< IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE Collector current I C .............….......................… 150A Collector-emitter voltage V CES ......................… 1 2 0 0 V Maximum junction temperature T j m a x .............. 1 7 5 °C ●Flat base Type ●Copper base plate (non-plating) ●Tin plating pin terminals ●RoHS Directive compliant sixpack (3φ Inverter) ●Recognized under UL1557, File E323585 APPLICATION AC Motor Control, Motion/Servo Control, Power supply, etc. OUTLINE DRAWING & INTERNAL CONNECTION Dimension in mm TERMINAL t=0.8 SECTION A INTERNAL CONNECTION Tolerance otherwise specified P(54~56) P1(28~30) GUP(1) GVP(9) GWP(17) EsUP(2) EsVP(10) EsWP(18) U(48~50) V(42~44) Division of Dimension W(36~38) NTC TH1(31) N(59~61) GUN(5) GVN(13) GWN(21) EsUN(6) EsVN(14) EsWN(22) TH2(32) N1(23~25) Caution: Each (three) pin terminal of P/N/P1/N1/U/V/W is connected in the module, but should use all each three pins for the external wiring. Publication Date : September 2012 1 3 Tolerance 0.5 to ±0.2 over 3 to 6 ±0.3 over 6 to 30 ±0.5 over 30 to 120 ±0.8 over 120 to 400 ±1.2 The tolerance of size between terminals is assumed to be ±0.4. < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Rating Unit VCES Symbol Collector-emitter voltage G-E short-circuited 1200 V VGES Gate-emitter voltage C-E short-circuited ± 20 V IC Item DC, TC=120 °C Collector current ICRM Ptot IE IERM (Note1) (Note2, 4) 150 (Note3) 300 Pulse, Repetitive Total power dissipation (Note1) Conditions TC=25 °C (Note2, 4) 1150 (Note2) Emitter current A W 150 Pulse, Repetitive (Note3) A 300 MODULE Symbol Item Conditions Rating Unit Visol Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 2500 V Tjmax Maximum junction temperature Instantaneous event (overload) 175 °C TCmax Maximum case temperature (Note4) 125 °C Tjop Operating junction temperature Continuous operation (under switching) -40 ~ +150 Tstg Storage temperature - -40 ~ +125 °C ELECTRICAL CHARACTERISTICS (T j =25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Symbol Item Limits Conditions Min. Typ. Max. Unit ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1.0 mA IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA VGE(th) Gate-emitter threshold voltage IC=15 mA, VCE=10 V V 5.4 6.0 6.6 T j =25 °C - 1.80 2.25 VGE=15 V, T j =125 °C - 2.00 - (Terminal) T j =150 °C - 2.05 - T j =25 °C - 1.70 2.15 VGE=15 V, T j =125 °C - 1.90 - (Chip) T j =150 °C - 1.95 - - - 15 IC=150 A VCEsat Collector-emitter saturation voltage Cies Input capacitance Coes Output capacitance Cres Reverse transfer capacitance QG Gate charge td(on) Turn-on delay time tr Rise time td(off) Turn-off delay time tf Fall time IC=150 A VEC Emitter-collector voltage (Note5) , , VCE=10 V, G-E short-circuited VCC=600 V, IC=150 A, VGE=15 V VCC=600 V, IC=150 A, VGE=±15 V, RG=0 Ω, Inductive load - - 3.0 - - 0.25 - 350 - - - 800 - - 200 - - 600 - - 300 T j =25 °C - 1.80 2.25 G-E short-circuited, T j =125 °C - 1.80 - (Terminal) T j =150 °C - 1.80 - IE=150 A (Note1) (Note5) IE=150 A (Note5) (Note5) , T j =25 °C - 1.70 2.15 G-E short-circuited, , T j =125 °C - 1.70 - (Chip) T j =150 °C - 1.70 - V V nF nC ns V V trr (Note1) Reverse recovery time VCC=600 V, IE=150 A, VGE=±15 V, - - 300 ns Qrr (Note1) Reverse recovery charge RG=0 Ω, Inductive load - 8.0 - μC Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=150 A, - 24.2 - Eoff Turn-off switching energy per pulse VGE=±15 V, RG=0 Ω, T j =150 °C, - 16 - Reverse recovery energy per pulse Inductive load - 12.2 - mJ - - 1.8 mΩ - 13 - Ω Err (Note1) R CC'+EE' Internal lead resistance rg Internal gate resistance Main terminals-chip, per switch, TC=25 °C (Note4) Per switch Publication Date : September 2012 2 mJ < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (cont; T