CEFF634 Nov. 2002 N-Channel Logic Level Enhancement Mode Field Effect Transistor FEATURES 6 D 250V , 6A , RDS(ON)=450m Ω @VGS=10V. Super high dense cell design for extremely low RDS(ON). High power and current handling capability. TO-220F full-pak for through hole G G D S S TO-220F ABSOLUTE MAXIMUM RATINGS (Tc=25 C unless otherwise noted) Symbol Limit Unit Drain-Source Voltage VDS 250 V Gate-Source Voltage VGS Ć 30 V ID 6 A -Pulsed IDM 24 A Drain-Source Diode Forward Current IS 6 A Maximum Power Dissipation @Tc=25 C Derate above 25 C PD 38 0.3 W W/ C TJ, TSTG -50 to 150 C Parameter Drain Current-Continuous Operating and Storage Temperautre Range THERMAL CHARACTERISTICS Thermal Resistance, Junction-to-Case RįJC 3.3 C/W Thermal Resistance, Junction-to-Ambient RįJA 65 C/W 6-102 CEFF634 ELECTRICAL CHARACTERISTICS (TC=25 C unless otherwise noted) Parameter Min Typ Max Unit Symbol Condition Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA Zero Gate Voltage Drain Current IDSS VDS = 250V, VGS = 0V 25 µA Gate-Body Leakage IGSS VGS =Ć30V, VDS = 0V Ć100 nA Gate Threshold Voltage VGS(th) VDS = VGS, ID = 250µA 4 V Drain-Source On-State Resistance RDS(ON) VGS = 10V, ID = 5.1A 450 mΩ On-State Drain Current ID(ON) gFS VGS = 10V, VDS = 10V OFF CHARACTERISTICS 250 V ON CHARACTERISTICS a Forward Transconductance VDS = 50V, ID = 5.1A 2 A 10 4.4 S 630 PF 100 PF 40 PF b DYNAMIC CHARACTERISTICS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS =25V, VGS = 0V f =1.0MHZ b SWITCHING CHARACTERISTICS Turn-On Delay Time Rise Time Turn-Off Delay Time tD(ON) tr tD(OFF) VDD = 125V, ID = 5.6A, VGS = 10V, RGEN= 12Ω 19 40 ns 11 30 ns 46 90 ns Fall Time tf 10 30 ns Total Gate Charge Qg 26 33 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS =200V, ID = 5.6A, VGS =10V 6-103 5 nC 11 nC 6 CEFF634 ELECTRICAL CHARACTERISTICS (TC=25 C unless otherwise noted) Parameter Min Typ Max Unit Condition Symbol DRAIN-SOURCE DIODE CHARACTERISTICS a Diode Forward Voltage 1.5 0.9 Notes a.Pulse Test:Pulse Width ś300ijs, Duty Cycle ś 2%. b.Guaranteed by design, not subject to production testing. 12 VGS=10,9,8,7V ID, Drain Current (A) ID, Drain Current(A) 10 8 VGS=6V 6 4 VGS=5V 2 1 -55 C 150 C 25 C 1.VDS=40V 2.Pulse Test VGS=4V 0.1 0 0 1 2 3 4 5 4 2 6 10 8 6 VDS, Drain-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 900 750 C, Capacitance (pF) 6 VGS = 0V, Is =8.1A VSD Ciss 600 450 300 Coss 150 Crss 0 0 10 20 30 40 50 3.0 2.5 ID=5.1A VGS=10V 2.0 1.5 1.0 0.5 0.0 -100 -50 0 50 100 150 200 TJ, Junction Temperature( C) VDS, Drain-to Source Voltage (V) Figure 4. On-Resistance Variation with Temperature Figure 3. Capacitance 6-104 V VDS=VGS ID=250ijA 1.20 1.10 1.0 0.90 0.80 0.70 0.60 -50 -25 0 25 50 75 100 125 150 BVDSS, Normalized Drain-Source Breakdown Voltage 1.30 1.15 ID=250ijA 1.10 1.05 1.00 0.95 0.90 0.85 -50 -25 Figure 5. Gate Threshold Variation with Temperature 75 100 125 150 50 Figure 6. Breakdown Voltage Variation with Temperature 20 10 6 VDS=50V 5 Is, Source-drain current (A) gFS, Transconductance (S) 25 0 Tj, Junction Temperature ( C) Tj, Junction Temperature ( C) 4 3 2 1 VGS=0V 1 0.1 0 0 2 4 6 8 0.4 IDS, Drain-Source Current (A) 0.6 1.2 1.0 0.8 VSD, Body Diode Forward Voltage (V) Figure 7. Transconductance Variation with Drain Current Figure 8. Body Diode Forward Voltage Variation with Source Current 10 VDS=200V ID=5.6A 14 21 28 Qg, Total Gate Charge (nC) N) (O s S RD s 7 s 10 0 -1 0 m 0 10 2 C 4 10 s 0m 6 1 0ij D ID, Drain Current (A) Lim it 10 1m 8 10 VGS, Gate to Source Voltage (V) 6 Vth, Normalized Gate-Source Threshold Voltage CEFF634 10 TC=25 C Tj=150 C Single Pulse 10 0 10 1 10 2 10 VDS, Drain-Source Voltage (V) Figure 10. Maximum Safe Operating Area Figure 9. Gate Charge 6-105 3 CEFF634 VDD t on RL V IN D VOUT VOUT 6 td(off) tf 90% 90% VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 12. Switching Waveforms Figure 11. Switching Test Circuit 0 r(t),Normalized Effective Transient Thermal Impedance 10 D=0.5 0.2 10 -1 0.1 0.05 0.02 PDM 0.01 10 t1 -2 t2 Single Pulse 10 1. RįJC (t)=r (t) * RįJC 2. RįJC=See Datasheet 3. TJM-TC = P* RįJC (t) 4. Duty Cycle, D=t1/t2 -3 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 Square Wave Pulse Duration (sec) Figure 13. Normalized Thermal Transient Impedance Curve 6-106 10 1