CXA2013M EIAJ Sound Multiplexing Decoder Description The CXA2013M is a bipolar IC designed as EIAJ TV sound multiplexing decoder, provides various functions including sound multiplexing demodulation, broadcast mode identification (stereo/bilingual discrimination display), volume, tone control and muting. 30 pin SOP (Plastic) Features • Adjustment free of filter • Audio multiplexing decoder • Sound processor — One external input — Bass control — Treble control — Volume control — Balance control are all included in a single chip. Almost any sort of signal processing is possible through this IC. • Separation adjustment, each mode control and sound processor control are possible through I2C BUS. Absolute Maximum Ratings • Supply voltage • Operating temperature • Storage temperature • Allowable power dissipation (Ta = 25°C) VCC 12 V Topr –20 to +75 °C Tstg –65 to +150 °C PD 1000 mW Operating Supply Voltage Range 8.5 to 9.5 V Applications TVs Structure Bipolar silicon monolithic IC 18 CH-R 17 CH-L BASS 13 VOL 14 16 LS OUT-L 19 CL-L TRE 12 LS OUT-R 15 20 CL-R BAL 11 21 AUX-R DGND 10 24 TV OUT-R 7 NC 22 AUX-L 25 TV OUT-L 6 CUBI 9 26 MC IN 5 MPX IN SCL 27 MC OUT 4 Vcc 23 NC 28 SC IN 3 REFL 8 29 NC 2 GND SDA 30 SC OUT 1 SUBI Pin Configuration Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E00Y28A1Y-PS SUBI SC OUT SC IN MC OUT MC IN TV OUT-L TV OUT-R AUX-R AUX-L CH-L CL-L Block Diagram 1 30 28 27 26 25 24 21 22 17 19 SUB SUBDEEM MATRIX SW MAIN TONE VCA 16 LS OUT-L VCA 15 LS OUT-R MAINDEEM –2– SUB DET IIL LOGIC & CONT FM DEMOD CUE CARRIOR SUB BPF 3.5fH CLOCK BASS TRE 952Hz CLOCK 3.5fH VCO TONE BUFFER BIAS CURRENT BIAS VOLTAGE 4.5fH TRAP CUE BPF AM DEMOD VOL BAL 952Hz BPF COMP DAC IBIAS BUS DEC VCA VOLTAGE REGULATOR ATT 3 4 5 6 18 20 11 12 13 14 8 9 10 GND REFL Vcc MPX IN CUBI CH-R CL-R BAL TRE BASS VOL SDA SCL DGND MPX SIGNAL 2 CXA2013M CXA2013M Pin Description Pin No. Symbol (Ta = 25°C, VCC = 9V) Pin voltage Equivalent circuit Description Vcc 20µ 80µ Vcc 16k 1 SUBI 64k Bias capacitor connection of sub FM detector 4.1V 1k 16k 8k 8k 1 147 4.2V 2 GND 147 1.7V 2 0 Analog block GND Vcc 147 3 REFL 1.2V The noise elimination filter connection of internal reference voltage 3 3.3k 20k 20k 24k 4 VCC GND Power supply — Vcc 87.9k 147 5 MPX IN 4.1V 27.6k 5 30k 50k 80µ Sound multiplexing signal input. Typical input level = 110mVrms (monoural 100%) 4.2V GND Vcc 6 CUBI 4.1V 1k 147 40k 40k 40k Vcc 11k 6 2k Bias capacitor connection of Cue pulse generator 4.2V 7, 23, 29 NC — — –3– — CXA2013M Pin No. Symbol Pin voltage Equivalent circuit Description VCC 7.5k 35µ 4k 2.1V ×2 8 SDA — 7.5k Serial data I/O pin VIH > 3.0V VIL < 1.5V ×5 4.5k 3k 8 VCC 7.5k 35µ 4k 2.1V 9 SCL — ×4 10.5k 3k Serial clock I/O pin VIH > 3.0V VIL < 1.5V 9 10 DGND 10 — Digital block GND DAC output pin. (BAL) Connect LPF capacitance of DAC. Internal impedance is approximately 20kΩ. VCC 11 BAL 4.2V 40k 20k 5.2V 2k 12 TRE 4.2V 11 12 13 13 BASS 2k DAC output pin. (BASS) Connect LPF capacitance of DAC. Internal impedance is approximately 20kΩ. 75µ 4.2V DAC output pin. (TRE) Connect LPF capacitance of DAC. Internal impedance is approximately 20kΩ. VCC 10k 5k 5.2V 2k 14 14 VOL 5.2V ×4 ×4 300µ –4– DAC output pin. (VOL) Connect LPF capacitance of DAC. Internal impedance is approximately 5kΩ. CXA2013M Pin No. Symbol Pin voltage Equivalent circuit Description VCC 3k 15 LS OUT-R LSOUT right channel output pin 4.2V 10p 147 500 15 16 LS OUT-L 84k 500 16 LSOUT left channel output pin 4.2V Vcc 17 CH-L 250µ 4.2V Treble filter pin (Left channel) 250µ 6k 5.7k 5.7k 17 18 18 CH-R 147 Treble filter pin (Right channel) 4.2V Vcc 19 CL-L Bass filter pin (Left channel) 250µ 250µ 4.2V 5.4k 10.7k 12.3k 19 20 20 CL-R 147 4.2V 4.2V Bass filter pin (Right channel) Vcc 21 AUX-R 10µ 4.2V Right channel external input pin 36k 21 22 22 AUX-L 4.2V 147 12k Left channel external input pin 4.2V –5– CXA2013M Pin No. Symbol Pin voltage Equivalent circuit Description VCC 3k 24 TV OUT-R TVOUT right channel output pin 4.2V 147 580 24 25 TV OUT-L 14.3k 580 25 TVOUT left channel output pin 35.7k 4.2V 4.2V Vcc Vcc Vcc 8k 147 26 MC IN 8k 4.1V 27 DC cut capacitor connection of main signal 147 26 16k 160µ 27 MC OUT 3.4V 4.2V 80µ GND Vcc Vcc 8k 28 SC IN 4.1V 8k 147 30 Vcc 8k 40k DC cut capacitor connection of sub signal 320µ 147 28 30 SC OUT 3.9V 16k 4.2V 4.2V 80µ GND –6– Electrical Characteristics (Ta = 25°C, VCC = 9V) No. Item Symbol Mode Input pin Input signal Measurement conditions Filter Output pin Min. Typ. Max. Unit –7– 1 Current consumption Icc — No input 4 30 43 60 mA 2 MPX input level Vin 5 MONO 1kHz, 100% mod. 5 — 110 — mVrms 3 MPX input level range Vrange — — — –3 — 3 dB 4 MONO output level Vmain MONO 5 MONO 1kHz 100% mod. Sub: Career OFF, Cue: OFF 24/25 400 500 5 MONO frequency response Fcmain MONO 5 MONO 10kHz 100% mod. 20 log ('10k'/'1k') Sub: Career OFF, Cue: OFF 24/25 –15.4 –13.4 –11.4 6 MONO distortion THDm MONO 5 MONO 1kHz 100% mod. Sub: Career OFF, Cue: OFF 15kLPF 24/25 — 0.2 1.0 % 7 MONO distortion at maximum input THDmmax MONO 5 MONO 1kHz 300% mod. Sub: Career OFF, Cue: OFF 15kLPF 24/25 — 0.3 2.0 % 8 MONO S/N SNmain MONO 5 MONO 1kHz 100% mod. Sub: Career OFF, Cue: OFF 15kLPF 24/25 65 73 — dB 9 Sub output level Vsub BIL 5 SUB 1kHz 100% mod. Main 0% mod., Cue: BIL 15kLPF 24/25 400 500 10 Sub frequency response Fcsub BIL 5 SUB 10kHz 100% mod. Main 0% mod., Cue: BIL 11 Sub distortion THDsub BIL 5 SUB 1kHz 100% mod. Main 0% mod., Cue: BIL 12 Sub S/N SNsub BIL 5 SUB 1kHz 100% mod. Main 0% mod., Cue: BIL 13 ST output level L-ch Vstl ST 5 14 ST output level R-ch Vstr ST 5 20 log ('100%'/'0%') 600 mVrms dB 600 mVrms dB 15kLPF 24/25 — 1.0 2.0 % 15kLPF 24/25 59 64 — dB ST-L 1kHz 100% mod. Cue: Stereo 15kLPF 25 400 500 600 mVrms ST-R 1kHz 100% mod. Cue: Stereo 15kLPF 24 400 500 600 mVrms 20 log ('100%'/'0%') CXA2013M 15kLPF 24/25 –18.4 –15.9 –13.4 20 log ('10k'/'1k') No. Item Symbol Mode Input pin Input signal Measurement conditions Filter Output Min. pin Typ. Max. Unit –8– ST distortion L-ch THDstl ST 5 ST-L 1kHz 100% mod. Cue: Stereo 15kLPF 25 — 0.2 1.5 % 16 ST distortion R-ch THDstr ST 5 ST-R 1kHz 100% mod. Cue: Stereo 15kLPF 24 — 0.2 1.5 % 17 ST separation L→R STLsep ST 5 ST-L 1kHz 100% mod. Cue: Stereo 20 log ('Lch'/'Rch') 15kLPF 24/25 35 45 — dB 18 ST separation R→L STRsep ST 5 ST-R 1kHz 100% mod. Cue: Stereo 20 log ('Rch'/'Lch') 15kLPF 24/25 35 45 — dB 19 Cross talk Main → Sub CTms BIL 5 Main 1kHz 100% mod. Sub: 0% mod., Cue: BIL 20 log (S0 = '0'/S0 = '1') 1kBPF 24/25 55 58 — dB 20 Cross talk Sub → Main CTsm BIL 5 SUB 1kHz 100% mod. Main 0% mod., Cue: BIL 20 log (S0 = '1'/S0 = '0') 1kBPF 24/25 60 70 — dB 21 Cross talk CTmsb Main → Sub BOTH mode BIL 5 Main 1kHz 100% mod. Sub: 0% mod., Cue: BIL 20 log ('Lch'/'Rch') S1 = '1' 1kBPF 24/25 55 58 — dB 22 Cross talk CTsmb Sub → Main BOTH mode BIL 5 SUB 1kHz 100% mod. Main 0% mod., Cue: BIL 20 log ('Rch'/'Lch') S1 = '1' 1kBPF 24/25 60 70 — dB 23 Sub residual carrier BIL 5 Main 0% mod. Sub: 0% mod., Cue: BIL 24 — 10 30 mVrms 24 Main residual carrier CLmain BIL 5 Main 0% mod. Sub: 0% mod., Cue: BIL 25 — 12 20 mVrms 25 TVOUT mute attenuation Mutv MONO 5 MONO 1kHz 100% mod. Sub: Career OFF, Cue: OFF 20 log (MUTE TV = '0'/ MUTE TV = '1') — –80 –70 dB 26 DC offset stereo L-ch OSstl ST 5 ST 0% mod. Cue: Stereo MUTE TV = '1' – MUTE TV = '0' 25 –100 0 100 mV 27 DC offset stereo R-ch OSstr ST 5 ST 0% mod. Cue: Stereo MUTE TV = '1' – MUTE TV = '0' 24 –100 0 100 mV 28 Cue detection sensitivity THcue BIL 5 Change Cue level 20 log ('100%mod.'/ 'BIL-on level') BUS RETURN 9 14 17 dB 29 SUB detection sensitivity THsub BIL 5 Change SUB career level 20 log ('100%mod.'/ 'BIL-on level') BUS RETURN 10 13 18 dB 30 Cue BPF gain BPcue — 5 Sine wave 55.069kHz, 8.8mVrms TEST = '1' 25 330 480 620 mVrms CLsub 1kBPF 24/25 CXA2013M 15 No. Item Symbol Mode Input pin — 5 Input signal Measurement conditions Output Filter pin Min. Typ. Max. Unit 1 20 38 — dB 15/16 400 500 –9– Sine wave 66mVrms 20 log ('31.47kHz'/ '70.8kHz') 21/22 Sine wave 1kHz 500mVrms EXT = '1' INT 21/22 Sine wave 1kHz 500mVrms 20 log (EXT = '1'/EXT = '0') 1kBPF 15/16 62 — — dB CTls2 EXT 5 Main 1kHz 100% mod. Sub: 0% mod. , Cue: BIL 20 log (EXT = '0'/EXT = '1') 1kBPF 15/16 70 — — dB LSOUT mute attenuation MUls EXT 21/22 Sine wave 1kHz 500mVrms EXT = '1' MUTE LS = '0' 1kBPF 15/16 — — –70 dB 36 LSOUT DC offset OSls EXT 21/22 No input 15/16 –50 0 50 mV 37 LSOUT S/N SNls EXT 21/22 Sine wave 1kHz 500mVrms EXT = '1' 15kLPF 15/16 65 75 — dB 38 LSOUT distortion THDls EXT 21/22 Sine wave 1kHz 500mVrms EXT = '1' 15kLPF 15/16 — 0.1 0.5 % 39 BASS maximum boost TBmax EXT 21/22 Sine wave 100Hz 500mVrms EXT = '1' BASS = '1F' 15/16 8.5 11.0 13.5 dB 40 BASS maximum attenuation TBmin EXT 21/22 Sine wave 100Hz 500mVrms EXT = '1' BASS = '0' 15/16 –13.5 –11.0 –8.5 dB 41 TREBLE maximum boost TTmax EXT 21/22 Sine wave 10kHz 500mVrms EXT = '1' TREBLE = '1F' 15/16 13.5 dB 42 TREBLE maximum attenuation TTmin EXT 21/22 Sine wave 10kHz 500mVrms EXT = '1' TREBLE = '0 ' 15/16 –13.5 –11.0 –8.5 dB 43 Volume maximum attenuation VOLmin EXT 21/22 Sine wave 1kHz 500mVrms EXT = '1' VOL = '0' 1kBPF 15/16 — –90 –70 dB 44 Volume minimum noise VOLminn EXT 21/22 No input EXT = '1', 20 log (VOL = '0'/ '500mVrms') 15kLPF 15/16 — –90 –80 dB 31 4.5fH TR45 trap attenuation level 32 LSOUT output level Vls EXT 33 LSOUT cross talk EXT → INT CTls1 34 LSOUT cross talk INT → EXT 35 EXT = '1' MUTE LS = '1' – MUTE LS = '0' 8.5 11.0 630 mVrms CXA2013M Electrical Characteristics Measurement Circuit V2 V1 C16 1µ R4 10k SW21 SW22 C17 1µ C15 4.7µ VOL LS OUT-R 6 7 8 9 10 11 12 13 14 15 CH-R LS OUT-L BASS 5 CH-L TRE 4 CL-L BAL 3 CL-R DGND 2 AUX-R AUX-L 1 MC IN SCL 16 NC 17 SDA 18 TV OUT-R 19 NC 20 TV OUT-L 21 CUBI 22 MPX IN MC OUT 23 Vcc 24 SC IN 25 REFL 26 NC 27 GND 28 SC OUT 29 X1 SUBI 30 C12 0.01µ C11 C10 4700p 4700p C13 0.01µ C14 4.7µ – 10 – X1 C2 A 1µ Vcc 9V C4 1µ C3 47µ C5 1µ R1 220 C6 0.1µ R2 220 SW20 C1 1µ C7 0.1µ C8 0.1µ C9 0.1µ SW R3 10k FILTER 1kHz BPF 15kHz LPF 30kHz LPF SW I2C BUS DATA SIGNAL GENERATOR MEASURES (AC VOLTMETER) CXA2013M DGND CXA2013M Adjustment method Separation adjustment EIAJ sound multiplexing encoder Application circuit Oscilloscope AC Voltmeter R L MPX IN CH1 CH2 TV OUT-L TV OUT-R 15kHz LPF Switch Fig. 1 Procedure 1) Connect components as shown in Fig.1. (TEST = 0) 2) Set the encoder to MONO mode, and input 110mVrms (1kHz 100% modulation) to MPX IN (Pin 5). 3) Set the encoder to stereo mode, and input only left channel signal (1kHz 100% modulation) to MPX IN (Pin 5). 4) Monitor the oscilloscope and AC voltmeter and adjust ATT so that the R-ch is at a minimum. (Separation standard: more than 35dB) – 11 – CXA2013M Register Specification Slave address SLAVE RECEIVER SLAVE TRANSMITTER 84H 85H Register table SUB ADDRESS MSB LSB DATA BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 ∗∗∗∗0000 TEST ∗∗∗∗0001 ∗ ∗ EXT ∗∗∗∗0010 ∗ ∗ ∗ BASS (5) ∗∗∗∗0011 ∗ ∗ ∗ TREBLE (5) BIT0 ATT (7) FOMO ∗∗∗∗0100 S1 S0 MUTE TV MUTE LS VOL (8) ∗ ∗ ∗∗∗∗0101 BAL (6) ∗: Don't care Status resigter STA1 STA2 STA3 STA4 STA5 STA6 STA7 STA8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 PON ST BIL — — — — — Note) When the IC is powered on, the registers "MUTE TV", "MUTE LS" and "VOL" are set to "0". – 12 – CXA2013M Description of registers Control registers Register Number Classi- ∗ Standard fication setting of bits Contents TEST 1 T 0 DAC test mode for VCA, checking Cue BPF mode. ATT 7 A 34 Adjustment of stereo separation EXT 1 U 0 Selection of TV mode or external input mode for LSOUT output 1: External FOMO 1 U 0 Selection of forced MONO mode ON/OFF S1 1 U 0 Selection of TV OUT, LS OUT output signal S0 1 U 0 Selection of TV OUT, LS OUT output signal MUTE TV 1 U 1 Selection of TV OUT mute ON/OFF 0: Mute ON, 1: Mute OFF MUTE LS 1 U 1 Selection of LS OUT mute ON/OFF 0: Mute ON, 1: Mute OFF BASS 5 U 10 LS OUT output bass control TREBLE 5 U 10 LS OUT output treble control VOL 8 U FF LS OUT output signal level control BAL 6 U 20 LS OUT-L, R output signal level (balance) control 1: Forced MONO ∗ Classification U: User control A: Adjustment T: Test (when IC manufactured) Status Registers Register Number of bits Contens PON 1 POWER ON RESET detection 1: RESET ST 1 Stereo detection of the MPXIN input signal 1: Stereo BIL 1 Bilingual detection of the MPXIN input signal 1: Bilingual – 13 – 1: TEST CXA2013M Description of Control Registers TEST (1) : DAC test mode for VCA and checking Cue BPF mode. Use only for the electrical characteristics inspection process of IC. 0 = Normal mode 1 = Test mode, the Cue signal component through Cue BPF to TV OUT-L. Output DAC voltage for VCA to TV OUT-R. ATT (7) : Perform the separation adjustment by varying the signal level input to MPX IN (Pin 5). Variable range of the input signal: Normal input level ±3.0dB 0 = Level Min. 34 = Center 7F = Level Max. EXT (1) : Select TV mode or external input mode for LS OUT output 0 = TV mode 1 = External input mode FOMO (1) : Select ON/OFF forced MONO mode 0 = Forced MONO OFF 1 = Forced MONO ON S1 (1) : Select output signal for TV OUT, LS OUT S0 (1) : Select output signal for TV OUT, LS OUT MUTE TV (1) : Mute TV OUT output 0 = Mute ON 1 = Mute OFF MUTE LS (1) : Mute LS OUT output 0 = Mute ON 1 = Mute OFF BASS (5) : LS OUT output bass control 0 = Bass Min. 10 = Bass Center (0dB) 1F = Bass Max. TREBLE (5) : LS OUT output treble contorl 0 = Treble Min. 10 = Treble Center (0dB) 1F = Treble Max. VOL (8) : LS OUT output signal level control 0 = Volume Min. (–90dB Typ.) FF = Volume Max. (0dB) BAL (6) : LS OUT-L, R output signal level (balance) control 0 = Lch Min., Rch Max. 20 = Center (Lch 0dB, Rch 0dB) 3F = Lch Max., Rch Min. – 14 – CXA2013M Description of Mode Control TV OUT output mode control table (TEST = 0 normal mode) Input signal MONO Stereo Bilingual Mode detection ST BIL 0 0 1 0 Mode control TV OUT output FOMO S1 S0 MUTE TV L R ∗ ∗ ∗ 0 MUTE MUTE ∗ ∗ ∗ 1 MAIN MAIN ∗ ∗ ∗ 0 MUTE MUTE 1 ∗ ∗ 1 L+R L+R 0 0 0 1 L R 0 0 1 1 L R 0 1 0 1 L R ∗ ∗ ∗ 0 MUTE MUTE ∗ 0 0 1 MAIN MAIN ∗ 0 1 1 SUB SUB ∗ 1 0 1 MAIN SUB 0 1 ∗: Don't care LS OUT output mode control table (TEST = 0 normal mode, EXT = 0 TV mode) Input signal MONO Stereo Bilingual Mode detection ST BIL 0 0 1 0 Mode control LS OUT output FOMO S1 S0 MUTE LS L R ∗ ∗ ∗ 0 MUTE MUTE ∗ ∗ ∗ 1 MAIN MAIN ∗ ∗ ∗ 0 MUTE MUTE 1 ∗ ∗ 1 L+R L+R 0 0 0 1 L R 0 0 1 1 L R 0 1 0 1 L R ∗ ∗ ∗ 0 MUTE MUTE ∗ 0 0 1 MAIN MAIN ∗ 0 1 1 SUB SUB ∗ 1 0 1 MAIN SUB 0 1 ∗: Don't care TV OUT/LS OUT output mode control table (TEST = 0 normal mode) EXT TV OUT LS OUT L R L R TV mode 0 TV mode Lch TV mode Rch TV mode Lch TV mode Rch External mode 1 TV mode Lch TV mode Rch EXT Lch EXT Rch – 15 – CXA2013M Description of Operation The sound mutiplexing signal input from Pin 5 is passed through IN AMP and is applied to the Cue BPF, Sub BPF, and Main de-emphasis circuit. 1. Discrimination circuits Cue BPF passes only the Cue signal component from the multiplex signal. In the AM demodulator, the signal (AM wave) is AM detected and one of two sine waves is generated, either a 922.5Hz signal for bilingual broadcasts or a 982.5Hz signal for stereo broadcasts. In the 952Hz BPF, the 3.5fH carrier component is eliminated from the Cue signal after AM wave detection. The Cue signal, from which the carrier component has been eliminated, is waveform shaped by COMP, with the resulting 922.5Hz or 982.5Hz pulse being applied to the Logic section. In the 3.5fH VCO, a 3.5fH pulse locked onto the Cue signal carrier (3.5fH) is created and sent to the Logic section. In the Logic section, the broadcast mode is identified using the countdown method. Depending on this result as well as the presence of a SUB signal from SUB detector and the MUTE ON/OFF, MODE switching, and FOMO ON/OFF instructions from CONT, the output switching control signal is created. This signal is used to control the output condition of OUTPUT SW and MAIN OUT. 2. Main circuits In MAIN DEEM, de-emphasis is applied to the Main signal component and the Sub and Cue components are removed. After passing through the MAIN DEEM, the Main signal is applied to MATRIX, OUTPUT AMP, and MAINOUT. 3. Sub circuits In SUB BPF, only the SUB signal component out of multiplex signals is passed through. In the 4.5fH trap, the digital facsimile signal component is removed. In FM Demod, the SUB signal is FM demodulated. In SUB DEEM, the FM demodulated Sub signal is de-emphasized and the carrier component is removed. After passing through SUB DEEM, the Sub signal is applied to MATRIX and OUTPUT AMP. 4. MATRIX and output circuits In MATRIX, the L and R signals are created by adding and subtracting the Main signal from MAIN DEEM and the Sub signal from SUB DEEM in stereo broadcast. In OUTPUT AMP and OUTPUT SW, the output signal is switched under the control of Logic. In addition, MAIN OUT always outputs the MAIN signal component, regardless of the broadcast mode. 5. TONE circuit Control BASS and TREBLE. Bass and TREBLE characteristics are decided by each CL and CH external capacitance. 6. BALANCE, VOLUME curcuit Control BALANCE and VOLUME. BALANCE has 64steps and VOLUME has 256 steps. 7. DAC DAC is the circuit that control BASS, TREBLE, VOLUME and BALANCE. Internal impedance is approximately 20kΩ (approximately 5kΩ for VOLUME). Connect the external capacitance for LPF to each pins. – 16 – Application Circuit TVOUT output C21 1µ External input C20 1µ C11 10µ C19 10µ C15 0.1µ C16 10µ 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MC OUT MC IN TV OUT-L TV OUT-R NC AUX-L AUX-R CL-R CL-L CH-R CH-L LS OUT-L C13 C12 4700p 4700p SC IN C14 0.1µ NC C17 10µ SC OUT C18 10µ – 17 – SUBI GND REFL Vcc MPX IN CUBI NC SDA SCL DGND BAL TRE BASS VOL LS OUT-R LSOUT output 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C1 10µ C2 10µ Vcc 9V C4 10µ C3 100µ Composite baseband signal input C5 10µ R1 220 µ-com R2 220 C6 4.7µ C7 4.7µ C8 4.7µ C9 4.7µ C10 10µ DGND CXA2013M Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. CXA2013M I2C Bus Block Items (SDA, SCL) No. Item Symbol Min. Typ. Max. Unit 1 High level input voltage VIH 3.0 — 5.0 2 Low level input voltage VIL 0 — 1.5 3 High level input current IIH — — 10 4 Low level input current IIL — — 10 5 Low level output voltage SDA (Pin 8) during 3mA inflow VOL 0 — 0.4 V 6 Maximum inflow current IOL 3 — — mA 7 Input capacitance CI — — 10 pF 8 Maximum clock frequency fSCL 0 — 100 kHz 9 Minimum waiting time for data change tBUF 4.7 — — 10 Minimum waiting time for start of data transfer tHD:STA 4.0 — — 11 Low level clock pulse width tLOW 4.7 — — 12 High level clock pulse width tHIGH 4.0 — — 13 Minimum waiting time for start preparation tSU:STA 4.7 — — 14 Minimum data hold time tHD:DAT 0 — — 15 Minimum data preparation time tSU:DAT 250 — — ns 16 Rise time tR — — 1 µs 17 Fall time tF — — 300 ns 18 Minimum waiting time for stop preparation tSU:STO 4.7 — — µs V µA µs I2C bus load conditions: Pull-up resistor 4kΩ (Connect to +5V) Load capacitor 200pF (Connect to GND) I2C Bus Control Signal SDA tBUF tR tHD:STA tF SCL P S tHD:STA tLOW tHD:DAT tHIGH – 18 – tSU:DAT Sr tSU:STA tSU:STO P CXA2013M I2C Bus Signal There are I2C signals, SDA (Serial DATA) and SCL (Serial CLOCK) signals. SDA is a bidirectional signal. • Accordingly there are 3 values outputs, H, L, and Hi-Z. H L Hi-Z L • I2C transfer begins with Start Condition and ends with STOP condition. Start Condition S Stop Condition P SDA SCL – 19 – CXA2013M • I2C data write (Write from I2C controller to the IC) L during Write MSB MSB LSB Hi-Z Hi-Z SDA 1 SCL 2 S 3 4 5 6 7 8 9 ACK Address MSB 1 8 9 Sub Address ACK LSB Hi-Z 1 8 Hi-Z 9 DATA (n) 1 ACK 8 DATA (n + 1) ACK Hi-Z 8 9 9 DATA (n + 2) Hi-Z 1 8 ∗ Data can be transferred in 8-bit units to be set as required. Sub address is incremented automatically. 9 P DATA ACK DATA ACK • I2C data read (Read from the IC to I2C controller) H during Read Hi-Z SDA 1 SCL 6 7 8 9 1 8 7 9 S P ACK Address DATA ACK • Read timing MSB LSB IC output SDA SCL Read timing 9 1 2 ACK 3 4 DATA ∗ Data Read is performed during SCL rise. – 20 – 5 6 7 8 9 ACK CXA2013M Example of Representative Characteristics SUB BPF frequency characteristics Output level [dB] Output level [dB] De-emphasis characteristics 0 0 –20 –5 –10 –40 Main –15 –60 Sub 100 1k 10 10k 20 30 Frequency [Hz] 40 50 60 70 80 90 100 Frequency [kHz] MAIN distortion characteristics Cue BPF frequency characteristics 2 Distortion [%] Attenuation level [dB] 3 0 –20 1 –40 –60 3.5fH –40k 3.5fH –20k 3.5fH 3.5fH +20k 100 3.5fH +40k 200 300 400 500 MAIN modulation factor [%] Frequency [Hz] BALANCE CONTROL characteristics 0 0 –10 –10 LS OUT-L, R [dB] LS OUT-L, R [dB] VOL CONTROL characteristics –20 –30 –40 –50 OUT L OUT R –20 –30 –40 –50 –60 –60 –70 –70 –80 –80 40 80 C0 BUS data [VOL] 0 FF 10 20 30 BUS data [BALANCE] – 21 – 3F CXA2013M TONE characteristics LS OUT -L, R [dB] 20 BASS-TREBLE MAX. 10 0 BASS-TREBLE MIN. –10 –20 100 1k Frequency [Hz] – 22 – 10k CXA2013M Package Outline Unit: mm 30PIN SOP (PLASTIC) + 0.4 2.3 – 0.15 + 0.4 18.8 – 0.1 0.1 30 + 0.2 0.1 – 0.05 (9.3) A 0.5 ± 0.2 10.3 ± 0.4 + 0.3 7.6 – 0.1 16 15 1 1.27 0.45 ± 0.1 0.2 M + 0.1 0.2 – 0.05 0˚ to 10˚ DETAIL A PACKAGE STRUCTURE SONY CODE EIAJ CODE PACKAGE MATERIAL EPOXY RESIN SOP-30P-L03 LEAD TREATMENT SOLDER PLATING SOP030-P-0375 LEAD MATERIAL COPPER ALLOY PACKAGE MASS 0.7g JEDEC CODE LEAD PLATING SPECIFICATIONS ITEM SPEC. LEAD MATERIAL COPPER ALLOY SOLDER COMPOSITION Sn-Bi Bi:1-4wt% PLATING THICKNESS 5-18µm – 23 – Sony Corporation