PC417 PC417 Compact, Surface Mount Ultra-high Speed Response OPIC Photocoupler ■ Features ■ Outline Dimensions 1. Mini-flat package 2. Ultra-high speed response ( t PHL , t PLH : TYP. 0.3 µ s at R L = 1.9k Ω ) 3. Isolation voltage between input and output ( Viso : 2 500 Vrms ) 4. High instantaneous common mode rejection voltage ( CM H : TYP. 1kV/ µ s ) 5. Recognized by UL(No.64380) ( Unit : mm ) 1.27 ± 0.25 6 5 internal connection diagram 4 5 4 6 4.4 ± 0.2 PC417 Anode mark 1 3 2.5 ± 0.25 1 3 3.6 ± 0.3 0.1 ± 0.1 2.6 ± 0.2 1. Hybrid substrate which requires high density mounting 2. Personal computers, office computers and peripheral equipment 3. Audio equipment C0.4 ( Input Side) 0.5 +- 0.4 0.2 5.3 ± 0.3 7.0 +- 0.2 0.7 6˚ 1 Anode 4 GND 3 Cathode 5 VO 6 V CC ■ Package Specifications Package specifications Diameter of reel Tape width PC417 Taping package ( Net:3 000pcs.) φ 370mm 12mm PC417T Taping package ( Net: 750pcs. ) φ 178mm 12mm PC417Z Sleeve package ( Net: 100pcs.) - - ■ Absolute Maximum Ratings Parameter Forward current Input Reverse voltage Power dissipation *2 Supply voltage Output voltage Output Output current Power dissipation Total power dissipation *3 Isolation voltege Operating temperature Storage temperature *4 Soldering temperature *1 * “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ( Ta = 25˚C ) Symbol IF VR P V CC VO IO PO P tot V iso T opr T stg T sol Rating 25 5 45 - 0.5 to + 15 - 0.5 to + 15 8 100 100 2 500 - 40 to + 100 - 40 to + 125 260 Unit mA V mW V V mA mW mW V rms ˚C ˚C ˚C 0.2mm or more Model No. Soldering area *1 Ta = 0 to + 70˚C *2 For 1 minute max. *3 40 to 60% RH, For AC 1 minute, Apply the specified voltage between the whole of the electrode pins on the input side and the whole of the electrode pins on the output side. *4 For 10 seconds. “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” 0.2 ± 0.05 0.4 ± 0.1 ■ Applications PC417 ■ Electro-optical Characteristics Input Parameter Forward voltage Reverse current Terminal capacitance High level output current Output High level supply current Low level supply current Low level output voltage Current transfer ratio Transfer characteristics Isolation resistance Floating capacitance *6 “ H→L” propagation delay time *6 “ L→H” propagation delay time *7 Instantaneous common mode rejection voltage “ High level output” *7 Instantaneous common mode rejection voltage “ Low level output” ( Ta = 25˚C ) Symbol Conditions VF I F = 16mA IR V R = 5V Ct V F = 0, f = 1MH Z I F =0, V CC=5.5V I OH(1) V O=5.5V I OH(2) I F =0, V CC=15V, VO =15V I OH(3) I F =0, V CC =15V, V O =15V *5 I CCH(1) I F =0, V CC=15V, VO =OPEN I CCH(2) I F = 0, VCC = 15V, V O = OPEN *5 I F =16mA, V CC=15V I CCL VO =OPEN *5 I F =16mA, V CC=4.5V V OL I O=2.4mA *5 I F =16mA, V CC=4.5V CTR V O=0.4V,*5 R ISO DC500V, 40 to 60% RH Cf V=0V, f=1MHz MIN. - TYP. 1.7 60 MAX. 1.95 10 250 Unit V µA pF - 3 500 nA - 0.02 - 1.0 50 1.0 2.0 µA - 200 - µA - - 0.4 V - 19 5 x 10 - 10 µA - % 11 10 0.6 1.0 Ω pF t PHL I F =16mA, V CC=5V - 0.3 0.8 t PLH