< IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE Collector current I C .............….......................… 150A Collector-emitter voltage V CES ......................… 1 2 0 0 V Maximum junction temperature T j m a x .............. 1 7 5 °C ●Flat base Type ●Copper base plate (non-plating) ●Tin plating pin terminals ●RoHS Directive compliant sevenpack (3φ Inverter+Chopper Brake) ●Recognized under UL1557, File E323585 APPLICATION AC Motor Control, Motion/Servo Control, Power supply, etc. OUTLINE DRAWING & INTERNAL CONNECTION Dimension in mm TERMINAL t=0.8 SECTION A INTERNAL CONNECTION Tolerance otherwise specified P(35) Division of Dimension GUP(34) GVP(26) GWP(18) EsUP(33) EsVP(25) EsWP(17) B(4) U(1) W(3) NTC V(2) N(36) GB(6) GUN(30) GVN(22) GWN(14) EsB(5) EsUN(29) EsVN(21) EsWN(13) Publication Date : September 2012 1 3 Tolerance 0.5 to ±0.2 over 3 to 6 ±0.3 over 6 to 30 ±0.5 over 30 to 120 ±0.8 over 120 to 400 ±1.2 The tolerance of size between terminals is assumed to be ±0.4. TH1(11) TH2(10) < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Rating Unit VCES Symbol Collector-emitter voltage G-E short-circuited 1200 V VGES Gate-emitter voltage C-E short-circuited ± 20 V IC Item DC, TC=120 °C Collector current ICRM Ptot IE IERM (Note1) (Note2, 4) 150 (Note3) 300 Pulse, Repetitive Total power dissipation (Note1) Conditions TC=25 °C (Note2, 4) 1150 (Note2) Emitter current A W 150 (Note3) Pulse, Repetitive A 300 BRAKE PART IGBT/CLAMPDi Symbol Item Conditions Rating Unit VCES Collector-emitter voltage G-E short-circuited 1200 V VGES Gate-emitter voltage C-E short-circuited ± 20 V IC ICRM (Note2, 4) DC, TC=122 °C Collector current 75 (Note3) Pulse, Repetitive (Note2, 4) Ptot Total power dissipation TC=25 °C VRRM Repetitive peak reverse voltage G-E short-circuited (Note2) IF IFRM Forward current A 150 600 W 1200 V 75 Pulse, Repetitive (Note3) A 150 MODULE Symbol Rating Unit Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min 2500 V Tjmax Maximum junction temperature Instantaneous event (overload) 175 °C TCmax Maximum case temperature (Note4) 125 °C Tjop Operating junction temperature Continuous operation (under switching) -40 ~ +150 Tstg Storage temperature - -40 ~ +125 Visol Item Conditions °C ELECTRICAL CHARACTERISTICS (T j =25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Symbol Item Limits Conditions Min. Typ. Max. Unit ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1.0 mA IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA VGE(th) Gate-emitter threshold voltage IC=15 mA, VCE=10 V 5.4 6.0 6.6 V IC=150 A VCEsat Collector-emitter saturation voltage Cies Input capacitance Coes Output capacitance Cres Reverse transfer capacitance QG Gate charge td(on) Turn-on delay time tr Rise time td(off) Turn-off delay time tf Fall time (Note5) T j =25 °C - 1.80 2.25 VGE=15 V, T j =125 °C - 2.00 - (Terminal) T j =150 °C - 2.05 - IC=150 A (Note5) , T j =25 °C - 1.70 2.15 VGE=15 V, , T j =125 °C - 1.90 - (Chip) T j =150 °C - 1.95 - - - 15 VCE=10 V, G-E short-circuited VCC=600 V, IC=150 A, VGE=15 V VCC=600 V, IC=150 A, VGE=±15 V, RG=0 Ω, Inductive load Publication Date : September 2012 2 - - 3.0 - - 0.25 - 350 - - - 800 - - 200 - - 600 - - 300 V V nF nC ns < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (cont; T j =25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Symbol Item (Note5) IE=150 A (Note1) VEC Emitter-collector voltage Limits Conditions Typ. Max. T j =25 °C - 1.80 2.25 G-E short-circuited, T j =125 °C - 1.80 - (Terminal) T j =150 °C - 1.80 - (Note5) IE=150 A , Min. T j =25 °C - 1.70 2.15 G-E short-circuited, , T j =125 °C - 1.70 - (Chip) T j =150 °C - 1.70 - Unit V V trr (Note1) Reverse recovery time VCC=600 V, IE=150 A, VGE=±15 V, - - 300 ns Qrr (Note1) Reverse recovery charge RG=0 Ω, Inductive load - 8.0 - μC Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=150 A, - 24.2 - Eoff Turn-off switching energy per pulse VGE=±15 V, RG=0 Ω, T j =150 °C, - 16 - Reverse recovery energy per pulse Inductive load - 12.2 - mJ - - 1.8 mΩ - 13 - Ω (Note1) Err R CC'+EE' Internal lead resistance rg Internal gate resistance Main terminals-chip, per switch, (Note4) TC=25 °C Per switch mJ BRAKE PART IGBT/CLAMPDi Symbol Item Limits Conditions Min. Typ. Max. Unit ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1 mA IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA VGE(th) Gate-emitter threshold voltage IC=7.5 mA, VCE=10 V V 5.4 6.0 6.6 T j =25 °C - 1.80 2.25 VGE=15 V, T j =125 °C - 2.00 - (Terminal) T j =150 °C - 2.05 - T j =25 °C - 1.70 2.15 VGE=15 V, T j =125 °C - 1.90 - (Chip) T j =150 °C - 1.95 - - - 7.5 IC=75 A VCEsat Collector-emitter saturation voltage Cies Input capacitance Coes Output capacitance Cres Reverse transfer capacitance QG Gate charge td(on) Turn-on delay time tr Rise time td(off) Turn-off delay time tf Fall time IRRM Repetitive peak reverse current IC=75 A Forward voltage (Note5) , , VCE=10 V, G-E short-circuited VCC=600 V, IC=75 A, VGE=15 V VCC=600 V, IC=75 A, VGE=±15 V, RG=8.2 Ω, Inductive load VR=VRRM, G-E short-circuited IE=75 A VF (Note5) (Note5) - 1.5 - 0.13 - 175 - - - 300 - - 200 - - 600 - - 300 - - 1 T j =25 °C - 1.80 2.25 G-E short-circuited, T j =125 °C - 1.80 - (Terminal) T j =150 °C - 1.80 - IE=75 A (Note5) , - T j =25 °C - 1.70 2.15 G-E short-circuited, , T j =125 °C - 1.70 - (Chip) T j =150 °C V V nF nC ns mA V V - 1.70 - trr Reverse recovery time VCC=600 V, IE=75 A, VGE=±15 V, - - 300 ns Qrr Reverse recovery charge RG=8.2 Ω, Inductive load - 4.0 - μC Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=75 A, - 7.3 - Eoff Turn-off switching energy per pulse VGE=±15 V, RG=8.2 Ω, T j =150 °C, - 8.0 - Err Reverse recovery energy per pulse Inductive load - 6.9 - mJ rg Internal gate resistance - - 0 - Ω Publication Date : September 2012 3 mJ < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (cont; T j =25 °C, unless otherwise specified) NTC THERMISTOR PART Symbol Item (Note4) R25 Zero-power resistance TC=25 °C ∆R/R Deviation of resistance R100=493 Ω, TC=100 °C B(25/50) B-constant Approximate by equation P25 Limits Conditions Power dissipation TC=25 °C (Note4) (Note7) (Note4) Max. Unit Min. Typ. 4.85 5.00 5.15 kΩ -7.3 - +7.8 % - 3375 - K - - 10 mW THERMAL RESISTANCE CHARACTERISTICS Symbol Item Rth(j-c)Q Rth(j-c)D Thermal resistance Rth(j-c)Q (Note4) Rth(j-c)D Rth(c-s) Contact thermal resistance Limits Conditions (Note4) Min. Typ. Max. Junction to case, per Inverter IGBT - - 0.13 Junction to case, per Inverter FWDi - - 0.23 Junction to case, per Brake IGBT - - 0.25 Junction to case, per Brake ClampDi - - 0.40 - 15 - Case to heat sink, per 1 module, Thermal grease applied (Note7) Unit K/W K/W K/kW MECHANICAL CHARACTERISTICS Symbol Item Limits Conditions Min. Typ. Max. Unit Mt Mounting torque Main terminals M 5 screw 2.5 3.0 3.5 N·m Ms Mounting torque Mounting to heat sink M 5 screw 2.5 3.0 3.5 N·m ds Creepage distance da Clearance m Weight - ec Flatness of base plate On the centerline X, Y Terminal to terminal 10.25 - - Terminal to base plate 12.32 - - Terminal to terminal 10.28 - - Terminal to base plate 10.85 - - - 370 - g ±0 - +100 μm (Note8) Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). 2. Junction temperature (T j ) should not increase beyond T j m a x rating. 3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating. 4. Case temperature (TC) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location. 5. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit. R 1 1 6. B ( 25 / 50) ln( 25 ) /( ), R 50 T25 T50 -:Concave +:Convex R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K] R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K] 7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K). 8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure. Y X mounting side mounting side mounting side mm -:Concave +:Convex 9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs. "ST2.6×10 or ST2.6×12 self tapping screw" The length of the screw depends on the thickness of the PCB. Publication Date : September 2012 4 mm < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE RECOMMENDED OPERATING CONDITIONS Symbol Item Limits Conditions VCC (DC) Supply voltage VGEon Gate (-emitter drive) voltage RG External gate resistance Applied across P-N terminals Applied across GB-EsB/ G*P-Es*P/G*N-Es*N (*=U, V, W) terminals Inverter IGBT Per switch Brake IGBT Unit Min. Typ. Max. - 600 850 V 13.5 15.0 16.5 V 0 - 30 8.2 - 82 Ω Dimension in mm, tolerance: ±1 mm CHIP LOCATION (Top view) Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: FWDi (*=U/V/W), DiBr: ClampDi, Th: NTC thermistor TEST CIRCUIT AND WAVEFORMS ~ vGE iE P *:U, V, W 90 % 0V + * VC C RG vGE 0V -V GE iC 0A N tr t d( o n) tf t d ( of f ) t Switching characteristics test circuit and waveforms t r r , Q r r test waveform iE vCE 0 iC iC VCC 0.1×ICM 0.1×VCC ICM VCC t 0.5×I r r 10% Es*N ICM t Irr vC E G*N trr 0A 90 % +V GE Q r r =0.5×I r r ×t r r IE iC ~ ~ Es*P iE t Load G*P -V GE 0 0 0.1×VCC IEM vEC vCE 0.02×ICM ti ti IGBT Turn-on switching energy IGBT Turn-off switching energy t VCC 0A t 0V t ti FWDi Reverse recovery energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing) Publication Date : September 2012 5 < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE TEST CIRCUIT 35 35 VGE=15 V IC 34 33 V Shortcircuited VGE=15 V IC 26 Shortcircuited 3 Shortcircuited 22 36 29 14 36 21 P Shortcircuited GVP V EsUP GWP V EsVP U IC GUN VGE=15 V IC GVN EsVN B W VGE=15 V N V V EsWP V VGE=15 V P P Shortcircuited GUP 36 13 P Shortcircuited EsUN 17 V 2 30 IC 18 25 V 1 35 VGE=15 V N EsWN Gate-emitter GVP-EsVP GVN-EsVN, short-circuited GWP-EsWP, GWN-EsWN, GB-EsB Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GWP-EsWP, GWN-EsWN, GB-EsB UP / UN IGBT VP / VN IGBT IC GWN VGE=15 V N EsB Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GVP-EsVP, GVN-EsVN, GB-EsB IC GB N Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GVP-EsVP, GVN-EsVN, GWP-EsWP, GWN-EsWN Brake IGBT WP / WN IGBT V CE s a t test circuit 35 35 Shortcircuited IE 34 Shortci rcuited IE 26 33 V 29 36 21 P 36 13 V Shortcircuited GUN EsUN V 36 W Shortcircuited IE GVN N 5 EsVN V EsWP V IE 36 GWP EsVP U Shortcircuited 6 Shortcircuited GVP EsUP V P Shortcircuited GUP S hortcircui ted 14 P Shortcircuited 4 3 Shortci rcuited 22 30 IF 17 V 2 Shortci rcuited Shortcircuited IE 18 25 V 1 35 35 Shortci rcuited IE GWN N EsWN Gate-emitter GVP-EsVP GVN-EsVN, short-circuited GWP-EsWP, GWN-EsWN, GB-EsB Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GWP-EsWP, GWN-EsWN, GB-EsB UP / UN FWDi VP / VN FWDi N Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GVP-EsVP, GVN-EsVN, GB-EsB WP / WN FWDi VEC / VF test circuit Publication Date : September 2012 6 Gate-emitter GUP-EsUP, GUN-EsUN, short-circuited GVP-EsVP, GVN-EsVN, GWP-EsWP, GWN-EsWN Brake ClampDi < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) T j =25 °C VGE=15 V (Chip) 300 VGE=20 V 12 V 3 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (V) IC (A) COLLECTOR CURRENT 13.5 V 15 V 250 200 11 V 150 10 V 100 9V 50 T j =150 °C T j =125 °C 2.5 2 1.5 T j =25 °C 1 0.5 0 0 0 2 4 6 8 COLLECTOR-EMITTER VOLTAGE 10 0 50 VCE (V) T j =25 °C 100 150 200 COLLECTOR CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 250 300 IC (A) FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) G-E short-circuited (Chip) (Chip) 1000 10 T j =125 °C IC=300 A 8 IE (A) IC=150 A 6 EMITTER CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE VCE (V) (Chip) 3.5 IC=60 A 4 2 100 T j =150 °C T j =25 °C 0 6 8 10 12 14 GATE-EMITTER VOLTAGE 16 18 10 20 0 VGE (V) 1 2 EMITTER-COLLECTOR VOLTAGE Publication Date : September 2012 7 3 VEC (V) < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C VCC=600 V, VGE=±15 V, IC=150 A, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 1000 1000 td(off) td(off) td(on) tr SWITCHING TIME (ns) SWITCHING TIME (ns) td(on) tf 100 tr 10 tf 100 10 10 100 1000 COLLECTOR CURRENT 1 IC (A) 10 100 EXTERNAL GATE RESISTANCE HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C RG (Ω) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, IC/IE=150 A, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C 100 100 SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) Eon Eon Eoff Err 10 1 Eoff 10 Err 1 10 100 1000 0.1 1 10 EXTERNAL GATE RESISTANCE COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) Publication Date : September 2012 8 100 RG (Ω) < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART CAPACITANCE CHARACTERISTICS (TYPICAL) FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) G-E short-circuited, T j =25 °C VCC=600 V, VGE=±15 V, RG=0 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 100 1000 Cies trr t r r (ns), I r r (A) CAPACITANCE (nF) 10 Coes 1 Cres 0.1 0.01 10 0.1 1 10 COLLECTOR-EMITTER VOLTAGE 100 10 VCE (V) 1000 IE (A) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) VCC=600 V, IC=150 A, Tj=25 °C Single pulse, TC=25 °C R t h ( j - c ) Q =0.13 K/W, R t h ( j - c ) D =0.23 K/W 1 NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c) VGE (V) 100 EMITTER CURRENT 20 GATE-EMITTER VOLTAGE Irr 100 15 10 5 0 0 100 200 GATE CHARGE 300 400 500 QG (nC) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : September 2012 9 0.1 1 10 < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES BRAKE PART COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) VGE=15 V CLAMP DIODE FORWARD CHARACTERISTICS (TYPICAL) G-E short-circuited (Chip) 3 T j =150 °C T j =125 °C VF (V) T j =125 °C 2.5 FORWARD VOLTAGE COLLECTOR-EMITTER SATURATION VOLTAGE VCEsat (V) (Chip) 1000 3.5 2 1.5 T j =25 °C 1 100 T j =150 °C T j =25 °C 10 0.5 0 1 0 50 100 COLLECTOR CURRENT 0 150 IC (A) 0.5 1 1.5 FORWARD CURRENT 2 2.5 IF (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C VCC=600 V, IC=75 A, VGE=±15 V, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 1000 3 1000 td(off) tf 100 SWITCHING TIME (ns) SWITCHING TIME (ns) tf td(on) 10 tr td(off) 100 td(on) tr 1 10 1 10 COLLECTOR CURRENT 100 1 IC (A) 10 EXTERNAL GATE RESISTANCE Publication Date : September 2012 10 100 RG (Ω) < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES BRAKE PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, IC/IF=75 A, VGE=±15 V, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C 100 Eoff 1 10 Eon SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) 100 REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) 10 Eon Eoff 10 Err Err 0.1 1 1 1 10 1 100 100 EXTERNAL GATE RESISTANCE COLLECTOR CURRENT IC (A) FORWARD CURRENT IF (A) RG (Ω) CLAMP DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C Single pulse, TC=25 °C R t h ( j - c ) Q =0.25 K/W, R t h ( j - c ) D =0.40 K/W 1000 1 NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c) t r r (ns), I r r (A) 10 Irr 100 trr 10 1 10 FORWARD CURRENT 100 IF (A) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : September 2012 11 0.1 1 10 < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES NTC thermistor part TEMPERATURE CHARACTERISTICS (TYPICAL) RESISTANCE R (kΩ) 100 10 1 0.1 -50 -25 0 25 50 TEMPERATURE 75 100 125 T (°C) Publication Date : September 2012 12 < IGBT MODULES > CM150RX-24S HIGH POWER SWITCHING USE INSULATED TYPE Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/). •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information containedherein. •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. Publication Date : September 2012 13