Global Mixed-mode Technology Inc. G1420 2W Stereo Audio Amplifier Features General Description G1420 is a stereo audio power amplifier in 24pin TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1420 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. G1420 can mute the output when Mute-In is activated. For the low current consumption applications, the SHDN mode is supported to disable G1420 when it is idle. The current consumption can be further reduced to below 5µA. Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V --1.8W/CH (typical) into a 4Ω Load --1.2W/CH (typical) into a 8Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Stereo Input MUX Mute and Shutdown Control Available Surface-Mount Power Package 24-Pin TSSOP-P Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio Systems G1420 also supports two input paths, that means two different gain loops can be set in the same PCB and choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility. Ordering Information ORDER NUMBER ORDER NUMBER (Pb free) TEMP. RANGE PACKAGE G1420F31U G1420F31Uf -40°C to +85°C TSSOP-24 (FD) Note: F3: TSSOP-24 (FD) U: Tape & Reel Pin Configuration G1420 GND/HS GND/HS 1 24 TJ LOUT+ 2 3 23 NC 22 ROUT+ LLINEIN 4 21 RLINEIN LHPIN 5 20 RHPIN LBYPASS 6 19 RBYPASS LVDD 18 RVDD SHUTDOWN 7 8 17 NC MUTE OUT 9 16 HP/LINE LOUT- 10 MUTE IN 11 15 14 ROUTSE/BTL GND/HS 12 13 GND/HS Thermal Pad 14 Top View TSSOP-24 (FD) Bottom View Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 1 G1420 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Power Dissipation (1) TA ≤ 25°C…………………………………………..2.7W TA ≤ 70°C…………………………………………..1.7W TA ≤ 85°C………………….……………………….1.4W Electrostatic Discharge, VESD Human body mode..…………………….-3000 to 3000(2) Supply Voltage, VCC…………………..…..…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….40°C to +85°C Maximum Junction Temperature, TJ…….…….…150°C Storage Temperature Range, TSTG……-65°C to+150°C Reflow Temperature (soldering, 10sec)…………260°C Note: (1) : Recommended PCB Layout (2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, TA=+25°C PARAMETER SYMBOL CONDITIONS VDD =3.3V Supply Current IDD VDD = 5V DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown VO(DIFF) MIN TYP MAX Stereo BTL --- 7 13 Stereo SE Stereo BTL ----- 3.5 8 8 16 ----- 4 5 10 50 8 16 4 2 10 5 Stereo SE VDD = 5V,Gain = 2 IDD(MUTE) VDD = 5V ISD VDD = 5V Stereo BTL Stereo SE ----- UNIT mA mV mA µA (AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note SYMBOL P(OUT) Total harmonic distortion plus noise THD+N Maximum output power bandwidth BOM Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage PSRR MIN TYP MAX THD = 1%, BTL, RL = 4Ω CONDITIONS --- 1.8 --- THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω ----- 1.12 2 ----- THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω ----------- 1.4 500 320 650 400 ----------- THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 ----------- 90 500 150 20 10 ----------- G = 1, THD = 1% RL = 4Ω, Open Load ----- 20 60 ----- kHz ° f = 120Hz ----- 75 85 ----- dB dB f = 1kHz 82 80 85 2 90 ----------- dB dB dB MΩ PO = 500mW, BTL ----------- Output noise voltage --- 55 --- µV (rms) ZI Vn UNIT W mW