R L =1.9kΩ - 0.3 1.2 - 1 000 - V/ µ s - - 1 000 - V/ µ s CM H CM L I F =0, R L =1.9kΩ V CM =10VP-P , V CC=5V I F =16mA, R L =1.9kΩ V CM =10VP-P , V CC=5V *5 Temperature range : Ta = 0 to 70˚C *6 Test circuit for propagation delay time is shown in the next page. *7 Test circuit for instantaneous common mode rejection voltage is shown in the next page. Each characteristics shall be measured under opaque condition. µs PC417 *6 Test Circuit for Propagation Delay Time IF 0 RL Pulse input Pulse width 10 µ s Duty radio 1/10 IF monitor IF VCC = 5V 6 1 5V VO 5 VO 4 3 1.5V VOL 1.5V CL = 15pF 0.01 µF tPHL tPLH 100 Ω *7 Test Circuit for Instantaneous Common Mode Rejection Voltage IF VCC = 5V 1 10V 6 VCM RL 10% 90% 90% 10% 0V tf 5 SW A tr VO when GLSW is A B 0.01 µ F VFF CMH 4 3 + CML - VO IF = 0mA when GLSW is B VO IF = 16mA 5V 2V 0.8V VOL VCM Fig. 2 Power Dissipation vs. Ambient Temperature Fig. 1 Forward Current vs. Ambient Temperature 120 30 PO Power dissipation P, P O ( mW ) Forward Current I F ( mA ) 100 20 10 0 - 40 0 25 50 75 Ambient temperature T a ( ˚C ) 100 125 80 60 P 45 40 20 0 - 40 0 25 50 75 Ambient temperature T a ( ˚C ) 100 125 PC417 Fig. 3 Forward Current vs. Forward Voltage Fig. 4 Output Current vs. Output Voltage 20 100 Dotted line shows VCC = 5V T a = 25˚C pulse characteristics 16 10 Output current I O ( mA ) Forward current I F ( mA ) 18 T a = 0˚C 1 25˚C 50˚C 70˚C I F = 25mA 14 20mA 12 10 15mA 8 10mA 6 0.1 5mA 4 2 0.01 1.0 1.2 1.4 1.6 1.8 2.0 Forward voltage V F ( V ) 0 0 2.2 Fig. 5 Relative Current Transfer Ratio vs. Forward Current 2 4 6 8 10 12 14 16 Output voltage V O ( V ) 110 I F = 16mA VO = 0.4V VCC = 5V Relative current transfer ratio ( % ) Relative current transfer ratio ( % ) VCC = 5V VO = 0.4V 100 50 CTR = 100% at I F = 16mA 0 0.1 1 Forward current I F 100 90 80 70 CTR = 100% at T a = 25˚C 10 ( mA ) 60 - 60 - 40 - 20 100 0 20 40 Ambient temperature T Fig. 7 Propagation Delay Time vs. Ambient Temperature 10 -5 10 -6 ( ns ) RL = 1.9k Ω 600 t PHL 400 t PLH 200 40 Ambient temperature T 60 a ( ˚C ) 80 100 High level output current I OH ( A ) PLH Propagation delay time t PHL , t VCC = 5V 20 80 100 ( ˚C ) 10 -7 10 -8 10 -9 V CC = V O = 5V I F = 16mA 0 60 a Fig. 8 High Level Output Current vs. Ambient Temperature 800 0 - 60 - 40 - 20 20 Fig. 6 Relative Current Transfer Ratio vs. Ambient Temperature 150 T a = 25˚C 18 10 - 10 10 - 11 - 60 - 40 - 20 0 20 40 60 Ambient temperature T a ( ˚C ) 80 100 PC417 Fig. 9 Frequency Response Test Circuit for Frequency Response 0 I F = 16mA T a = 25˚C -5 220 Ω 470 Ω - 15 RL 20k Ω VO 1k Ω AC Input - 20 100 Ω - 10 5V 560 Ω Voltage gain Av ( dB ) 15V RL = 100 Ω 1.6V DC 0.25VP - PAC - 25 - 30 0.1 0.2 0.5 1 2 5 10 Frequency f ( MHz ) ■ Precautions for Use ( 1 ) It is recommended that a by-pass capacitor of more than 0.01µF be added between VCC and GND near the device in order to stabilize power supply line. ( 2 ) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics. ( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ”