CXA2064M US Audio Multiplexing Decoder Description The CXA2064M is an IC designed as a decoder for the Zenith TV Multi-channel System. Functions include stereo demodulation, SAP (Separate Audio Program) demodulation, dbx noise reduction. 30 pin SOP (Plastic) Features • Adjustment free of VCO and filter. • Audio multiplexing decoder and dbx noise reduction decoder are all included in a single chip. Almost any sort of signal processing is possible through this IC. • Various built-in filter circuits greatly reduce external parts. • This IC is near pin to pin compatible with the CXA2020M. Applications TV, VCR and other decoding systems for US audio multiplexing TV broadcasting Absolute Maximum Ratings (Ta = 25°C) • Supply voltage VCC 11 V • Operating temperature Topr –20 to +75 °C • Storage temperature Tstg –65 to +150 °C • Allowable power dissipation PD 1000 mW • STID, SAPID drive current IO 2 (max.) mA Structure Bipolar silicon monolithic IC Range of Operating Supply Voltage 9 ± 0.5 V ∗ This device is available only to the licensees of the dbx-TV noise reduction system. Standard I/O Level • Input level COMPIN (Pin 7) • Output level TVOUT-L/R (Pins 23 and 22) 100mVrms (MONO 100Hz 100% mod.) 490mVrms (MONO 100Hz 100% mod.) VE VEWGT SAPOUT SAPIN VETC VEOUT VCAIN TVOUT-L TVOUT-R VCATC VCAWGT MUTE M1 FOMO MAININ 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 STIN SUBOUT NOISETC VCC IREF GND COMPIN SAPTC VGR PLINT STID SAPID PCINT2 PCINT1 MAINOUT Pin Configuration (Top View) Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. –1– E98513-PS 21 20 24 25 29 26 30 1 27 28 19 18 17 11 12 5 VGR RMSDET 9 SW LPF IREF MODE_DISPLAY LPF SAPID RMSDET VCA STID DETECTION AMP (+4dB) HPF VE FOMO IREF SAPIND DeEm M1 8 LPF MUTE SAPTC NOISE DET SAPVCO SAPOUT NOISETC 3 BPF +6dB SAPIN GND 6 STIND LPF STIN DeEm VE 4 – MATRIX 16 VETC VEWGT VCC LPF LPF 1/2 15 VEOUT 7 FLT 1/4 SUBOUT 2 MAINOUT VCAIN COMPIN VCO PCINT2 LFLT 10 PCINT1 PLINT 14 13 MAININ VCAWGT –2– VCATC Block Diagram 22 TVOUT-R 23 TVOUT-L CXA2064M CXA2064M Pin Description Pin No. Symbol (Ta = 25°C, VCC = 9V) Pin voltage Equivalent circuit Description VCC 1 STIN 23k 4.0V Input the (L-R) signal from SUBOUT (Pin 2). 23k 11.7k 147 147 1 27 SAPIN 4.0V 27 18k Input the (SAP) signal from SAPOUT (Pin 28). 18k 4V 4V 20k Vcc 580 2 SUBOUT 2 4.0V (L–R) signal output pin. 147 580 12k 4k Vcc 3.3k 8k 10k 1k 3 NOISETC 3.0V 2k 4k ×2 4V Vcc 3k Set the time constant for the noise detection circuit. (Connect a 4.7µF capacitor between this pin and GND.) 3k 200k 3 4 VCC — Supply voltage pin. 4 –3– CXA2064M Pin No. Symbol Pin voltage Eqivalent circuit Description VCC 40k 40k 30k 34k 15k 30k ×2 Set the filter and VCO reference current. (Connect a 68kΩ (±1%) resistor between this pin and GND.) VCC 5 IREF 1.3V 30p 1.8k 5 147 6.3k 6 GND 16k 6 — Analog block GND. VCC 24k 24k 147 7 7 COMPIN 4.0V Audio multiplexing signal input pin. 50k 4V 24k VCC 8k 10k 1k 3k 8 SAPTC 4.5V VCC 4k ↓ 50µ 8 –4– Set the time constant for the SAP carrier detection