m% dB Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 2 G1420 Global Mixed-mode Technology Inc. (AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage SYMBOL P(OUT) THD+N BOM PSRR CONDITIONS THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz ZI Vn PO = 500mW, BTL Output noise voltage MIN TYP MAX ----------------------------------------------- 0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 85 80 80 85 2 90 55 ----------------------------------------------- UNIT W mW m% kHz ° dB dB dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 3 G1420 Global Mixed-mode Technology Inc. Typical Characteristics Table of Graphs FIGURE THD +N Total Harmonic Distortion Plus Noise Output Noise Voltage vs Output Power vs Frequency vs Frequency 1,3,6,9,10,13,16,19,22,25,28,31 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 34,35 Supply Ripple Rejection Ratio Crosstalk vs Frequency vs Frequency 36,37 38,39,40,41 IDD Closed Loop Response Supply Current PO Output Power vs Frequency vs Supply Voltage vs Load Resistance 42,43,44,45 46 47,48 PD Power Dissipation vs Load Resistance vs Output Power 49,50 51,52,53,54 Vn Total Harmonic Distortion Plus Noise vs Output Power Total Harmonic Distortion Plus Noise vs Output Frequency 10 10 5 5 20kHz 2 2 1 Po=1.8W 1 1kHz 0.5 0.5 % % 0.2 0.1 0.2 0.1 20 Hz VDD=5V RL=3Ω BTL 0 .05 0 .02 0 .01 3m 5m 10m 20m 5 0m 1 00m 20 0m 500 m 1 VDD=5V RL=3Ω BTL Av=-2V/V Po=1.5W 0 .05 0 .02 2 0 .01 20 3 50 10 0 2 00 5 00 1k W Hz Figure 1 Figure 2 Total Harmonic Distortion Plus Noise vs Output Power 2k 5k 10 k 20k Total Harmonic Distortion Plus Noise vs Output Frequency 10 10 5 5 Av=-4V/V 20kHz 2 2 1 1 1kHz 0.5 Av=-2V/V 0.5 % % 0.2 0.2 0.1 0.1 VDD=5V RL=4Ω BTL 20 Hz 0 .05 0 .02 0 .01 3m 5m 10m 20m 5 0m 1 00m 20 0m 500 m 1 VDD=5V RL=4Ω BTL Po=1.5W Av=-1V/V 0 .05 0 .02 2 0 .01 20 3 50 10 0 2 00 5 00 1k W Hz Figure 3 Figure 4 2k 5k 10 k 20k TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 4 G1420 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Power 10 5 2 1 10 VDD=5V RL=4Ω BTL Av=-2V/V VDD=5V RL=8Ω BTL Av=-2V/V 5 Po=1.5W 20kHz 2 1 Po=0.25W 0.5 0.5 % % 0.2 0.2 Po=0.75W 0.1 0 .05 0 .05 0 .02 0 .02 0 .01 20 50 10 0 2 00 5 00 1k 2k 5k 10 k 1kHz 0.1 0 .01 3m 20k 20Hz 5m 10m 20m 5 0m 1 00m Hz Figure 5 1 1 2 3 Total Harmonic Distortion Plus Noise vs Output Frequency 10 2 500 m Figure 6 Total Harmonic Distortion Plus Noise vs Output Frequency 5 20 0m W 10 VDD=5V RL=8Ω BTL Av=-2V/V 5 2 Po=1W 1 Po=0.25W 0.5 VDD=5V RL=8Ω BTL Po=1W Av=-4V/V 0.5 % Av=-2V/V % 0.2 0.2 0.1 0.1 Po=0.5W 0 .05 0 .05 0 .02 Av=-1V/V 0 .02 0 .01 20 50 10 0 2 00 5 00 1k 2k 5k 10 k 0 .01 20 20k 50 10 0 2 00 5 00 1k Hz Hz Figure 7 Figure 8 Total Harmonic Distortion Plus Noise vs Output Power 2k 5k 10 k 20k Total Harmonic Distortion Plus Noise vs Output Power 10 10 5 5 20kHz 20kHz 2 2 1 1 1kHz 0.5 1kHz 0.5 % % 0.2 0.1 0 .05 0 .02 0 .01 1m 0.2 0.1 VDD=3.3V RL=3Ω BTL 2m 5m 20Hz 0 .05 0 .02 1 0m 20 m 50 m 10 0m 2 00 m 500 m 0 .01 1m 1 VDD=3.3V RL=4Ω BTL 2m 5m 20Hz 1 0m 20 m 50 m W W Figure 9 Figure 10 10 0m 2 00 m 500 m 1 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 5 G1420 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Frequency 10 10 5 2 1 VDD=3.3V RL=4Ω