MITSUBISHI CM150RX-24S

< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Collector current I C .............….......................…
150A
Collector-emitter voltage V CES ......................… 1 2 0 0 V
Maximum junction temperature T j m a x ..............
1 7 5 °C
●Flat base Type
●Copper base plate (non-plating)
●Tin plating pin terminals
●RoHS Directive compliant
sevenpack (3φ Inverter+Chopper Brake)
●Recognized under UL1557, File E323585
APPLICATION
AC Motor Control, Motion/Servo Control, Power supply, etc.
OUTLINE DRAWING & INTERNAL CONNECTION
Dimension in mm
TERMINAL
t=0.8
SECTION A
INTERNAL CONNECTION
Tolerance otherwise specified
P(35)
Division of Dimension
GUP(34)
GVP(26)
GWP(18)
EsUP(33)
EsVP(25)
EsWP(17)
B(4)
U(1)
W(3)
NTC
V(2)
N(36)
GB(6)
GUN(30)
GVN(22)
GWN(14)
EsB(5)
EsUN(29)
EsVN(21)
EsWN(13)
Publication Date : September 2012
1
3
Tolerance
0.5
to
±0.2
over
3
to
6
±0.3
over
6
to
30
±0.5
over 30
to 120
±0.8
over 120
to 400
±1.2
The tolerance of size between
terminals is assumed to be ±0.4.
TH1(11)
TH2(10)
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Rating
Unit
VCES
Symbol
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
IC
Item
DC, TC=120 °C
Collector current
ICRM
Ptot
IE
IERM
(Note1)
(Note2, 4)
150
(Note3)
300
Pulse, Repetitive
Total power dissipation
(Note1)
Conditions
TC=25 °C
(Note2, 4)
1150
(Note2)
Emitter current
A
W
150
(Note3)
Pulse, Repetitive
A
300
BRAKE PART IGBT/CLAMPDi
Symbol
Item
Conditions
Rating
Unit
VCES
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
IC
ICRM
(Note2, 4)
DC, TC=122 °C
Collector current
75
(Note3)
Pulse, Repetitive
(Note2, 4)
Ptot
Total power dissipation
TC=25 °C
VRRM
Repetitive peak reverse voltage
G-E short-circuited
(Note2)
IF
IFRM
Forward current
A
150
600
W
1200
V
75
Pulse, Repetitive
(Note3)
A
150
MODULE
Symbol
Rating
Unit
Isolation voltage
Terminals to base plate, RMS, f=60 Hz, AC 1 min
2500
V
Tjmax
Maximum junction temperature
Instantaneous event (overload)
175
°C
TCmax
Maximum case temperature
(Note4)
125
°C
Tjop
Operating junction temperature
Continuous operation (under switching)
-40 ~ +150
Tstg
Storage temperature
-
-40 ~ +125
Visol
Item
Conditions
°C
ELECTRICAL CHARACTERISTICS (T j =25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol
Item
Limits
Conditions
Min.
Typ.
Max.
Unit
ICES
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
-
-
1.0
mA
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
-
-
0.5
μA
VGE(th)
Gate-emitter threshold voltage
IC=15 mA, VCE=10 V
5.4
6.0
6.6
V
IC=150 A
VCEsat
Collector-emitter saturation voltage
Cies
Input capacitance
Coes
Output capacitance
Cres
Reverse transfer capacitance
QG
Gate charge
td(on)
Turn-on delay time
tr
Rise time
td(off)
Turn-off delay time
tf
Fall time
(Note5)
T j =25 °C
-
1.80
2.25
VGE=15 V,
T j =125 °C
-
2.00
-
(Terminal)
T j =150 °C
-
2.05
-
IC=150 A
(Note5)
,
T j =25 °C
-
1.70
2.15
VGE=15 V,
,
T j =125 °C
-
1.90
-
(Chip)
T j =150 °C
-
1.95
-
-
-
15
VCE=10 V, G-E short-circuited
VCC=600 V, IC=150 A, VGE=15 V
VCC=600 V, IC=150 A, VGE=±15 V,
RG=0 Ω, Inductive load
Publication Date : September 2012
2
-
-
3.0
-
-
0.25
-
350
-
-
-
800
-
-
200
-
-
600
-
-
300
V
V
nF
nC
ns
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont; T j =25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol
Item
(Note5)
IE=150 A
(Note1)
VEC
Emitter-collector voltage
Limits
Conditions
Typ.
Max.
T j =25 °C
-
1.80
2.25
G-E short-circuited,
T j =125 °C
-
1.80
-
(Terminal)
T j =150 °C
-
1.80
-
(Note5)
IE=150 A
,
Min.
T j =25 °C
-
1.70
2.15
G-E short-circuited,
,
T j =125 °C
-
1.70
-
(Chip)
T j =150 °C
-
1.70
-
Unit
V
V
trr
(Note1)
Reverse recovery time
VCC=600 V, IE=150 A, VGE=±15 V,
-
-
300
ns
Qrr
(Note1)
Reverse recovery charge
RG=0 Ω, Inductive load
-
8.0
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IE=150 A,
-
24.2
-
Eoff
Turn-off switching energy per pulse
VGE=±15 V, RG=0 Ω, T j =150 °C,
-
16
-
Reverse recovery energy per pulse
Inductive load
-
12.2
-
mJ
-
-
1.8
mΩ
-
13
-
Ω
(Note1)
Err
R CC'+EE'
Internal lead resistance
rg
Internal gate resistance
Main terminals-chip, per switch,
(Note4)
TC=25 °C
Per switch
mJ
BRAKE PART IGBT/CLAMPDi
Symbol
Item
Limits
Conditions
Min.
Typ.
Max.
Unit
ICES
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
-
-
1
mA
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
-
-
0.5
μA
VGE(th)
Gate-emitter threshold voltage
IC=7.5 mA, VCE=10 V
V
5.4
6.0
6.6
T j =25 °C
-
1.80
2.25
VGE=15 V,
T j =125 °C
-
2.00
-
(Terminal)
T j =150 °C
-
2.05
-
T j =25 °C
-
1.70
2.15
VGE=15 V,
T j =125 °C
-
1.90
-
(Chip)
T j =150 °C
-
1.95
-
-
-
7.5
IC=75 A
VCEsat
Collector-emitter saturation voltage
Cies
Input capacitance
Coes
Output capacitance
Cres
Reverse transfer capacitance
QG
Gate charge
td(on)
Turn-on delay time
tr
Rise time
td(off)
Turn-off delay time
tf
Fall time
IRRM
Repetitive peak reverse current
IC=75 A
Forward voltage
(Note5)
,
,
VCE=10 V, G-E short-circuited
VCC=600 V, IC=75 A, VGE=15 V
VCC=600 V, IC=75 A, VGE=±15 V,
RG=8.2 Ω, Inductive load
VR=VRRM, G-E short-circuited
IE=75 A
VF
(Note5)
(Note5)
-
1.5
-
0.13
-
175
-
-
-
300
-
-
200
-
-
600
-
-
300
-
-
1
T j =25 °C
-
1.80
2.25
G-E short-circuited,
T j =125 °C
-
1.80
-
(Terminal)
T j =150 °C
-
1.80
-
IE=75 A
(Note5)
,
-
T j =25 °C
-
1.70
2.15
G-E short-circuited,
,
T j =125 °C
-
1.70
-
(Chip)
T j =150 °C
V
V
nF
nC
ns
mA
V
V
-
1.70
-
trr
Reverse recovery time
VCC=600 V, IE=75 A, VGE=±15 V,
-
-
300
ns
Qrr
Reverse recovery charge
RG=8.2 Ω, Inductive load
-
4.0
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IE=75 A,
-
7.3
-
Eoff
Turn-off switching energy per pulse
VGE=±15 V, RG=8.2 Ω, T j =150 °C,
-
8.0
-
Err
Reverse recovery energy per pulse
Inductive load
-
6.9
-
mJ
rg
Internal gate resistance
-
-
0
-
Ω
Publication Date : September 2012
3
mJ
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont; T j =25 °C, unless otherwise specified)
NTC THERMISTOR PART
Symbol
Item
(Note4)
R25
Zero-power resistance
TC=25 °C
∆R/R
Deviation of resistance
R100=493 Ω, TC=100 °C
B(25/50)
B-constant
Approximate by equation
P25
Limits
Conditions
Power dissipation
TC=25 °C
(Note4)
(Note7)
(Note4)
Max.
Unit
Min.
Typ.
4.85
5.00
5.15
kΩ
-7.3
-
+7.8
%
-
3375
-
K
-
-
10
mW
THERMAL RESISTANCE CHARACTERISTICS
Symbol
Item
Rth(j-c)Q
Rth(j-c)D
Thermal resistance
Rth(j-c)Q
(Note4)
Rth(j-c)D
Rth(c-s)
Contact thermal resistance
Limits
Conditions
(Note4)
Min.
Typ.
Max.
Junction to case, per Inverter IGBT
-
-
0.13
Junction to case, per Inverter FWDi
-
-
0.23
Junction to case, per Brake IGBT
-
-
0.25
Junction to case, per Brake ClampDi
-
-
0.40
-
15
-
Case to heat sink, per 1 module,
Thermal grease applied
(Note7)
Unit
K/W
K/W
K/kW
MECHANICAL CHARACTERISTICS
Symbol
Item
Limits
Conditions
Min.
Typ.
Max.
Unit
Mt
Mounting torque
Main terminals
M 5 screw
2.5
3.0
3.5
N·m
Ms
Mounting torque
Mounting to heat sink
M 5 screw
2.5
3.0
3.5
N·m
ds
Creepage distance
da
Clearance
m
Weight
-
ec
Flatness of base plate
On the centerline X, Y
Terminal to terminal
10.25
-
-
Terminal to base plate
12.32
-
-
Terminal to terminal
10.28
-
-
Terminal to base plate
10.85
-
-
-
370
-
g
±0
-
+100
μm
(Note8)
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
2. Junction temperature (T j ) should not increase beyond T j m a x rating.
3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating.
4. Case temperature (TC) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink
just under the chips. Refer to the figure of chip location.
5. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Refer to the figure of test circuit.
R
1
1
6. B ( 25 / 50)  ln( 25 ) /(

),
R 50 T25 T50
-:Concave
+:Convex
R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
X
mounting side
mounting side
mounting side
mm
-:Concave
+:Convex
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"ST2.6×10 or ST2.6×12 self tapping screw"
The length of the screw depends on the thickness of the PCB.
Publication Date : September 2012
4
mm
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
RECOMMENDED OPERATING CONDITIONS
Symbol
Item
Limits
Conditions
VCC
(DC) Supply voltage
VGEon
Gate (-emitter drive) voltage
RG
External gate resistance
Applied across P-N terminals
Applied across GB-EsB/
G*P-Es*P/G*N-Es*N (*=U, V, W) terminals
Inverter IGBT
Per switch
Brake IGBT
Unit
Min.
Typ.
Max.
-
600
850
V
13.5
15.0
16.5
V
0
-
30
8.2
-
82
Ω
Dimension in mm, tolerance: ±1 mm
CHIP LOCATION (Top view)
Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: FWDi (*=U/V/W), DiBr: ClampDi, Th: NTC thermistor
TEST CIRCUIT AND WAVEFORMS
~
vGE
iE
P
*:U, V, W
90 %
0V
+
*
VC C
RG
vGE
0V
-V GE
iC
0A
N
tr
t d( o n)
tf
t d ( of f )
t
Switching characteristics test circuit and waveforms
t r r , Q r r test waveform
iE
vCE
0
iC
iC
VCC
0.1×ICM
0.1×VCC
ICM
VCC
t
0.5×I r r
10%
Es*N
ICM
t
Irr
vC E
G*N
trr
0A
90 %
+V GE
Q r r =0.5×I r r ×t r r
IE
iC
~
~
Es*P
iE
t
Load
G*P
-V GE
0
0
0.1×VCC
IEM
vEC
vCE
0.02×ICM
ti
ti
IGBT Turn-on switching energy
IGBT Turn-off switching energy
t
VCC
0A
t
0V
t
ti
FWDi Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
Publication Date : September 2012
5
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
TEST CIRCUIT
35
35
VGE=15 V
IC
34
33
V
Shortcircuited
VGE=15 V
IC
26
Shortcircuited
3
Shortcircuited
22
36
29
14
36
21
P
Shortcircuited
GVP
V
EsUP
GWP
V
EsVP
U
IC
GUN
VGE=15 V
IC
GVN
EsVN
B
W
VGE=15 V
N
V
V
EsWP
V
VGE=15 V
P
P
Shortcircuited
GUP
36
13
P
Shortcircuited
EsUN
17
V
2
30
IC
18
25
V
1
35
VGE=15 V
N
EsWN
Gate-emitter GVP-EsVP GVN-EsVN,
short-circuited GWP-EsWP, GWN-EsWN,
GB-EsB
Gate-emitter GUP-EsUP, GUN-EsUN,
short-circuited GWP-EsWP, GWN-EsWN,
GB-EsB
UP / UN IGBT
VP / VN IGBT
IC
GWN
VGE=15 V
N
EsB
Gate-emitter GUP-EsUP, GUN-EsUN,
short-circuited GVP-EsVP, GVN-EsVN,
GB-EsB
IC
GB
N
Gate-emitter GUP-EsUP, GUN-EsUN,
short-circuited GVP-EsVP, GVN-EsVN,
GWP-EsWP, GWN-EsWN
Brake IGBT
WP / WN IGBT
V CE s a t test circuit
35
35
Shortcircuited
IE
34
Shortci rcuited
IE
26
33
V
29
36
21
P
36
13
V
Shortcircuited
GUN
EsUN
V
36
W
Shortcircuited
IE
GVN
N
5
EsVN
V
EsWP
V
IE
36
GWP
EsVP
U
Shortcircuited
6
Shortcircuited
GVP
EsUP
V
P
Shortcircuited
GUP
S hortcircui ted
14
P
Shortcircuited
4
3
Shortci rcuited
22
30
IF
17
V
2
Shortci rcuited
Shortcircuited
IE
18
25
V
1
35
35
Shortci rcuited
IE
GWN
N
EsWN
Gate-emitter GVP-EsVP GVN-EsVN,
short-circuited GWP-EsWP, GWN-EsWN,
GB-EsB
Gate-emitter GUP-EsUP, GUN-EsUN,
short-circuited GWP-EsWP, GWN-EsWN,
GB-EsB
UP / UN FWDi
VP / VN FWDi
N
Gate-emitter GUP-EsUP, GUN-EsUN,
short-circuited GVP-EsVP, GVN-EsVN,
GB-EsB
WP / WN FWDi
VEC / VF test circuit
Publication Date : September 2012
6
Gate-emitter GUP-EsUP, GUN-EsUN,
short-circuited GVP-EsVP, GVN-EsVN,
GWP-EsWP, GWN-EsWN
Brake ClampDi
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
T j =25 °C
VGE=15 V
(Chip)
300
VGE=20 V
12 V
3
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (V)
IC (A)
COLLECTOR CURRENT
13.5 V
15 V
250
200
11 V
150
10 V
100
9V
50
T j =150 °C
T j =125 °C
2.5
2
1.5
T j =25 °C
1
0.5
0
0
0
2
4
6
8
COLLECTOR-EMITTER VOLTAGE
10
0
50
VCE (V)
T j =25 °C
100
150
200
COLLECTOR CURRENT
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
250
300
IC (A)
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
G-E short-circuited
(Chip)
(Chip)
1000
10
T j =125 °C
IC=300 A
8
IE (A)
IC=150 A
6
EMITTER CURRENT
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (V)
(Chip)
3.5
IC=60 A
4
2
100
T j =150 °C
T j =25 °C
0
6
8
10
12
14
GATE-EMITTER VOLTAGE
16
18
10
20
0
VGE (V)
1
2
EMITTER-COLLECTOR VOLTAGE
Publication Date : September 2012
7
3
VEC (V)
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
VCC=600 V, VGE=±15 V, IC=150 A, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
1000
1000
td(off)
td(off)
td(on)
tr
SWITCHING TIME (ns)
SWITCHING TIME (ns)
td(on)
tf
100
tr
10
tf
100
10
10
100
1000
COLLECTOR CURRENT
1
IC (A)
10
100
EXTERNAL GATE RESISTANCE
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=0 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
RG (Ω)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, IC/IE=150 A,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
100
100
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
Eon
Eon
Eoff
Err
10
1
Eoff
10
Err
1
10
100
1000
0.1
1
10
EXTERNAL GATE RESISTANCE
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
Publication Date : September 2012
8
100
RG (Ω)
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
CAPACITANCE CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
G-E short-circuited, T j =25 °C
VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
100
1000
Cies
trr
t r r (ns), I r r (A)
CAPACITANCE (nF)
10
Coes
1
Cres
0.1
0.01
10
0.1
1
10
COLLECTOR-EMITTER VOLTAGE
100
10
VCE (V)
1000
IE (A)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, IC=150 A, Tj=25 °C
Single pulse, TC=25 °C
R t h ( j - c ) Q =0.13 K/W, R t h ( j - c ) D =0.23 K/W
1
NORMALIZED TRANSIENT THERMAL RESISTANCE
Zth(j-c)
VGE (V)
100
EMITTER CURRENT
20
GATE-EMITTER VOLTAGE
Irr
100
15
10
5
0
0
100
200
GATE CHARGE
300
400
500
QG (nC)
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
TIME (S)
Publication Date : September 2012
9
0.1
1
10
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
VGE=15 V
CLAMP DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
G-E short-circuited
(Chip)
3
T j =150 °C
T j =125 °C
VF (V)
T j =125 °C
2.5
FORWARD VOLTAGE
COLLECTOR-EMITTER
SATURATION VOLTAGE VCEsat (V)
(Chip)
1000
3.5
2
1.5
T j =25 °C
1
100
T j =150 °C
T j =25 °C
10
0.5
0
1
0
50
100
COLLECTOR CURRENT
0
150
IC (A)
0.5
1
1.5
FORWARD CURRENT
2
2.5
IF (A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
VCC=600 V, IC=75 A, VGE=±15 V, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
1000
3
1000
td(off)
tf
100
SWITCHING TIME (ns)
SWITCHING TIME (ns)
tf
td(on)
10
tr
td(off)
100
td(on)
tr
1
10
1
10
COLLECTOR CURRENT
100
1
IC (A)
10
EXTERNAL GATE RESISTANCE
Publication Date : September 2012
10
100
RG (Ω)
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=8.2 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, IC/IF=75 A, VGE=±15 V,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
100
Eoff
1
10
Eon
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
100
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
10
Eon
Eoff
10
Err
Err
0.1
1
1
1
10
1
100
100
EXTERNAL GATE RESISTANCE
COLLECTOR CURRENT IC (A)
FORWARD CURRENT IF (A)
RG (Ω)
CLAMP DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
Single pulse, TC=25 °C
R t h ( j - c ) Q =0.25 K/W, R t h ( j - c ) D =0.40 K/W
1000
1
NORMALIZED TRANSIENT THERMAL RESISTANCE
Zth(j-c)
t r r (ns), I r r (A)
10
Irr
100
trr
10
1
10
FORWARD CURRENT
100
IF (A)
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
TIME (S)
Publication Date : September 2012
11
0.1
1
10
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
NTC thermistor part
TEMPERATURE CHARACTERISTICS
(TYPICAL)
RESISTANCE
R (kΩ)
100
10
1
0.1
-50
-25
0
25
50
TEMPERATURE
75
100
125
T (°C)
Publication Date : September 2012
12
< IGBT MODULES >
CM150RX-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
•These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer's application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
•Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are subject
to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It
is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these
inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before making
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes
no responsibility for any damage, liability or other loss resulting from the information containedherein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or
in part these materials.
•If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of
destination is prohibited.
•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor
for further details on these materials or the products contained therein.
© 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.
Publication Date : September 2012
13