SHARP PC417

PC417
PC417
Compact, Surface Mount
Ultra-high Speed Response
OPIC Photocoupler
■ Features
■ Outline Dimensions
1. Mini-flat package
2. Ultra-high speed response
( t PHL , t PLH : TYP. 0.3 µ s at R L = 1.9k Ω )
3. Isolation voltage between input and output
( Viso : 2 500 Vrms )
4. High instantaneous common mode rejection voltage ( CM H : TYP. 1kV/ µ s )
5. Recognized by UL(No.64380)
( Unit : mm )
1.27 ± 0.25
6
5
internal connection
diagram
4
5 4
6
4.4 ± 0.2
PC417
Anode mark
1
3
2.5 ± 0.25
1
3
3.6 ± 0.3
0.1 ± 0.1 2.6 ± 0.2
1. Hybrid substrate which requires high density mounting
2. Personal computers, office computers and
peripheral equipment
3. Audio equipment
C0.4
( Input Side)
0.5 +- 0.4
0.2
5.3 ± 0.3
7.0 +- 0.2
0.7
6˚
1 Anode
4 GND
3 Cathode
5 VO
6 V CC
■ Package Specifications
Package specifications
Diameter of reel
Tape width
PC417
Taping package
( Net:3 000pcs.)
φ 370mm
12mm
PC417T
Taping package
( Net: 750pcs. )
φ 178mm
12mm
PC417Z
Sleeve package ( Net: 100pcs.)
-
-
■ Absolute Maximum Ratings
Parameter
Forward current
Input
Reverse voltage
Power dissipation
*2
Supply voltage
Output voltage
Output
Output current
Power dissipation
Total power dissipation
*3
Isolation voltege
Operating temperature
Storage temperature
*4
Soldering temperature
*1
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
( Ta = 25˚C )
Symbol
IF
VR
P
V CC
VO
IO
PO
P tot
V iso
T opr
T stg
T sol
Rating
25
5
45
- 0.5 to + 15
- 0.5 to + 15
8
100
100
2 500
- 40 to + 100
- 40 to + 125
260
Unit
mA
V
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
0.2mm or more
Model No.
Soldering area
*1 Ta = 0 to + 70˚C
*2 For 1 minute max.
*3 40 to 60% RH, For AC 1 minute, Apply the specified voltage between the whole of the electrode pins on the input
side and the whole of the electrode pins on the output side.
*4 For 10 seconds.
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
0.2 ± 0.05
0.4 ± 0.1
■ Applications
PC417
■ Electro-optical Characteristics
Input
Parameter
Forward voltage
Reverse current
Terminal capacitance
High level output
current
Output
High level supply
current
Low level supply
current
Low level output
voltage
Current transfer ratio
Transfer
characteristics
Isolation resistance
Floating capacitance
*6
“ H→L” propagation delay
time
*6
“ L→H” propagation delay
time
*7
Instantaneous common
mode rejection voltage
“ High level output”
*7
Instantaneous common
mode rejection voltage
“ Low level output”
( Ta = 25˚C )
Symbol
Conditions
VF
I F = 16mA
IR
V R = 5V
Ct
V F = 0, f = 1MH Z
I F =0, V CC=5.5V
I OH(1)
V O=5.5V
I OH(2) I F =0, V CC=15V, VO =15V
I OH(3) I F =0, V CC =15V, V O =15V *5
I CCH(1) I F =0, V CC=15V, VO =OPEN
I CCH(2) I F = 0, VCC = 15V, V O = OPEN *5
I F =16mA, V CC=15V
I CCL
VO =OPEN *5
I F =16mA, V CC=4.5V
V OL
I O=2.4mA *5
I F =16mA, V CC=4.5V
CTR
V O=0.4V,*5
R ISO DC500V, 40 to 60% RH
Cf
V=0V, f=1MHz
MIN.
-
TYP.
1.7
60
MAX.
1.95
10
250
Unit
V
µA
pF
-
3
500
nA
-
0.02
-
1.0
50
1.0
2.0
µA
-
200
-
µA
-
-
0.4
V
-
19
5 x 10
-
10
µA
-
%
11
10
0.6
1.0
Ω
pF
t PHL
I F =16mA, V CC=5V
-
0.3
0.8
t PLH
R L =1.9kΩ
-
0.3
1.2
-
1 000
-
V/ µ s
-
- 1 000
-
V/ µ s
CM H
CM L
I F =0, R L =1.9kΩ
V CM =10VP-P ,
V CC=5V
I F =16mA, R L =1.9kΩ
V CM =10VP-P ,
V CC=5V
*5 Temperature range : Ta = 0 to 70˚C
*6 Test circuit for propagation delay time is shown in the next page.