j =25 °C, unless otherwise specified) NTC THERMISTOR PART Symbol Item (Note4) R25 Zero-power resistance TC=25 °C ∆R/R Deviation of resistance R100=493 Ω, TC=100 °C B(25/50) B-constant Approximate by equation P25 Limits Conditions Power dissipation TC=25 °C (Note4) (Note7) (Note4) Max. Unit Min. Typ. 4.85 5.00 5.15 kΩ -7.3 - +7.8 % - 3375 - K - - 10 mW THERMAL RESISTANCE CHARACTERISTICS Symbol Rth(j-c)Q Item Thermal resistance Rth(j-c)D Rth(c-s) (Note4) Contact thermal resistance Limits Conditions (Note4) Min. Typ. Max. Junction to case, per Inverter IGBT - - 0.13 Junction to case, per Inverter FWDi - - 0.23 - 15 - Case to heat sink, per 1 module, Thermal grease applied (Note7) Unit K/W K/kW MECHANICAL CHARACTERISTICS Symbol Ms Item Limits Conditions Mounting torque Mounting to heat sink Typ. Max. 2.5 3.0 3.5 10.28 - - Terminal to base plate 14.27 - - Terminal to terminal 10.28 - - Terminal to base plate 12.33 - - - 300 - g ±0 - +100 μm Creepage distance da Clearance m Weight - ec Flatness of base plate On the centerline X, Y (Note8) Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). 2. Junction temperature (T j ) should not increase beyond T j m a x rating. 3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating. 4. Case temperature (TC) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location. 5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit. R 1 1 6. B ( 25 / 50) ln( 25 ) /( ), R 50 T25 T50 -:Concave +:Convex R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K] R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K] 7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K). 8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure. Y X mounting side mounting side mounting side Unit Terminal to terminal ds M 5 screw Min. -:Concave +:Convex 9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs. "ST2.6×10 or ST2.6×12 self tapping screw" The length of the screw depends on the thickness of the PCB. Publication Date : September 2012 3 N·m mm mm < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE RECOMMENDED OPERATING CONDITIONS Symbol Item Limits Conditions VCC (DC) Supply voltage VGEon Gate (-emitter drive) voltage RG External gate resistance Applied across P-N terminals Applied across G*P-Es*P/G*N-Es*N (*=U, V, W) terminals Per switch CHIP LOCATION (Top view) Unit Min. Typ. Max. - 600 850 V 13.5 15.0 16.5 V 0 - 30 Ω Dimension in mm, tolerance: ±1 mm Tr*P/Tr*N: IGBT, Di*P/Di*N: FWDi (*=U/V/W), Th: NTC thermistor TEST CIRCUIT AND WAVEFORMS ~ vGE iE P1 *:U, V, W P 90 % 0V Es*P + * VC C iE t RG vGE 0V -V GE iC 0A N tr t d( o n) tf t d ( of f ) t Switching characteristics test circuit and waveforms t r r , Q r r test waveform iE vCE 0 iC iC ICM VCC 0.1×ICM 0.1×VCC ICM VCC t 0.5×I r r 10% Es*N N1 t Irr vC E G*N trr 0A 90 % +V GE Q r r =0.5×I r r ×t r r IE iC ~ ~ G*P -V GE 0 Load 0 0.1×VCC IEM vEC vCE 0.02×ICM ti ti IGBT Turn-on switching energy IGBT Turn-off switching energy t VCC 0A t 0V t ti FWDi Reverse recovery energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing) Publication Date : September 2012 4 < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE TEST CIRCUIT P1 P P1 VGE=15 V IC GUP U IC V Shortci rcuited GUN GVN EsUN EsVN 28~30 N 28~30 Shortcircuited 1 2 48~50 5 GWN N1 54~56 54~56 VGE=15 V 6 28~30 Shortcircuited 9 42~44 IC EsW N N1 N 10 V 13 59~61 23~25 Gate-emitter GVP-EsVP, GVN-EsVP, short-circuited GWP-EsWN, GWN-EsWN 54~56 17 36~38 VGE=15 V IC 21 V IC 22 59~61 23~25 Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GWP-EsWP, GWN-EsWN UP / UN IGBT N 18 V 14 23~25 W V Shortci rcuited N1 IC GWP EsWP V Shortci rcuited P VGE=15 V EsVP V VGE=15 V P1 GVP EsUP Shortcircuited P VGE=15 V 59~61 Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GVP-EsVP, GVN-EsVN VP / VN IGBT WP / WN IGBT V C E s a t test circuit 28~30 Shortci rcuited 54~56 28~30 IE 1 Shortci rcuited 2 Shortci rcuited P P1 Shortcircuited 23~25 P P1 GVP EsUP EsVP Shortcircuited IE GUN N1 Shortcircuited EsWP V W Shortcircuited IE GVN Gate-emitter GVP-EsVP, GVN-EsVP, short-circuited GWP-EsWN, GWN-EsWN N1 EsWN N N1 Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GWP-EsWP, GWN-EsWN UP / UN FWDi V IE GWN EsVN N P GWP V EsUN 59~61 Shortcircuited GUP V 21 22 59~61 Shortcircuited U 36~38 Shortci rcuited 13 23~25 IE 17 V 14 59~61 54~56 18 42~44 Shortci rcuited 6 P1 IE 9 V 5 23~25 28~30 Shortci rcuited 10 48~50 V 54~56 N Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GVP-EsVP, GVN-EsVN VP / VN FWDi WP / WN FWDi VEC test circuit Publication Date : September 2012 5 < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) T j =25 °C VGE=15 V (Chip) 300 VGE=20 V 12 V 3 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (V) IC (A) COLLECTOR CURRENT 13.5 V 15 V 250 200 11 V 150 10 V 100 9V 50 T j =150 °C T j =125 °C 2.5 2 1.5 T j =25 °C 1 0.5 0 0 0 2 4 6 8 COLLECTOR-EMITTER VOLTAGE 10 0 50 VCE (V) T j =25 °C 100 150 200 COLLECTOR CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 250 300 IC (A) FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) G-E short-circuited (Chip) (Chip) 1000 10 T j =125 °C IC=300 A 8 IE (A) IC=150 A 6 EMITTER CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE VCE (V) (Chip) 3.5 IC=60 A 4 2 100 T j =150 °C T j =25 °C 0 6 8 10 12 14 GATE-EMITTER VOLTAGE 16 18 10 20 0 VGE (V) 1 2 EMITTER-COLLECTOR VOLTAGE Publication Date : September 2012 6 3 VEC (V) < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C VCC=600 V, VGE=±15 V, IC=150 A, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 1000 1000 td(off) td(off) td(on) tr SWITCHING TIME (ns) SWITCHING TIME (ns) td(on) tf 100 tr 10 tf 100 10 10 100 1000 COLLECTOR CURRENT 1 IC (A) 10 100 EXTERNAL GATE RESISTANCE HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C RG (Ω) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, IC/IE=150 A, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C 100 100 SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) Eon Eon Eoff Err 10 1 Eoff 10 Err 1 10 100 1000 0.1 1 10 EXTERNAL GATE RESISTANCE COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) Publication Date : September 2012 7 100 RG (Ω) < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART CAPACITANCE CHARACTERISTICS (TYPICAL) FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) G-E short-circuited, T j =25 °C VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 100 1000 Cies trr t r r (ns), I r r (A) CAPACITANCE (nF) 10 Coes 1 Cres 0.1 0.01 10 0.1 1 10 COLLECTOR-EMITTER VOLTAGE 100 10 VCE (V) 1000 IE (A) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) VCC=600 V, IC=150 A, Tj=25 °C Single pulse, TC=25 °C R t h ( j - c ) Q =0.13 K/W, R t h ( j - c ) D =0.23 K/W 1 NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c) VGE (V) 100 EMITTER CURRENT 20 GATE-EMITTER VOLTAGE Irr 100 15 10 5 0 0 100 200 GATE CHARGE 300 400 500 QG (nC) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : September 2012 8 0.1 1 10 < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES NTC thermistor part TEMPERATURE CHARACTERISTICS (TYPICAL) RESISTANCE R (kΩ) 100 10 1 0.1 -50 -25 0 25 50 TEMPERATURE 75 100 125 T (°C) Publication Date : September 2012 9 < IGBT MODULES > CM150TX-24S HIGH POWER SWITCHING USE INSULATED TYPE Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/). •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information containedherein. •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. Publication Date : September 2012 10