049V33 CY7C1049V33 512K x 8 Static RAM Features • High speed — tAA = 15 ns • Low active power — 504 mW (max.) • Low CMOS standby power (Commercial L version) — 1.8 mW (max.) • 2.0V Data Retention (660 µW at 2.0V retention) • Automatic power-down when deselected • TTL-compatible inputs and outputs • Easy memory expansion with CE and OE features Functional Description The CY7C1049V33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy memory expan- sion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and three-state drivers. Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O0 through I/O7) is then written into the location specified on the address pins (A0 through A18). Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O0 through I/O7) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW). The CY7C1049V33 is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout. Logic Block Diagram Pin Configuration SOJ Top View A0 A1 A2 A3 A4 CE I/O0 I/O1 VCC GND I/O2 I/O3 WE A5 A6 A7 A8 A9 I/O0 INPUT BUFFER I/O1 ROW DECODER I/O2 SENSE AMPS A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 512K x 8 ARRAY I/O3 I/O4 I/O5 I/O6 POWER DOWN COLUMN DECODER CE 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 NC A18 A17 A16 A15 OE I/O7 I/O6 GND VCC I/O5 I/O4 A14 A13 A12 A11 A10 NC I/O7 A 11 A 12 A 13 A14 A15 A16 A17 A18 WE OE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1049V33–2 1049V33–1 Selection Guide Maximum Access Time (ns) Maximum Operating Current (mA) Maximum CMOS Standby Current (mA) Com’l/Ind’l Com’l L 1049V33-12 1049V33-15 1049V33-17 1049V33-20 1049V33-25 12 15 17 20 25 150 140 130 120 110 8 8 8 8 8 0.5 0.5 0.5 0.5 0.5 Shaded areas contain preliminary information. Cypress Semiconductor Corporation Document #: 38-05067 Rev. ** • 3901 North First Street • San Jose • CA 95134 • 408-943-2600 Revised July 9, 2001 CY7C1049V33 DC Input Voltage[1] ................................ –0.5V to VCC + 0.5V Maximum Ratings (Above which the useful life may be impaired. For user guidelines, not tested.) Current into Outputs (LOW) ........................................ 20 mA Operating Range Storage Temperature ................................. –65°C to +150°C Ambient Temperature with Power Applied............................................. –55°C to +125°C Range Supply Voltage on VCC to Relative GND[1] .... –0.5V to +4.6V Commercial DC Voltage Applied to Outputs in High Z State[1] ....................................–0.5V to VCC + 0.5V Industrial Ambient Temperature[2] VCC 0°C to +70°C 3.3V ± 0.3V –40°C to +85°C Electrical Characteristics Over the Operating Range Parameter Description 7C1049V33-12 7C1049V33-15 7C1049V33-17 Test Conditions Min. Max. 2.4 Min. Max. VOH Output HIGH Voltage VCC = Min., IOH = –4.0 mA 2.4 VOL Output LOW Voltage VCC = Min., IOL = 8.0 mA VIH Input HIGH Voltage 2.2 VCC + 0.5 2.2 VCC + 0.5 VIL Input LOW Voltage[1] –0.5 0.8 –0.5 IIX Input Load Current GND < VI < VCC –1 +1 IOZ Output Leakage Current GND < VOUT < VCC, Output Disabled –1 +1 ICC VCC Operating Supply Current VCC = Max., f = fMAX = 1/tRC 150 ISB1 Automatic CE Power-Down Current —TTL Inputs Max. VCC, CE > VIH VIN > VIH or VIN < VIL, f = fMAX ISB2 Automatic CE Power-Down Current —CMOS Inputs Max. VCC, CE > VCC – 0.3V, VIN > VCC – 0.3V, or VIN < 0.3V, f=0 0.4 Com’l/Ind’l Com’l L Min. Max. 2.4 0.4 Unit V 0.4 V 2.2 VCC + 0.5 V 0.8 –0.5 0.8 V –1 +1 –1 +1 µA –1 +1 –1 +1 µA 140 130 mA 30 30 30 mA 8 8 8 mA 0.5 0.5 0.5 mA Shaded areas contain preliminary information. Notes: 1. VIL (min.) = –2.0V for pulse durations of less than 20 ns. 2. TA is the “Instant On” case temperature. Document #: 38-05067 Rev. ** Page 2 of 9 CY7C1049V33 Electrical Characteristics Over the Operating Range (continued) 7C1049V33-20 Parameter Description Test Conditions VOH Output HIGH Voltage VCC = Min., IOH = –4.0 mA VOL Output LOW Voltage VCC = Min., IOL = 8.0 mA VIH Input HIGH Voltage Min. 7C1049V33-25 Max. Min. 2.4 0.4 [1] Max. Unit 2.4 V 0.4 V V 2.2 VCC + 0.5 2.2 VCC + 0.5 VIL Input LOW Voltage –0.5 0.8 –0.5 0.8 V IIX Input Load Current GND < VI < VCC –1 +1 –1 +1 µA IOZ Output Leakage Current GND < VOUT < VCC, Output Disabled –1 +1 –1 +1 µA ICC VCC Operating Supply Current VCC = Max., f = fMAX = 1/tRC 120 110 mA ISB1 Automatic CE Power-Down Current —TTL Inputs Max. VCC, CE > VIH VIN > VIH or VIN < VIL, f = fMAX 30 30 mA ISB2 Automatic CE Power-Down Current —CMOS Inputs Max. VCC, CE > VCC – 0.3V, VIN > VCC – 0.3V, or VIN < 0.3V, f=0 8 8 mA 0.5 0.5 mA Com’l/Ind’l Com’l L Capacitance[3] Parameter Description CIN Input Capacitance COUT I/O Capacitance Test Conditions Max. Unit 8 pF 8 pF TA = 25°C, f = 1 MHz, VCC = 3.3V Note: 3. Tested initially and after any design or process changes that may affect these parameters. AC Test Loads and Waveforms R1 317 Ω 3.3V THÉVENIN EQUIVALENT 167 Ω OUTPUT OUTPUT 30 pF R2 351Ω INCLUDING JIG AND SCOPE (a) 1049V33–3 Document #: 38-05067 Rev. ** (b) ALL INPUT PULSES 3.3V 90% 1.73V GND ≤ 3 ns 10% 90% 10% ≤ 3 ns 1049V33–4 Page 3 of 9 CY7C1049V33 Switching Characteristics[5] Over the Operating Range Parameter Description 7C1049V33-12 7C1049V33-15 7C1049V33-17 Min. Min. Min. Max. Max. Max. Unit READ CYCLE tRC Read Cycle Time 12 tAA Address to Data Valid 15 12 3 17 15 3 ns 17 tOHA Data Hold from Address Change tACE CE LOW to Data Valid 12 15 17 ns tDOE OE LOW to Data Valid 6 7 8 ns tLZOE OE LOW to Low Z 0 [5, 6] tHZOE OE HIGH to High Z tLZCE CE LOW to Low Z[6] tHZCE CE HIGH to High Z[5, 6] tPU CE LOW to Power-Up tPD CE HIGH to Power-Down 3 ns 0 6 3 0 7 3 6 0 ns 8 3 7 0 12 ns 8 0 15 ns ns ns ns 17 ns WRITE CYCLE[7, 8] tWC Write Cycle Time 12 15 17 ns tSCE CE LOW to Write End 10 12 13 ns tAW Address Set-Up to Write End 10 12 13 ns tHA Address Hold from Write End 0 0 0 ns tSA Address Set-Up to Write Start 0 0 0 ns tPWE WE Pulse Width 10 12 13 ns tSD Data Set-Up to Write End 7 8 9 ns tHD Data Hold from Write End 0 0 0 ns 3 3 3 ns tLZWE tHZWE [6] WE HIGH to Low Z [5, 6] WE LOW to High Z 6 7 8 ns Shaded areas contain preliminary information. Notes: 4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified IOL/IOH and 30-pF load capacitance. 5. tHZOE, tHZCE, and tHZWE are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage. 6. At any given temperature and voltage condition, tHZCE is less than tLZCE, tHZOE is less than tLZOE, and tHZWE is less than tLZWE for any given device. 7. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. 8. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of tHZWE and tSD. Document #: 38-05067 Rev. ** Page 4 of 9 CY7C1049V33 Switching Characteristics[5] Over the Operating Range (continued) Parameter Description 7C1049V33-20 7C1049V33-25 Min. Min. Max. Max. Unit READ CYCLE tRC Read Cycle Time 20 tAA Address to Data Valid tOHA Data Hold from Address Change 25 ns 20 3 25 ns 5 ns tACE CE LOW to Data Valid 20 25 ns tDOE OE LOW to Data Valid 8 10 ns tLZOE OE LOW to Low Z 0 [5, 6] 0 ns tHZOE OE HIGH to High Z tLZCE CE LOW to Low Z[6] tHZCE CE HIGH to High Z[5, 6] tPU CE LOW to Power-Up tPD CE HIGH to Power-Down WRITE CYCLE [7] tWC Write Cycle Time 20 25 ns 8 3 10 ns 5 ns 8 0 10 ns 0 ns 20 25 ns tSCE CE LOW to Write End 13 15 ns tAW Address Set-Up to Write End 13 15 ns tHA Address Hold from Write End 0 0 ns tSA Address Set-Up to Write Start 0 0 ns tPWE WE Pulse Width 13 15 ns tSD Data Set-Up to Write End 9 10 ns tHD Data Hold from Write End 0 0 ns tLZWE WE HIGH to Low Z[6] 3 5 ns tHZWE WE LOW to High Z[5, 6] 8 10 ns Data Retention Characteristics Over the Operating Range (For L version only) Parameter Conditions[10] Description VDR VCC for Data Retention ICCDR Data Retention Current tCDR[3] Chip Deselect to Data Retention Time tR[9] Operation Recovery Time Min. Max Unit 330 µA 2.0 VCC = VDR = 2.0V, CE > VCC – 0.3V VIN > VCC – 0.3V or VIN < 0.3V V 0 ns tRC ns Notes: 9. tr < 3 ns for the -12 and -15 speeds. tr < 5 ns for the -20 ns and slower speeds. 10. No input may exceed VCC + 0.5V. Document #: 38-05067 Rev. ** Page 5 of 9 CY7C1049V33 Data Retention Waveform DATA RETENTION MODE 3.0V VCC 3.0V VDR > 2V tR tCDR CE 1049V33-5 Switching Waveforms Read Cycle No. 1[11, 12] tRC ADDRESS tAA tOHA DATA OUT PREVIOUS DATA VALID DATA VALID 1049V33–6 Read Cycle No. 2 (OE Controlled)[12, 13] ADDRESS tRC CE tACE OE tHZOE tDOE DATA OUT tLZOE HIGH IMPEDANCE tLZCE VCC SUPPLY CURRENT tHZCE HIGH IMPEDANCE DATA VALID tPD tPU 50% ICC 50% ISB 1049V33–7 Notes: 11. Device is continuously selected. OE, CE = VIL. 12. WE is HIGH for read cycle. 13. Address valid prior to or coincident with CE transition LOW. Document #: 38-05067 Rev. ** Page 6 of 9 CY7C1049V33 Switching Waveforms (continued) Write Cycle No. 1(WE Controlled, OE HIGH During Write)[14, 15] tWC ADDRESS tSCE CE tAW tHA tSA tPWE WE OE tSD DATA I/O tHD DATAIN VALID NOTE 16 tHZOE 1049V33–8 Write Cycle No. 2 (WE Controlled, OE LOW)[15] tWC ADDRESS tSCE CE tAW tSA tHA tPWE WE tSD NOTE 16 DATA I/O tHD DATA VALID tLZWE tHZWE 1049V33-9 Notes: 14. Data I/O is high impedance if OE = VIH. 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 16. During this period the I/Os are in the output state and input signals should not be applied. Truth Table CE OE WE I/O0 – I/O7 Mode Power H X X High Z Power-Down Standby (ISB) L L H Data Out Read Active (ICC) L X L Data In Write Active (ICC) L H H High Z Selected, Outputs Disabled Active (ICC) Document #: 38-05067 Rev. ** Page 7 of 9 CY7C1049V33 Ordering Information Speed (ns) 12 15 17 20 25 Ordering Code CY7C1049V33-12VC Package Name V36 Package Type 36-Lead (400-Mil) Molded SOJ Operating Range Commercial CY7C1049V33L-12VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33-15VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33L-15VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33-17VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33L-17VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33-20VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33L-20VC V36 36-Lead (400-Mil) Molded SOJ CY7C1049V33-20VI V36 36-Lead (400-Mil) Molded SOJ Industrial CY7C1049V33-25VC V36 36-Lead (400-Mil) Molded SOJ Commercial CY7C1049V33-25VI v36 36-Lead (400-Mil) Molded SOJ Industrial Package Diagram 36-Lead (400-Mil) Molded SOJ V36 51-85090 Document #: 38-05067 Rev. ** Page 8 of 9 © Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. CY7C1049V33 Document Title: 512K x 8 Static RAM Document Number: 38-05067 REV. ECN NO. Issue Date Orig. of Change Description of Change ** 107260 07/11/01 SZV Change from Spec number: 38-00643 to 38-05067 Document #: 38-05067 Rev. ** Page 9 of 9