BTL Po=0.65W 5 Av=-4V/V 2 Av=-2V/V 1 VDD=3.3V RL=4Ω BTL Av=-2V/V Po=0.7W 0.5 0.5 % % Po=0.1W 0.2 0.2 0.1 0.1 Av=-1V/V 0 .05 0 .05 0 .02 0 .02 0 .01 20 50 10 0 2 00 5 00 1k 2k 5k 10k 0 .01 20 20k Po=0.35W 50 100 2 00 5 00 1k Total Harmonic Distortion Plus Noise vs Output Power Total Harmonic Distortion Plus Noise vs Output Frequency VDD=3.3V RL=8Ω BTL 20kHz 5 2 1 1 0.5 VDD=3.3V RL=8Ω BTL Po=0.4W Av=-4V/V Av=-2V/V 0.5 % % 1kHz 0.2 0.2 0.1 0.1 0 .05 0.05 Av=-1V/V 20Hz 0 .02 0.02 2m 5m 10m 20 m 50 m 10 0m 2 00m 500 m 0.01 20 1 50 10 0 200 500 W 2k 5k 10 k Figure 13 Figure 14 Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Power 20k 10 VDD=3.3V RL=8Ω BTL Av=-2V/V 5 2 VDD=5V RL=4Ω SE Po=0.4W 20kHz 1 0.5 0.5 % % Po=0.1W 0.2 0.2 0.1 1kHz 0.1 0 .05 0.05 Po=0.25W 100Hz 0 .02 0 .01 20 1k Hz 10 1 20k 10 2 2 10k Figure 12 5 5 5k Figure 11 10 0 .01 1m 2k Hz Hz 0.02 50 10 0 2 00 5 00 1k 2k 5k 10k 0.01 1m 20k Hz 2m 5m 1 0m 20m 50 m 10 0m 2 00 m 500 m 1 W Figure 15 Figure 16 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 6 G1420 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 2 1 10 VDD=5V RL=4Ω SE Po=0.5W 5 Av=-4V/V 2 1 0.5 VDD=5V RL=4Ω SE Av=-2V/V Po=0.4W 0.5 Av=-2V/V % % 0.2 0.2 0.1 0.1 0 .05 Po=0.1W 0 .05 Av=-1V/V Po=0.25W 0 .02 0 .02 0 .01 20 50 10 0 2 00 5 00 1k 2k 5k 10 k 0 .01 20 20k 50 10 0 2 00 5 00 Hz 2 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 1 20kHz VDD=5V RL=8Ω SE Po=0.25W 0.5 Av=-2V/V % 0.2 0.2 0.1 0.1 1kHz 0 .05 100Hz 2m Av=-4V/V 0 .05 Av=-1V/V 0 .02 5m 1 0m 20 m 50 m 10 0m 2 00 m 500 m 0 .01 20 1 50 10 0 2 00 5 00 5k 10 k Figure 20 Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Power 20k 10 5 VDD=5V RL=8Ω SE Av=-2 2 1 20kHz 0.2 Po=0.05W % % 0.1 0.2 0 .05 0.1 0 .02 Po=0.1W 0 .05 VDD=5V RL=32Ω SE 0.5 0.5 20Hz 0 .01 0.0 05 Po=0.25W 0 .02 0 .01 20 2k Figure 19 10 1 1k Hz W 2 20k 10 VDD=5V RL=8Ω SE % 5 10 k Total Harmonic Distortion Plus Noise vs Output Power 1 0 .01 1m 5k Figure 18 0.5 0 .02 2k Figure 17 10 5 1k Hz 1kHz 0.0 02 50 10 0 2 00 5 00 1k 2k 5k 10 k 0.0 01 1m 20k 2m 5m 10 m 20 m 50m 10 0m 2 00m W Hz Figure 21 Figure 22 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 7 G1420 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Frequency 10 10 5 2 1 0.5 5 VDD=5V RL=32Ω SE Po=75mW 2 1 Av=-4V/V 0.5 Po=25mW 0.2 0.2 % VDD=5V RL=32Ω SE % 0.1 Av=-2V/V 0 .05 0.1 0 .05 0 .02 0 .02 0 .01 0 .01 Po=50mW 0.0 05 0.0 05 Av=-1V/V 0.0 02 0.0 02 0.0 01 20 0.0 01 20 50 10 0 2 00 5 00 1k 2k 5k 10 k 20k Po=75mW 50 10 0 2 00 5 00 2 Total Harmonic Distortion Plus Noise vs Output Frequency 5 2 20kHz 1 VDD=3.3V RL=4Ω SE Po=0.2W Av=-4V/V 0.5 % 1kHz 0.2 0.2 0.1 0.1 0 .05 0 .05 100Hz 0 .02 2m 5m 1 0m Av=-2V/V Av=-1V/V 0 .02 20 m 50 m 10 0m 2 00 m 500 m 0 .01 20 1 50 10 0 2 00 5 00 1k 2k 5k 10 k 20k Hz W Figure 25 Figure 26 Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Power 10 10 R R 1 20k 10 VDD=3.3V RL=4Ω ,SE Av=-2 0.5 2 10 k Total Harmonic Distortion Plus Noise vs Output Power % 5 5k Figure 24 1 0 .01 1m 2k Figure 23 10 5 1k Hz Hz VDD=3.3V RL=4Ω SE Av=-2 5 Po=50mW 2 VDD=3.3V RL=8Ω ,SE Av=-2 20kHz 1 0.5 0.5 % % 0.2 0.2 Po=100mW 0.1 0.1 0 .05 0 .05 0 .02 0 .01 20 50 10 0 2 00 5 00 Po=150mW 0 .02 1k 0 .01 1m 2k 5k 10 k 20k Hz 1kHz 100Hz 2m 5m 10 m 20 m 50m 10 0m 2 00m W Figure 27 Figure 28 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 8 G1420 Global Mixed-mode Technology Inc. Total Harmonic Distortion Plus Noise vs Output Frequency Total Harmonic Distortion Plus Noise vs Output Frequency 10 10 5 2 1 5 VDD=3.3V RL=8Ω SE Po=100mW 2 VDD=3.3V RL=8Ω SE 1 Av=-4V/V Po=25mW 0.5 0.5 % % 0.2 0.2 Av=-2V/V 0.1 Po=50mW 0.1 0 .05 0 .05 Av=-1V/V 0 .02 0 .01 20 50 10 0 2 00 5 00 1k 2k 5k 0 .02 10 k 0 .01 20 20k Po=100mW 50 10 0 2 00 5 00 Figure 29 5 VDD=3.3V RL=32Ω SE 2 1kHz 1 0.5 20kHz 0.5 VDD=3.3V RL=32Ω SE Po=30mW 0.2 % % 0.2 Av=-4V/V Av=-2V/V 0.1 0 .05 0.1 0 .02 20Hz 0 .05 0 .01 Av=-1V/V 0.0 05 0 .02 0.0 02 0 .01 1m 2m 5m 1 0m 2 0m 50 m 0.0 01 20 1 00m 50 10 0 2 00 5 00 Figure 31 5k 10 k 20k Output Noise Voltage vs Frequency 10 10 0u 9 0u VDD=3.3V RL=32Ω SE 8 0u 7 0u 6 0u VDD=5V BW=22Hz to 20kHz RL=4Ω 5 0u Po=10mW 4 0u 0.2 % 2k Figure 32 Total Harmonic Distortion Plus Noise vs Output Frequency 0.5 1k Hz W 1 20k 10 1 2 10 k Total Harmonic Distortion Plus Noise vs Output Frequency 10 5 5k Figure 30 Total Harmonic Distortion Plus Noise vs Output Power 2 2k Hz Hz 5 1k 0.1 V Vo BTL 3 0u Po=20mW 0 .05 0 .02 Vo SE 2 0u 0 .01 0.0 05 Po=30mW 0.0 02 0.0 01 20 50 10 0 2 00 5 00 1k 2k 5k 10 k 1 0u 20 20k Hz 50 10 0 2 00 5 00 1k 2k 5k 10 k 20k Hz Figure 33 Figure 34 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 9 G1420 Global Mixed-mode Technology Inc. Supply Ripple Rejection Ratio vs Frequency Output Noise Voltage vs Frequency 10 0u 9 0u 8 0u 7 0u +0 T VDD=3.3V BW=22Hz to 20kHz RL=4Ω -10 -20 6 0u 5 0u -30 Vo BTL 4 0u V VDD=5V RL=4Ω CB=4.7uF -40 d B 3 0u -50 BTL -60 2 0u -70 Vo SE -80 SE -90 1 0u 20 50 1 00 2 00 5 00 1k 2k 5k 10k -1 00 20 20k 50 1 00 2 00 Hz 10k 20k 5k 10k 20k 10 k 20k -20 T -25 VDD=3.3V RL=4Ω CB=4.7uF -30 -35 -40 -45 -50 -40 d B 5k Crosstale vs Frequency +0 -30 2k Figure 36 Supply Ripple Rejection Ratio vs Frequency -20 1k Hz Figure 35 -10 5 00 VDD=5V Po=1.5W RL=4Ω BTL -55 -50 d B BTL -60 -60 -65 L to R -70 -75 -70 -80 -80 -85 SE -90 -90 R to L -95 -1 00 20 50 1 00 2 00 5 00 1k 2k 5k 10k -100 20 20k 50 100 200 Hz Crosstale vs Frequency -35 -40 -45 Crosstale vs Frequency -30 -35 VDD=3.3V Po=0.75W RL=4Ω BTL -40 -45 -50 -55 -50 d B -60 -65 -70 L to R R to L -75 -80 -80 -85 -85 -90 R to L -95 -100 20 -65 -70 -75 -90 VDD=5V Po=75mW RL=32Ω SE -60 -55 d B 2k Figure 38 -20 -30 1k Hz Figure 37 -25 500 L to R -95 50 100 200 500 1k 2k 5k 10k -1 00 20 20k Hz 50 10 0 20 0 50 0 1k 2k 5k Hz Figure 39 Figure 40 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 10 G1420 Global Mixed-mode Technology Inc. Closed Loop Response Crosstale vs Frequency -30 -35 -40 -45 -50 -55 VDD=3.3V Po=35mW RL=32Ω SE -60 d B -65 R to L -70 -75 -80 -85 -90 L to R -95 -1 00 20 50 10 0 20 0 50 0 1k 2k 5k 10 k 20k Hz Figure 41 Figure 42 Closed Loop Response Closed Loop Response Figure 44 Figure 43 Closed Loop Response Supply Current vs Supply Voltage 10 9 Supply Current(mA) 8 Stereo BTL 7 6 5 Stereo SE 4 3 2 1 0 3 Figure 45 4 5 Supply Voltage (V) 6 Figure 46 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 11 G1420 Global Mixed-mode Technology Inc. Output Power vs Supply Voltage Output