PLL Enable and LO Path Control Register Map
REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)
CHARGE
3.3V
VCO
PUMP
LDO VCO LDO VCO
ENABLE ENABLE ENABLE ENABLE SWITCH
DB23 DB22 DB21
0
0
0
DB20
CPEN
DB19
L3EN
DB18
LVEN
VCO AMPLITUDE
DISABLE
ENABLE (DEFAULT)
L3EN 3.3V LDO ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
LVEN
VCO LDO ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
VCO BAND SELECT FROM SPI
CONTROL BITS
DB17
DB16 DB15 DB14 DB13 DB12 DB11 DB10
DB9
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
VCO EN VCO SW VC5 VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)
CPEN CHARGE PUMP ENABLE
0
1
VCO
BW SW
CTRL
VC[5:0] VCO AMPLITUDE
VBS[5:0]
VCO BAND SELECT FROM SPI
0x00
….
0x18
….
0x2B
….
0x3F
0x00
0x01
….
0x3F
DEFAULT 0x20
0
….
24 (DEFAULT)
….
43
….
63 (RECOMMENDED)
VCO SW
VCO SWITCH CONTROL FROM SPI
0
1
REGULAR (DEFAULT)
BAND CAL
VCO EN
VCO ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
VBSRC VCO BW CAL AND SW SOURCE CONTROL
0
1
BAND CAL (DEFAULT)
SPI
08547-010
RESERVED
Figure 19. Register 6—VCO Control and VCO Enable Register Map
REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)
RES
MIXER
XVCO B_EN
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5
0
XVCO MBE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CONTROL BITS
DB4 DB3 DB2 DB1 DB0
0
0 C3(1) C2(1) C1(1)
MBE MIXER BIAS ENABLE
DISABLE
0
ENABLE (DEFAULT)
1
EXTERNAL VCO
INTERNAL VCO (DEFAULT)
EXTERNAL VCO
08547-011
XVCO
0
1
Figure 20. Register 7—Mixer Bias Enable and External VCO Enable Register Map
Rev. 0 | Page 14 of 24
ADRF6603
THEORY OF OPERATION
The ADRF6603 integrates a high performance downconverting
mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the
fractional-N PLL functions and the mixer optimization functions,
as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6603 is the next generation of
an industry leading family of mixers from Analog Devices, Inc.
The RF input is converted to a current and then mixed down to
IF using high performance NPN transistors. The mixer output
currents are transformed to a differential output. The high performance active mixer core results in an exceptional IIP3 and IP1dB,
with a very low output noise floor for excellent dynamic range.
Over the specified frequency range, the ADRF6603 typically
provides an IF input P1dB of 14.6 dBm and an IIP3 of 27 dBm.
Improved performance at specific frequencies can be achieved
with the use of the internal capacitor DAC (CDAC), which is
programmable via the SPI port, and through the use of a resistor
to a +5 V supply from the IP3SET pin (Pin 29). Adjustment of
the capacitor DAC allows increments in phase shift at internal
nodes in the ADRF6603, thus allowing cancellation of thirdorder distortion with no change in supply current. Connecting
a resistor to a +5 V supply from the IP3SET pin increases the
internal mixer core current, thereby improving overall IIP2 and
IIP3, as well as IP1dB. Using the IP3SET pin for this purpose
increases the overall supply current.
The fractional divide function of the PLL allows the frequency
multiplication value from REF_IN to LO output to be a fractional value rather than be restricted to an integer value as
in traditional PLLs. In operation, this multiplication value is
INT + (FRAC/MOD), where INT is the integer value, FRAC
is the fractional value, and MOD is the modulus value, all
programmable via the SPI port. In other fractional-N PLL
designs, fractional multiplication is achieved by periodically
changing the fractional value in a deterministic way. The
disadvantage of this approach is often spurious components
close to the fundamental signal. In the ADRF6603, a Σ-Δ
modulator is used to distribute the fractional value randomly,
thus significantly reducing the spurious content due to the
fractional function.
PROGRAMMING THE ADRF6603
The ADRF6603 is programmed via a 3-pin SPI port. The timing
requirements for the SPI port are shown in Figure 2. Eight programmable registers, each with 24 bits, control the operation of
the device. The register functions are listed in Table 8.
Table 8. ADRF6603 Register Functions
Register
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Function
Integer divide control for the PLL
Modulus divide control for the PLL
Fractional divide control for the PLL
Σ-Δ modulator dither control
PLL charge pump, PFD, reference path control
PLL enable and LO path control
VCO control and VCO enable
Mixer bias enable and external VCO enable
Note that internal calibration for the PLL must be run when the
ADRF6603 is initialized at a given frequency. This calibration is
run automatically whenever Register 0, Register 1, or Register 2 is
programmed. Because the other registers affect PLL performance,
Register 0, Register 1, and Register 2 should always be programmed
last and in this order: Register 0, Register 1, Register 2.
To program the frequency of the ADRF6603, the user typically
programs only Register 0, Register 1, and Register 2. However,
if registers other than these are programmed first, a short delay
should be inserted before programming Register 0. This delay
ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the product page of the Analog Devices
website (www.analog.com) that allows easy programming from
a PC running Windows XP or Vista.
INITIALIZATION SEQUENCE
To ensure proper power-up of the ADRF6603, it is important to
reset the PLL circuitry after the VCC supply rail settles to 5 V ±
0.25 V. Resetting the PLL ensures that the internal bias cells are
properly configured, even under poor supply start-up conditions.
To ensure that the PLL is reset after power-up, follow this
procedure:
1.
2.
3.
Disable the PLL by setting the PLEN bit to 0 (Register 5,
Bit DB6).
Disable the VCO LDO internal node by setting the LVEN
bit to 0 (Register 6, Bit DB18).
After a delay of >100 ms, set the PLEN and LVEN bits to 1.
After this procedure, the other registers can be programmed, in
order, from Register 7 to Register 3, and then from Register 0 to
Register 2, as described in the Programming the ADRF6603
section.
Rev. 0 | Page 15 of 24
ADRF6603
LO SELECTION LOGIC
The downconverting mixer in the ADRF6603 can be used
without the internal PLL by applying an external differential
LO to Pin 37 and Pin 38 (LON and LOP). In addition, when
using an LO generated by the internal PLL, the LO signal can
be accessed directly at these same pins. This function can be
used for debugging purposes, or the internally generated LO
can be used as the LO for a separate mixer.
The operation of the LO generation and whether LOP and LON
are inputs or outputs are determined by the logic levels applied
at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3
(LDRV) and Bit DB6 (PLEN) in Register 5. The combination of
externally applied logic and internal bits required for particular
LO functions is given in Table 9.
Table 9. LO Selection Logic
Pin 16 (PLL_EN)
0
0
1
1
1
1
1
Pins1
Pin 36 (LODRV_EN)
X
X
X
0
X
1
Register 5 Bits1
Bit DB6 (PLEN)
Bit DB3 (LDRV)
0
X
1
X
0
X
1
0
1
1
1
X
X = don’t care.
Rev. 0 | Page 16 of 24
Output Buffer
Disabled
Disabled
Disabled
Disabled
Enabled
Enabled
Outputs
LO
External
External
External
Internal
Internal
Internal
ADRF6603
APPLICATIONS INFORMATION
shown in Figure 21. The reference signal, or a divided-down
version of the reference signal, can be brought back off chip at
the multiplexer output pin (MUXOUT). A lock detect signal
and a voltage proportional to the ambient temperature can also
be selected on the multiplexer output pin.
BASIC CONNECTIONS FOR OPERATION
Figure 21 shows the schematic for the ADRF6603 evaluation
board. The six power supply pins should be individually
decoupled using 100 pF and 0.1 μF capacitors located as
close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should
be decoupled with the capacitor values shown in Figure 21.
The loop filter is connected between the CP and VTUNE pins.
When connected in this way, the internal VCO is operational.
For information about the loop filter components, see the
Evaluation Board Configuration Options section.
The RF input is internally ac-coupled and needs no external
bias. The IF outputs are open collector, and a bias inductor
is required from these outputs to VCC.
Operation with an external VCO is also possible. In this case,
the loop filter components should be referred to ground. The
output of the loop filter is connected to the input voltage pin of
the external VCO. The output of the VCO is brought back into
the device on the LOP and LON pins, using a balun if necessary.
The reference frequency for the PLL should be from 12 MHz
to 160 MHz and should be applied to the REF_IN pin, which
should be ac-coupled and terminated with a 50 Ω resistor as
1
2
3
4
5
6
VCC
S2
R41
0Ω
(0402)
LO IN/OUT
4
LODRV_EN
LON
3
C20
0.1µF
(0402)
C19
0.1µF
(0402)
C32
OPEN
(0402)
R45
OPEN
(0402)
R6
0Ω
(0402)
C8
100pF
(0402)
R27
0Ω
(0402)
C26
100pF
(0402)
R26
0Ω
(0402)
C24
100pF
(0402)
R25
0Ω
(0402)
C22
100pF
(0402)
R24
0Ω
(0402)
C21
100pF
(0402)
R17
0Ω
(0402)
C18
100pF
(0402)
C30
OPEN
(0402)
R42
OPEN
(0402)
VCC_MIX
27
VCC_LO
22
VCC2
17
VCC1
10
1
T8
TC1-1-13+
REF_IN
R73
49.9Ω
(0402)
12
14
DECL2P5
9
37
DIVIDER
÷2
BUFFER
BUFFER
FRACTION
REG
MODULUS
DIV
BY
2, 1
2:1
MUX
INTEGER
REG
2
ADRF6603
26
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
×2
N COUNTER
21 TO 123
6
÷2
MUXOUT
R16
0Ω
(0402)
13
C16
R18
100pF 0Ω
(0402) (0402)
C17
0.1µF
(0402)
C42
10µF
(0603)
DECL3P3
C12
R8
100pF 0Ω
(0402) (0402)
C11
0.1µF
(0402)
C41
OPEN
(0603)
SPI
INTERFACE
TEMP
SENSOR
8
4
7
11 15 20 21 23 24 25 38 30 31 35
RSET
R2
R37 OPEN
0Ω (0402)
(0402)
CP
TEST
POINT
(ORANGE)
R38
0Ω
(0402)
C14
270pF
(0603)
5
29
3
39
CP
R10
1.6kΩ
(0603)
C15
5.6nF
(1206)
C2
OPEN
(0402)
40
18
C13
27pF
(0603)
R1
0Ω
(0402)
VTUNE
C40
OPEN
(0603)
1
2
R27 3
0Ω
(0402)
4
RFOUT
R43
0Ω
5 (0402)
C29
0.1µF
(0402)
R12
0Ω
(0402)
C1
100pF
(0402)
Figure 21. Basic Connections for Operation of the ADRF6603
Rev. 0 | Page 17 of 24
IFN
VCC
+5V
R63
OPEN
(0402)
C27
0.1µF
(0402)
19
VTUNE DECLVCO IFP
R62
0Ω
(0402)
RFIN
IP3SET
R27
0Ω
(0402)
R9 18kΩ R65 0Ω
(0402)
(0402)
R11
OPEN
(0402)
C43
10µF
(0603)
R22
0Ω
(0402)
CHARGE PUMP
250µA,
500µA (DEFAULT),
750µA,
1000µA
–
PHASE
+ FREQUENCY
DETECTOR
RFIN
VCO
CORE
PRESCALER
÷2
MUX
÷4
REFOUT
16
36
C6
1nF
(0402)
C13
1nF
(0402) REF_IN
CLK
VCC_V2I
LE
C23
0.1µF
(0402)
DATA
C25
0.1µF
(0402)
C5
1nF LOP 38
1 (0402)
5
R44
OPEN
(0402)
C27
0.1µF
(0402)
PLL_EN
VCC_LO
C31
OPEN
(0402)
C7
0.1µF
(0402)
34
R40
0Ω
(0402)
P1
9-PIN
DSUB
9
R47
10kΩ
(0402)
VCC
RED
+5V
VCC1
RED
R39
OPEN
(0402)
S1
OPEN
8
R36
0Ω
R30
(0402)
0Ω
(0402) R48
0Ω
(0402)
R35
0Ω
(0402)
R19
0Ω
R20 (0402)
0Ω
(0402)
R43
10kΩ
(0402)
7
08547-024
A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms
for a sine wave input) results in an IF output power of 4.7 dBm.
ADRF6603
EVALUATION BOARD
Figure 24 shows the schematic of the RoHS-compliant evaluation board for the ADRF6603. This board has four layers and
was designed using Rogers 4350 hybrid material to minimize
high frequency losses. FR4 material is also adequate if the design
can accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal
VCO of the device (the default configuration) or with an
external VCO. To use an external VCO, R62 and R12 should
be removed. Place 0 Ω resistors in R63 and R11. The input of
the external VCO should be connected to the VTUNE SMA
connector, and the external VCO output should be connected
to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to
enable operation with an external VCO (see the Register 6—
VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are
described in Table 10.
EVALUATION BOARD CONTROL SOFTWARE
Software to program the ADRF6603 is available for download
from www.analog.com. To install the software, download and
extract the zip file. Then run the following installation file:
ADRF6x0x_3p0p0_XP_install.exe
To connect the evaluation board to a USB port, a USB adapter
board (Part No. EVAL-ADF4XXXZ-USB) must be purchased
from www.analog.com. This board connects to the PC using a
standard USB cable with USB mini-connector at one end. An
additional 25-pin male to 9-pin female adapter is required to
mate the ADF4XXXZ-USB board to the 9-pin D-Sub connector
on the ADRF6603 evaluation board.
08547-025
The evaluation board can be connected to the PC using a PC
parallel port or a USB port. These options are selectable from
the opening menu of the software interface (see Figure 22). The
evaluation board is shipped with a 25-pin parallel port cable
for connection to the PC parallel port.
Figure 22. Control Software Opening Menu
Figure 23 shows the main menu of the control software with the
default settings displayed.
Rev. 0 | Page 18 of 24
08547-026
ADRF6603
Figure 23. Main Window of the ADRF6603 Evaluation Board Software
Rev. 0 | Page 19 of 24
AGND
AGND
REFIN
AGND
R70
49.9
AGND
1
0
R8
1000PF
C31
10PF
22000PF
C3
C4
0
R15
0.1UF
OSC_3P3V
C11
10UF
1
3P3V1
AGND
100PF
C12
AGND
100PF
0.1UF
0
R38
C10
0
R7
VCC_RF
1
VCC_LO
C9
C41
OSC_3P3V
AGND
3P3V_LDO
1
AGND
VCC
VCC4
R29
CP
REFOUT
VCC_BB
AGND
R11
0
R16
2P5V_LDO
DNI
R49
1
AGND
AGND
0.1UF
C2
0
1K
VCC
AGND
C42
10UF
P1-1
10UF
C43
0
R1
100PF
0.1UF
AGND
C18
0
C19
AGND
1
VCC2
R17
100PF
0.1UF
AGND
C16
0
R18
1
R63
100K
P1-6
R36
R57
R30
11
0
0
0
39
1
37
100PF
DNI
1
16
17
1
VCC
R54
10K
VCC5
AGND
AGND
18
33
3
1
4A
GND
IP3SET
GND
AGND
21
22
23
AGND
C20
0.1UF
1
VCC
R58
DNI
VCC
TBD
L2
TBD
L1
1
AGND
DNI
C36
DNI
C35
VCC_BB
AGND
C23
0.1UF
C22
0
R25
VCC_BB1
100PF
VCC_LO
VCC_LO1
C21
AGND
AGND
0.1UF
100PF
AGND
C25
1
VCC_RF
C24
0
R26
AGND
VCC_BB
0
R48
0
R47
0
100PF
0
R24
C27
0.1UF
TBD
R27
IP3SET
OUTPUT_EN
R28
AGND
R60
TBD
AGND
1
IP3SET
VCC_LO
AGND
LO IN
24
IP3SET
AGND
0
R69
25
26
27
28
29
30
E-PAD PAD
GND
VCC_MIX
GND
GND
GND
RFIN
VCC_V2I
AGND
20
31
OUTPUT_EN
19
32
C7
1
VCC_LO
0.1UF
AGND
AGND
P1-T7
C8
0
R6
4
2
5
P4-T7
P4-T7 AGND
100PF
NC
4
3
3A
5A
6A
5
2A
6
T8
T7
2
LO_EXTERN
P3-T7
P3-T7
R56
10K
AGND
34
AGND
R53
10K
15
2
LE
Z1
35
P3-T7
P4-T7
3
C34
AGND
100PF
DNI
C33
36
VCC
S2
AGND
14
DATA
13
R55
10K
1
1
R52
1K DNI
R51
1K DNI
38
1NF
1NF
VCC1
C5
C6
12
DIG_GND
0
R19
AGND
100PF
DNI
C32
10 VCC2
9 DECL2P5
8 MUXOUT
7 GND
6 REF_IN
5 R
SET
4 GND
3 CP
2 DECL3P3
40
P1-6
1 VCC1
P1-1
AMP745781-4
9
8
7
6
5
4
3
2
1
P1
R50
1K DNI
CLK
DNI
R2
AGND
VTUNE
1
C40
TBD
AGND
1
GND1 GND2
C17
AGND
1
2P5V
AGND
AGND
AGND
100PF
C1
R65
C13
470PF
AGND
1
R9
0.022UF
C15
VCO_LDO
1000PF
C14
VCO_LDO
0
VCC_SENSE
R12
0
10UF
R37
C28
AGND
DNI
0
0
0
R32
DNI
SNS
R10
R71
R72
R62
SNS1
0
806
TBD
0
R31
Y1
R14
DECLVCO
GND
2
GND
VTUNE
DATA
3
S1
LE
R33
NC
IFP
VCC
PLL_EN
0
NC
IFN
AGND
VCC_LO
VCC_LO
1
AGND
IFN
AGND
IFP
AGND
RFIN
VCC_RF
0
R67
0 DNI
R68
VCO_LDO
VCC
AGND
VCC_SENSE
AGND
3P3V_LDO
2P5V_LDO
LO_EXTERN
0
1A
R43
P1-T7
GND
GND
1
LODRV_EN
GND
T3
4
C29
AGND
LO OUT
DNI
R44
AGND
0.1UF
1
1
CLK
1
2
VCC
LOP
R35
LON
0
GND
R20
Rev. 0 | Page 20 of 24
0
R34
Figure 24. Evaluation Board Schematic
0
6
3
P1-T7
TC4-1W
VCC
R59
0
J1 1
J1 2
J1 3
J1 4
J1 5
J1 6
J1 7
J1 8
J1 9
J1 10
AGND
ADRF6603
SCHEMATICS AND ARTWORK
08547-023
R66
0
Figure 25. Evaluation Board Layout (Bottom)
08547-012
08547-013
ADRF6603
Figure 26. Evaluation Board Layout (Top)
Rev. 0 | Page 21 of 24
ADRF6603
EVALUATION BOARD CONFIGURATION OPTIONS
Table 10.
Component
S1, R55, R56, R33
Description
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in
combination with internal register settings, determines whether the LOP and LON pins
function as inputs or outputs (see the LO Selection Logic section for more information).
LO IN/OUT
SMA Connector
REFIN
SMA Connector
REFOUT
SMA Connector
LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input
connector.
Reference input. The input reference frequency for the PLL is applied to this connector.
Input impedance is 50 Ω.
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The
on-board multiplexer can be programmed to bring out the following signals:
REFIN, 2× REFIN, REFIN/2, REFIN/4.
Temperature sensor output voltage.
Lock detect indicator.
Charge pump test point. The unfiltered charge pump signal can be probed at this test
point. Note that the CP pin should not be probed during critical measurements such as
phase noise.
Loop filter. Loop filter components.
CP Test Point
R37, C14, R9, R10,
C15, C13, R65, C40
R11, R12
R62, R63, VTUNE
SMA Connector
R2
RFIN SMA Connector
T3
Loop filter return. When the internal VCO is used, the loop filter components should be
returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used,
the loop filter components can be returned to ground by installing a 0 Ω resistor in R11.
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are
connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62.
To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63,
and the voltage input of the VCO should be connected to the VTUNE SMA connector. The
output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.
RSET pin. This pin is unused and should be left open.
RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of
the ADRF6603 is ac-coupled, therefore, no bias is necessary.
IF output. The differential IF output signals from the ADRF6603 (IFP and IFN) are converted
to a single-ended signal by T3.
Rev. 0 | Page 22 of 24
Default Condition/
Option Settings
S1 = R55 = open
(not installed)
R56 = R33 = 0 Ω
LODRV_EN = 0 V
LO input
Lock detect
R12 = 0 Ω (0402)
R11 = open (0402)
R62 = 0 Ω (0402)
R63 = open (0402)
R2 = open (0402)
R3 = R23 = open (0402)
ADRF6603
OUTLINE DIMENSIONS
6.00
BSC SQ
0.60 MAX
0.60 MAX
TOP
VIEW
0.50
BSC
5.75
BSC SQ
0.50
0.40
0.30
12° MAX
0.80 MAX
0.65 TYP
0.30
0.23
0.18
1
4.25
4.10 SQ
3.95
EXPOSED
PAD
(BOT TOM VIEW)
21
20
11
10
0.25 MIN
4.50
REF
0.05 MAX
0.02 NOM
SEATING
PLANE
40
0.20 REF
COPLANARITY
0.08
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
072108-A
PIN 1
INDICATOR
1.00
0.85
0.80
PIN 1
INDICATOR
31
30
Figure 27. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADRF6603ACPZ-R7
ADRF6603-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 23 of 24
Package Option
CP-40-1
ADRF6603
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08547-0-3/10(0)
Rev. 0 | Page 24 of 24