*7 Test circuit for instantaneous common mode rejection voltage is shown in the next page.
Each characteristics shall be measured under opaque condition.
µs
PC417
*6 Test Circuit for Propagation Delay Time
IF
0
RL
Pulse input
Pulse width
10 µ s
Duty radio
1/10
IF
monitor
IF
VCC = 5V
6
1
5V
VO
5
VO
4
3
1.5V
VOL
1.5V
CL = 15pF
0.01
µF
tPHL
tPLH
100 Ω
*7 Test Circuit for Instantaneous Common Mode Rejection Voltage
IF
VCC = 5V
1
10V
6
VCM
RL
10%
90%
90%
10%
0V
tf
5
SW
A
tr
VO
when GLSW is A
B
0.01 µ F
VFF
CMH
4
3
+
CML
-
VO
IF = 0mA
when GLSW is B
VO
IF = 16mA
5V
2V
0.8V
VOL
VCM
Fig. 2 Power Dissipation vs.
Ambient Temperature
Fig. 1 Forward Current vs.
Ambient Temperature
120
30
PO
Power dissipation P, P O ( mW )
Forward Current I F ( mA )
100
20
10
0
- 40
0
25
50
75
Ambient temperature T a ( ˚C )
100
125
80
60
P
45
40
20
0
- 40
0
25
50
75
Ambient temperature T a ( ˚C )
100
125
PC417
Fig. 3 Forward Current vs.
Forward Voltage
Fig. 4 Output Current vs. Output Voltage
20
100
Dotted line shows
VCC = 5V
T a = 25˚C
pulse characteristics
16
10
Output current I O ( mA )
Forward current I F ( mA )
18
T a = 0˚C
1
25˚C
50˚C
70˚C
I F = 25mA
14
20mA
12
10
15mA
8
10mA
6
0.1
5mA
4
2
0.01
1.0
1.2
1.4
1.6
1.8
2.0
Forward voltage V F ( V )
0
0
2.2
Fig. 5 Relative Current Transfer Ratio vs.
Forward Current
2
4
6
8 10 12 14 16
Output voltage V O ( V )
110
I F = 16mA
VO = 0.4V
VCC = 5V
Relative current transfer ratio ( % )
Relative current transfer ratio ( % )
VCC = 5V
VO = 0.4V
100
50
CTR = 100% at
I F = 16mA
0
0.1
1
Forward current I
F
100
90
80
70
CTR = 100% at T a = 25˚C
10
( mA )
60
- 60 - 40 - 20
100
0
20
40
Ambient temperature T
Fig. 7 Propagation Delay Time vs.
Ambient Temperature
10
-5
10
-6
( ns )
RL = 1.9k Ω
600
t PHL
400
t PLH
200
40
Ambient temperature T
60
a
( ˚C )
80
100
High level output current I OH ( A )
PLH
Propagation delay time t PHL , t
VCC = 5V
20
80
100
( ˚C )
10
-7
10
-8
10
-9
V CC = V O = 5V
I F = 16mA
0
60
a
Fig. 8 High Level Output Current vs.
Ambient Temperature
800
0
- 60 - 40 - 20
20
Fig. 6 Relative Current Transfer Ratio vs.
Ambient Temperature
150
T a = 25˚C
18
10
- 10
10
- 11
- 60 - 40 - 20
0
20
40
60
Ambient temperature T a ( ˚C )
80
100
PC417
Fig. 9 Frequency Response
Test Circuit for Frequency Response
0
I F = 16mA
T a = 25˚C
-5
220 Ω
470 Ω
- 15
RL
20k Ω
VO
1k Ω
AC
Input
- 20
100 Ω
- 10
5V
560 Ω
Voltage gain Av ( dB )
15V
RL = 100 Ω
1.6V DC
0.25VP - PAC
- 25
- 30
0.1
0.2
0.5
1
2
5
10
Frequency f ( MHz )
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01µF be added between VCC and
GND near the device in order to stabilize power supply line.
( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity
for its minute design. When handling them, general counterplan against static electricity
should be taken to avoid breakdown of devices or degradation of characteristics.
( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ”