ETC CEFF634

CEFF634
Nov. 2002
N-Channel Logic Level Enhancement Mode Field Effect Transistor
FEATURES
6
D
250V , 6A , RDS(ON)=450m Ω @VGS=10V.
Super high dense cell design for extremely low RDS(ON).
High power and current handling capability.
TO-220F full-pak for through hole
G
G
D
S
S
TO-220F
ABSOLUTE MAXIMUM RATINGS (Tc=25 C unless otherwise noted)
Symbol
Limit
Unit
Drain-Source Voltage
VDS
250
V
Gate-Source Voltage
VGS
Ć 30
V
ID
6
A
-Pulsed
IDM
24
A
Drain-Source Diode Forward Current
IS
6
A
Maximum Power Dissipation @Tc=25 C
Derate above 25 C
PD
38
0.3
W
W/ C
TJ, TSTG
-50 to 150
C
Parameter
Drain Current-Continuous
Operating and Storage Temperautre Range
THERMAL CHARACTERISTICS
Thermal Resistance, Junction-to-Case
RįJC
3.3
C/W
Thermal Resistance, Junction-to-Ambient
RįJA
65
C/W
6-102
CEFF634
ELECTRICAL CHARACTERISTICS (TC=25 C unless otherwise noted)
Parameter
Min Typ Max Unit
Symbol
Condition
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
Zero Gate Voltage Drain Current
IDSS
VDS = 250V, VGS = 0V
25
µA
Gate-Body Leakage
IGSS
VGS =Ć30V, VDS = 0V
Ć100
nA
Gate Threshold Voltage
VGS(th)
VDS = VGS, ID = 250µA
4
V
Drain-Source On-State Resistance
RDS(ON)
VGS = 10V, ID = 5.1A
450
mΩ
On-State Drain Current
ID(ON)
gFS
VGS = 10V, VDS = 10V
OFF CHARACTERISTICS
250
V
ON CHARACTERISTICS a
Forward Transconductance
VDS = 50V, ID = 5.1A
2
A
10
4.4
S
630
PF
100
PF
40
PF
b
DYNAMIC CHARACTERISTICS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS =25V, VGS = 0V
f =1.0MHZ
b
SWITCHING CHARACTERISTICS
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
tD(ON)
tr
tD(OFF)
VDD = 125V,
ID = 5.6A,
VGS = 10V,
RGEN= 12Ω
19
40
ns
11
30
ns
46
90
ns
Fall Time
tf
10
30
ns
Total Gate Charge
Qg
26
33
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS =200V, ID = 5.6A,
VGS =10V
6-103
5
nC
11
nC
6
CEFF634
ELECTRICAL CHARACTERISTICS (TC=25 C unless otherwise noted)
Parameter
Min Typ Max Unit
Condition
Symbol
DRAIN-SOURCE DIODE CHARACTERISTICS a
Diode Forward Voltage
1.5
0.9
Notes
a.Pulse Test:Pulse Width ś300ijs, Duty Cycle ś 2%.
b.Guaranteed by design, not subject to production testing.
12
VGS=10,9,8,7V
ID, Drain Current (A)
ID, Drain Current(A)
10
8
VGS=6V
6
4
VGS=5V
2
1
-55 C
150 C
25 C
1.VDS=40V
2.Pulse Test
VGS=4V
0.1
0
0
1
2
3
4
5
4
2
6
10
8
6
VDS, Drain-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
900
750
C, Capacitance (pF)
6
VGS = 0V, Is =8.1A
VSD
Ciss
600
450
300
Coss
150
Crss
0
0
10
20
30
40
50
3.0
2.5
ID=5.1A
VGS=10V
2.0
1.5
1.0
0.5
0.0
-100
-50
0
50
100
150
200
TJ, Junction Temperature( C)
VDS, Drain-to Source Voltage (V)
Figure 4. On-Resistance Variation with
Temperature
Figure 3. Capacitance
6-104
V
VDS=VGS
ID=250ijA
1.20
1.10
1.0
0.90
0.80
0.70
0.60
-50 -25
0
25
50
75 100 125 150
BVDSS, Normalized
Drain-Source Breakdown Voltage
1.30
1.15
ID=250ijA
1.10
1.05
1.00
0.95
0.90
0.85
-50 -25
Figure 5. Gate Threshold Variation
with Temperature
75 100 125 150
50
Figure 6. Breakdown Voltage Variation
with Temperature
20
10
6
VDS=50V
5
Is, Source-drain current (A)
gFS, Transconductance (S)
25
0
Tj, Junction Temperature ( C)
Tj, Junction Temperature ( C)
4
3
2
1
VGS=0V
1
0.1
0
0
2
4
6
8
0.4
IDS, Drain-Source Current (A)
0.6
1.2
1.0
0.8
VSD, Body Diode Forward Voltage (V)
Figure 7. Transconductance Variation
with Drain Current
Figure 8. Body Diode Forward Voltage
Variation with Source Current
10
VDS=200V
ID=5.6A
14
21
28
Qg, Total Gate Charge (nC)
N)
(O
s
S
RD
s
7
s
10 0
-1
0
m
0
10
2
C
4
10
s
0m
6
1
0ij
D
ID, Drain Current (A)
Lim
it
10
1m
8
10
VGS, Gate to Source Voltage (V)
6
Vth, Normalized
Gate-Source Threshold Voltage
CEFF634
10
TC=25 C
Tj=150 C
Single Pulse
10 0
10 1
10 2
10
VDS, Drain-Source Voltage (V)
Figure 10. Maximum Safe
Operating Area
Figure 9. Gate Charge
6-105
3
CEFF634
VDD
t on
RL
V IN
D
VOUT
VOUT
6
td(off)
tf
90%
90%
VGS
RGEN
toff
tr
td(on)
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 12. Switching Waveforms
Figure 11. Switching Test Circuit
0
r(t),Normalized Effective
Transient Thermal Impedance
10
D=0.5
0.2
10
-1
0.1
0.05
0.02
PDM
0.01
10
t1
-2
t2
Single Pulse
10
1. RįJC (t)=r (t) * RįJC
2. RįJC=See Datasheet
3. TJM-TC = P* RįJC (t)
4. Duty Cycle, D=t1/t2
-3
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
Square Wave Pulse Duration (sec)
Figure 13. Normalized Thermal Transient Impedance Curve
6-106
10
1