circuit. (Connect a 4.7µF capacitor between this pin and GND.) CXA2064M Pin No. Symbol Pin voltage Eqivalent circuit 3k 9 VGR 1.3V 11k 9.7k Description 147 VCC 19.4k 11k ×4 11k Band gap reference output pin. (Connect a 10µF capacitor between this pin and GND.) 9 2.06k VCC 20k 20k 147 10 PLINT 10 5.1V 20k ↓ 26µ 20k 20k ↓ 50µ 10k 11 11 STID — 12 68k 12 SAPID — 15k Pilot cancel circuit loop filter integrating pin. (Connect a 1µF capacitor between this pin and GND.) 10.5k –5– Stereo detection pin. Open collector output. Drive current is 2mA (Max.). SAP detection pin. Open collector output. Drive current is 2mA (Max.). CXA2064M Pin No. Symbol Pin voltage Eqivalent circuit Description VCC 147 13 13 PCINT2 10k 4.0V 10k 2k ×2 4k Stereo block PLL loop filter integrating pin. VCC 147 14 14 PCINT1 30k 4.0V 22k VCC 15k ×4 VCC 15 MAINOUT 4.0V 147 (L + R) signal output pin. 15 ↓ 200µ 1k VCC 10k VCC 16 MAININ Input the (L + R) signal from MAINOUT (Pin 15). 4.0V 147 16 47k 4V 17 17 FOMO — 19 70k 10.5k 19 MUTE — –6– 50k Mode control switch pin. This pin has 3 ranges for input voltage. Sets forced monoral mode and also control ST.ID. Mode control switch pin. When this pin is set to H level, TVOUT output is muted. CXA2064M Pin No. Symbol Pin voltage Eqivalent circuit Description VCC 4V Mode control switch pin. This pin has 3 ranges for input voltage. Stereo, BOTH, SAP selection are available. 24k 25k 18 M1 18 — 40k 10.5k VCC 40k 40k 3p 580 20 VCAWGT 4.0V 20 2.9V 580 147 36k ↓ 50µ 4k↓ 8µ 30k Weight the VCA control effective value detection circuit. (Connect a 1µF capacitor and a 3.9kΩ resistor in series between this pin and GND.) 8k VCC ×4 21 VCATC 21 ×4 1.7V ↓ 50µ 4k ↓ 7.5µ 20k Determine the restoration time constant of the VCA control effective value detection circuit. (the specified restoration time constant can be obtained by connecting a 10µF capacitor between this pin and GND.) VCC 3k 22 TVOUT-R TVOUT right channel output pin. 4.0V 580 22 23 23 TVOUT-L 580 TVOUT left channel output pin. 4.0V –7– CXA2064M Pin No. Symbol Pin voltage Eqivalent circuit Description VCC 47k 24 VCAIN 20k 4.0V 47k VCA input pin. Input the variable de-emphasis output signal from Pin 25 via a coupling capacitor. VCC 24 Vcc 5P Variable de-emphasis output pin. (Connect a 4.7µF non-polar capacitor between Pins 25 and 24.) 580 25 VEOUT 4.0V 25 580 10k Vcc 26 VETC 1.7V ×4 Determine the restoration time constant of the variable de-rmphasis control effective value detection circuit. (the specified restoration time constant can be obtained by connecting a 3.3µF capacitor between this pin and GND.) 26 ×4 20k ↓ 7.5µ 4k ↓ 50µ Vcc 5P 580 28 SAPOUT 4.0V 580 SAP FM detector output pin. 10k 28 147 24k ↓ 10µ 4k ↓ 50µ –8– CXA2064M Pin No. Symbol Pin voltage Eqivalent circuit Description Vcc 2.9V 580 29 VEWGT 4.0V 4V 29 147 580 36k 8k 30k ↓ 8µ Weight the variable de-emphasis control effective value detection circuit. (Connect a 0.047µF capacitor and a 3kΩ resistor in series between this pin and GND.) 4k ↓ 50µ VCC 7.5k 30 VE 4.0V Variable de-emphasis integrating pin. (Connect a 2700pF capacitor and a 3.3kΩ resistor in series between this pin and GND.) 147 30 –9– – 10 – SNmain Vsub FCsub THDsub THDsmax SNsub CTst PCsub Main S/N Sub output level Sub LPF frequency characteristic Sub distortion Sub overload distortion Sub S/N ST → SAP Crosstalk Sub pilot leak 7 8 9 10 11 12 14 13 THDmmax Main overload distortion 6 FCmain Main LPF frequency characteristic 4 THDm FCdeem Main de-emphasis frequency characteristic 3 Main distortion Vmain Main output level 2 5 Icc Signal Current consumption Item ST SAP ST ST ST ST ST MONO MONO MONO MONO MONO MONO Mode 7 7 7 7 7 7 7 7 7 7 7 7 7 — Input pin Min. 1kBPF fH BPF 20 log ('M1 = L'/ 'M1 = H') 0dB = 20mVrms SUB (L-R) 1kHz, 100% mod., NR ON, SAP Carrier (5fH) PILOT (fH) 0dB 15kLPF 20 log ('100%'/'0%') 15kLPF SUB (L-R) 1kHz, 200% mod., NR OFF SUB (L-R) 1kHz, NR OFF 15kLPF 20 log ('12k'/'1k') SUB (L-R) 1kHz, 100% mod., NR OFF SUB (L-R) 12kHz, 30% mod., NR OFF SUB (L-R) 1kHz, 100% mod., NR OFF 15kLPF 15kLPF Mono 1kHz 200% mod. Pre-em. ON Mono 1kHz, Pre-em. ON 15kLPF Mono 1kHz 100% mod. Pre-em. ON 20 log ('100%'/'0%') 22/23 Mono 12kHz 30% mod. 20 log ('12k'/'1k') Pre-em. ON 2 23 2 2 2 2 2 22/23 22/23 22/23 22/23 Mono 5kHz 30% mod. Pre-em. ON 20 log ('5k'/'1k') — 60 56 — — –3.0 225 61 — — –3.0 –1.2 440 22/23 Output pin Mono 1kHz 100% mod. Pre-em. ON Filter 15 Measurement conditions No signal Input signal Main (L + R) (Pre-Emphasis: OFF) = 100mVrms SUB (L – R) (dbx-TV: OFF) = 200mVrms Pilot= 20mVrms SAP Carrier= 60mVrms fH = 15.734kHz 1 No. Electrical Characteristics COMPIN input level (100% modulation level) –27 70 64 0.2 0.1 –0.5 275 69 0.15 0.1 –1.0 0 490 23 Typ. –16 — — 2.0 1.0 1.0 325 — 0.5 0.5 1.0 1.0 540 31 Max. dB dB dB % % dB mVrms dB % % dB dB mVrms mA Unit (Ta = 25°C, VCC = 9V) CXA2064M SAP SAP Vsap FCsap THDsap SNsap CTsap SAP output level SAP LPF frequency characteristic SAP distortion SAP S/N SAP → ST Cross talk SAP ON level 17 18 19 20 21 22 HYsap STLsep1 STRsep1 STLsep2 STRsep2 SAP ON/OFF hysteresis ST separation 1 L → R ST separation 1 R → L ST separation 2 L → R ST separation 2 R → L 23 24 25 26 27 THsap SAP HYst Stereo ON/OFF hysteresis 16 – 11 – ST ST ST ST SAP ST SAP ST THst Stereo ON level Mode 15 Signal Item No. SAP 1kHz, NR OFF 7 7 7 7 7 7 7 28 SAP 1kHz 100% mod. NR OFF 7 15kLPF 15kLPF ST-R 300Hz 30% mod. 20 log NR ON ('Rch'/'Lch') 20 log ('Lch'/'Rch') 20 log ('Rch'/'Lch') ST-L 3kHz 30% mod. NR ON ST-R 3kHz 30% mod. NR ON 15kLPF 15kLPF 20 log (‘on level’/’off level’) 0dB = 60mVrms 1kBPF ST-L 300Hz 30% mod. 20 log NR ON ('Lch'/'Rch') Change SAP Carrier (5fH) Level SAP 1kHz 100% mod. 20 log ('M1 = H'/ NR ON, Pilot (fH) 'M1 = L') 20 log ('100%'/'0%') 15kLPF 28 SAP 10kHz 30% mod. 20 log NR OFF ('10k'/'1k') 22/23 22/23 22/23 22/23 12 12 23 28 11 7 20 log (‘on level'/'off level') 28 11 Output pin SAP 1kHz 100% mod. NR OFF 15kLPF Filter 7 0dB = 20mVrms Measurement conditions Change PILOT (fH) Level Input signal 7 Input pin 23 23 23 23 2.0 –12.0 60 46 — –3.0 130 2.0 –9.0 Min. 35 35 35 35 4.0 –9.0 70 55 2.5 0 170 6.0 –6.0 Typ. — — — — 6.0 –6.5 — — 6.0 2.5 210 10.0 –3.0 Max. dB dB dB dB dB dB dB dB % dB mVrms dB dB Unit CXA2064M – 12 – STIN C19 4.7µ 2 C1 4.7µ SUBOUT 1 R1 10k 3 C2 4.7µ 4 VCC V1 9V SG ATT GND IREF GND 7 GND 6 R2 68k METAL ±1% COMPIN 5 C3 4.7µ 8 C4 4.7µ 9 C5 10µ 10 C6 1µ 11 R3 10k 12 R4 10k R5 1MEG R6 C8 100k 0.012µ C7 5600p 14 VE 13 16 17 18 19 20 S1 21 S2 22 S3 23 C10 1µ R7 3.9k VEWGT C11 10µ TANTALUM 24 C12 4.7µ 25 C13 4.7µ 26 C14 4.7µ V2 5V SAPOUT V3 2.5V MEASURES 27 C15 3.3µ TANTALUM 15kHz LPF fH BPF 1kHz BPF FILTERS SAPIN 28 C16 4.7µ BUFF VETC 29 C17 0.047µ R8 5k S9 S8 S7 S6 S5 S4 VEOUT NOISETC VCAIN VCC TVOUT-L SAPTC TVOUT-R VGR VCATC PLINT VCAWGT STID MUTE SAPID M1 PCINT2 FOMO PCINT1 MAININ 15 MAINOUT 30 C18 2700P R9 3.3k Electrical Characteristics Measurement Circuit C9 4.7µ CXA2064M CXA2064M Adjustment Method 1. Input level adjustment 1) Connect components as shown in Fig. 1. 2) Set the US MPX encoder output to MONO 100Hz 100% modulation. 3) Adjust the "ATT" so that COMPIN (Pin 7) level goes to 100mVrms (±0.5dB). 2.Separation adjustment 1) Mode control pin are set to FOMO (Pin 17): L, M1 (Pin 18): L, MUTE (Pin 19): L. 2) Set the US MPX encoder ouput to Stereo Lch-only 300Hz 30% modulation, NR-ON. Then, adjust the variable resistor of SUBOUT (Pin 2) to reduce the TVOUT-R output to the minimum. 3) Next, set the frequency only of the input signal to 3kHz and adjust the variable resistor of VEWGT (Pin 29) to reduce the TVOUT-R output to the minimum. 4) The adjustments in 2 and 3 above are performed to optimize the separation. US MPX encoder CXA2064M ATT 4.7µ COMPIN (Pin 7) Fig. 1. Adjustment setup ∗ Adjust this IC through Tuner and IF when this IC is mounted on the set. – 13 – CXA2064M Description of Operation The US audio multiplexing system possesses the base band spectrum shown in Fig. 2. PEAK DEV kHz 50 AM-DSB-SC 50 L-R dbx-TV NR 25 PILOT 25 15 SAP dbx-TV NR FM 10kHz 50 – 10kHz L+R 5 50 – 15kHz 2fH fH 3fH 4fH TELEMETRY FM 3kHz 3 5fH 6fH 6.5fH f fH = 15.734kHz Fig. 2. Base band spectrum 2fHL0° fHL90° fHL0° PLL (VCO 8fH) ST.ID PILOT DET MODE CONTROL MAIN LPF DE.EM (COMPIN) STEREO LPF 7 (MAIN IN) (MAIN OUT) PILOT CANCEL 16 15 4.7µ L+R SUB LPF (SUBOUT) L-R (DSB) DET MATRIX 2 (STIN) 10k 1 23 NR SW 4.7µ SAP BPF SAP(FM) DET SAP LPF (SAP OUT) INJ. LOCK A (SAP IN) 28 B dbx-TV BLOCK 27 MODE CONTROL NOISE DET SAP.ID MODE CONTROL Fig. 3. Overall block diagram (See Fig. 4 for the dbx-TV block) (ST IN) 1 NR SW A FIXED DEEMPHASIS VARIABLE DEEMPHASIS (VE OUT) (VCA IN) 25 (SAP IN) 24 4.7µ 27 HPF RMS DET LPF LPF RMS DET Fig 4. dbx-TV block – 14 – B VCA (TVOUT-R) 22 4.7µ SAP DET (TVOUT-L) to MATRIX CXA2064M (1) L + R (MAIN) When the audio multiplexing signal is inputted to COMPIN (Pin 7), the SAP signal and telemetry signal are suppressed by STEREO LPF. Next, the pilot signals are canceled. Finally, the L – R signal and SAP signal are removed by MAIN LPF, and frequency characteristics are flattened (de-emphasized) and input to the matrix. (2) L – R (SUB) The L – R signal follows the same course as L + R before the pilot signal is canceled. L – R has no carrier signal, as it is a suppressed-carrier double-sideband amplitude modulated signal (DSB-AM modulated). For this reason, the pilot signal is used to regenerate the carrier signal (quasi-sine wave) to be used for the demodulation of the L – R signal. In the last stage, the residual high frequency components are removed by SUB LPF and the L – R signal is input to the dbx-TV block via the NRSW circuit. (3) SAP SAP is an FM signal using 5fH as a carrier as shown in the Fig. 2. First, the SAP signal only is extracted using SAP BPF. Then, this is subjected to FM detection. Finally, residual high frequency components are removed and frequency characteristics flattened using SAP LPF, and the SAP signal is input to the dbx-TV block via the NRSW circuit. (4) Mode discrimination Stereo discrimination is performed by detecting the pilot signal amplitude. SAP discrimination is performed by detecting the 5fH carrier amplitude. NOISE discrimination is performed by detecting the noise near 25kHz after FM detection of SAP signal. (5) dbx-TV block Either the L – R signal or SAP signal input respectively from STIN (Pin 1) or SAPIN (Pin 27) is selected by the mode control and input to the dbx-TV block. The input signal then passes through the fixed de-emphasis circuit and is applied to the variable deemphasis circuit. The signal output from the variable de-emphasis circuit passes through an external capacitor and is applied to VCA (voltage control amplifier). Finally, the VCA output is converted from a current to a voltage using an operational amplifier and then input to the matrix. The variable de-emphasis circuit transmittance and VCA gain are respectively controlled by Each of effective value detection circuits. Each of the effective value detection circuits passes the input signal through a predetermined filter for weighting before the effective value of the weighted signal is detected to provide the control signal. (6) Matrix The signals (L + R, L – R, SAP) input to “MATRIX” become the outputs for the ST-L, ST-R, MONO and SAP signals according to the mode control and whether there is ST / SAP discrimination. (7) Others “Bias” supplies the reference voltage and reference current to the other blocks. The current flowing to the resistor connecting IREF (Pin 5) with GND become the reference current. – 15 – CXA2064M Decoder Output and Mode Control Table ID MONO STEREO MONO & SAP STEREO & SAP Pin Output ST SAP M1 FOMO dbx input H H L ∗ MUTE L+R L+R H H M ∗ MUTE L+R L+R H H H ∗ MUTE L+R L+R L H L L L–R L R L H L M MUTE L+R L+R H H L H MUTE L+R L+R L H M L MUTE L+R L+R L H M M MUTE L+R L+R H H M H MUTE L+R L+R L H H L L–R L R L H H M MUTE L+R L+R H H H H MUTE L+R L+R H L L ∗ MUTE L+R L+R H L M ∗ SAP L+R SAP H L H L SAP SAP SAP H L H M SAP L+R SAP H L H H SAP L+R SAP L L L L L–R L R L L L M MUTE L+R L+R H L L H MUTE L+R L+R L L M L SAP L+R SAP L L M M SAP L+R SAP H L M H SAP L+R SAP L L H L SAP SAP SAP L L H M SAP L+R SAP H L H H SAP L+R SAP Input signal mode Lch Rch ∗: Don’t care Regarding ST, SAP, ID L shows that drive current runs through load register and pin voltage is low. H shows that drive current doesn't run through load resistor and pin voltage is high. – 16 – CXA2064M Limits of Control Voltage M1 H SAP M BOTH L FOMO MUTE 4.5V to VCC 2 to 3V (or OPEN) STEREO 0 to 0.5V H STID-H 8.5V to VCC M STID-L 3 to 7V L STID-L 0 to 0.5V (or OPEN) H ON 3V to VCC L OFF 0 to 0.5V (or OPEN) – 17 – – 18 – COMP IN GND IREF C3 4.7µ R10 10k 7 GND 6 R2 68k METAL ±1% COMPIN 5 SAPTC 8 C4 4.7µ VGR 9 C5 10µ PLINT 10 STID C6 1µ STID 11 R3 10k R4 10k C7 5600p PCINT2 R6 C8 SAPID 100k 0.012µ V2 3 to VCC 12 SAPID Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same. R1 10k VCC 4 V1 9V VE STIN C2 4.7µ VEWGT SUBOUT C1 4.7µ SAPOUT NOISETC 14 SAPIN 2 R5 1MEG VETC PCINT1 13 VEOUT 1 VCC VCAIN 3 16 17 18 19 20 21 22 23 C10 1µ TVOUT-L C11 10µ TANTALUM TVOUT-R 24 C12 4.7µ VCATC 25 C13 4.7µ VCAWGT 26 C14 4.7µ MODE CONTROL SW MUTE 27 C15 3.3µ TANTALUM R7 3.9k M1 28 C16 4.7µ TVOUT-L TVOUT-R FOMO 29 C17 0.047µ R8 5k MAININ 30 C18 2700P R9 3.3k Application Circuit MAINOUT 15 C9 4.7µ CXA2064M CXA2064M Input level vs. Distortion characteristics 2 (Stereo) Input level vs. Distortion characteristics 1 (MONO) 10 Input signal: Stereo L = –R (dbx-TVNR ON), 1kHz 0dB = 100% modulation level VCC = 9V, 30kHz using LPF, ST mode Measurement point: TVOUT-L/R Distortion [%] Distortion [%] 1.0 Input signal: MONO (Pre-emphasis on), 1kHz 0dB = 100% modulation level VCC = 9V, 30kHz using LPF Measurement point: TVOUT-L/R 1.0 0.1 Standard level (100%) –10 0 10 Standard level (100%) Input level [dB] –10 0 Input level [dB] Input level vs. Distortion characteristics 3 (SAP) Distortion [%] 10 Input signal: SAP (dbx-TVNR ON) 1kHz, 0dB = 100% modulation level VCC = 9V, 30kHz using LPF, SAP mode Measurement point: TVOUT-L/R 1.0 Standard level (100%) –10 0 Input level [dB] 10 – 19 – 10 CXA2064M Stereo LPF frequency characteristics Main LPF and Sub LPF frequency characteristics 10 Gain (FC main and FC sub) [dB] 30 Gain [dB] 5 0 –5 20 10 0 –10 –20 –30 –40 –10 –50 0 20 40 60 80 1 100 Frequency [kHz] 100 20 90 5fH 70 60 50 0 40 Group delay [µs] Gain [dB] 80 Gain 30 –10 20 Group delay 3.8fH –20 20 40 60 80 5 7 10 20 Frequency [kHz] SAP frequency characteristics and group delay 10 2 6.2fH 100 10 0 120 Frequency [kHz] – 20 – 50 70 100 CXA2064M Package Outline Unit: mm 30PIN SOP(PLASTIC) + 0.4 2.3 – 0.15 + 0.4 18.8 – 0.1 0.1 30 + 0.2 0.1 – 0.05 (9.3) A 0.5 ± 0.2 10.3 ± 0.4 + 0.3 7.6 – 0.1 16 15 1 0.45 ± 0.1 1.27 0.2 M + 0.1 0.2 – 0.05 0° to 10° DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY RESIN SONY CODE SOP-30P-L03 LEAD TREATMENT SOLDER PLATING EIAJ CODE SOP030-P-0375 LEAD MATERIAL COPPER ALLOY PACKAGE MASS 0.7g JEDEC CODE NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame). – 21 –