Power vs Supply Voltage 2.5 0.7 THD+N=1% BTL Each Channel 1.5 RL=3Ω 1 THD+N=1% SE Each Channel 0.6 RL=4Ω Po-Output Power(W) Po-Output Power (W) 2 RL=8Ω 0.5 0.5 RL=8Ω 0.4 RL=4Ω 0.3 0.2 RL=32Ω 0.1 0 0 2.5 3.5 4.5 5.5 6.5 2.5 3.5 4.5 Supply Voltage(V) Supply Voltage (V) Output Power vs Load Resistance Output Power vs Load Resistance 2 0.7 THD+N=1% BTL Each Channel VDD=5V 1.6 1.4 1.2 VDD=3.3V 1 VDD=5V 0.6 Po-Output Power(W) 1.8 Po-Output Power(W) 6.5 Figure 48 Figure 47 0.8 0.6 0.4 THD+N=1% SE Each Channel 0.5 0.4 0.3 0.2 0.1 0.2 0 VDD=3.3V 0 0 4 8 12 16 20 24 28 32 0 4 8 Load Resistance(Ω) 12 16 20 24 Load Resistance(Ω) 28 32 Figure 50 Figure 49 Power Dissipation vs Output Power Power Dissipation vs Output Power 0.8 1.8 1.6 0.7 RL=3Ω 1.4 RL=3Ω 0.6 Power Dissipation(W) Power Dissipation(W) 5.5 1.2 0.5 RL=4Ω 1 RL=4Ω 0.4 0.8 0.6 0.4 RL=8Ω VDD=5V BTL Each Channel 0.3 RL=8Ω 0.2 VDD=3.3V BTL Each Channel 0.1 0.2 0 0 0 0.5 1 1.5 Po-Output Pow er(W) 2 0 2.5 0.25 0.5 Output Pow er(W) 0.75 1 Figure 52 Figure 51 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 12 G1420 Global Mixed-mode Technology Inc. Power Dissipation vs Output Power Power Dissipation vs Output Power 0.16 0.35 0.14 RL=4Ω Power Dissipation(W) Power Dissipation(W) 0.3 0.25 0.2 0.15 RL=8Ω 0.1 0.05 RL=32Ω VDD=5V SE Each Channel 0.2 0.6 0.12 RL=4Ω 0.1 RL=8Ω 0.08 0.06 VDD=3.3V SE Each Channel 0.04 0.02 0 RL=32Ω 0 0 0.4 Output Pow er(W) 0 0.8 Figure 53 0.05 0.1 0.15 0.2 Output Pow er (W) 0.25 0.3 Figure 54 Recommended Minimum Footprint TSSOP-24 (FD) TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 13 G1420 Global Mixed-mode Technology Inc. Pin Description PIN NAME 1,12,13,24 2 GND/HS TJ O 3 4 LOUT+ LLINE IN O I Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. 5 LHP IN I Left channel headphone input, selected when HP/pin is held high. 6 7 8 LBYPASS LVDD SHUTDOWN I I 9 10 MUTE OUT LOUT- O O Connect to voltage divider for left channel internal mid-supply bias. Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Follows MUTE IN pin, provides buffered output. Left channel - output in BTL mode, high impedance state in SE mode. 11 14 MUTE IN I Mute control signal input, hold low for normal operation, hold high to mute. SE/ BTL I Mode control signal input, hold low for BTL mode, hold high for SE mode. 15 16 ROUT- O I Right channel - output in BTL mode, high impedance state in SE mode. MUX control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). I Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel headphone input, selected when HP/pin is held high. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. Recommend connecting the Thermal Pad to the GND for excellent power dissipation. 17,23 18 19 20 21 22 Thermal Pad HP/ LINE NC RVDD RBYPASS RHP IN RLINE IN ROUT+ I/O I I O FUNCTION Ground connection for circuitry, directly connected to thermal pad. Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature measurement section of this document. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 14 G1420 Global Mixed-mode Technology Inc. Block Diagram 20k 21 RLINEIN 20 RHPIN 19 RBYPASS 11 _ RIGHT MUX MUTEIN 9 MUTEOUT 8 SHUTDOWN 6 LBYPASS 5 LHPIN 4 LLINEIN ROUT+ 22 ROUT- 15 RVDD 18 + HP/LINE 16 SE/BTL 14 TJ 2 LVDD 7 + LOUT- 10 _ LOUT+ 3 BIAS CIRCUITS MODES CONTROL CIRCUITS LEFT MUX 20k Parameter Measurement Information 11 8 MUTEIN SHUTDOWN HP/LINE 16 SE/BTL 14 LVDD 7 RL 4/8/32ohm 6 LBYPASS CB 4.7µF CI AC source 5 LHPIN 4 LLINEIN LEFT MUX + LOUT- 10 _ LOUT+ 3 RI RF BTL Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 15 G1420 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) 11 8 6 MUTEIN AC source 16 SE/BTL 14 LVDD 7 + LOUT- 10 _ LOUT+ 3 VDD LBYPASS CB 4.7µF CI HP/LINE SHUTDOWN 5 LHPIN 4 LLINEIN LEFT MUX RI RL 32ohm RF SE Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 16 G1420 Global Mixed-mode Technology Inc. Application Circuits GND/HS TJ LOUT+ RFL 20KΩ CIR CFR AUDIO SOURCE 1µF LLINEIN RIR 10KΩ LHPIN LBYPASS RBYPASS 4.7µF SHUTDWON MUTE OUT LOUTMUTE IN GND/HS 1 24 2 23 3 22 4 21 5 20 6 7 19 G1420 18 8 17 9 16 10 15 11 14 12 13 GND/HS NC ROUT+ RIL CIL 10KΩ 1µF RLINEIN RFL RHPIN 20KΩ CFL AUDIO SOURCE LVDD RVDD 4.7µF R NC CSR 4.7µF 100KΩ COUTR HP/LINE 220µF ROUTR SE/BTL 100KΩ 1KΩ 1 3 4 2 GND/HS PHONOJACK 0.1µF COUTR 220µF 1KΩ Logical Truth Table SE/ BTL INPUTS Mute In HP/ LINE Shutdown OUTPUT Mute Out Input X Low High X X X ---High High High ------- ---High High X X X Low Low Low Low Low L/R Line Low High Low Low Low L/R HP High Low Low Low Low L/R Line High High Low Low Low L/R HP AMPLIFIER STATES L/R Out+ L/R Out---VDD/2 VDD/2 BTL Output BTL Output SE Output SE Output Mode ---VDD/2 ---BTL Output BTL Output Mute Mute Mute ---- SE ---- SE BTL BTL TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 17 G1420 Global Mixed-mode Technology Inc. Application Information Input MUX Operation There are two input signal paths – HP & Line. With the prompt setting, G1420 allows the setting of different gains for BTL and SE modes. Generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. SE Gain(HP) = -3 dB -(RF(HP)/RI(HP)) BTL Gain(LINE) = fc -2(RF(LINE)/RI(LINE)) To achieve headphones and speakers listening parity, (RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/ RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested. Figure B Bridged-Tied Load Mode Operation G1420 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure C shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. Single Ended Mode Operation G1420 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure A. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure B. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. VDD VDD Vo(PP) Vo(PP) CC VDD RL RL 2xVo(PP) Vo(PP) -Vo(PP) Figure A Figure C TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 18 G1420 Global Mixed-mode Technology Inc. MUTE and SHUTDOWN Mode Operations G1420 implements the mute and shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 8) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1420 enters an extra low current consumption state, IDD is smaller than 5µA. If pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the VDD/2 dc voltage on the output to mute the AC performance. In mute mode operation, the current consumption will be a little different between BTL, SE. (SE < BTL) Typically, the supply current is about 2.5mA in BTL mute operation. Shutdown and Mute-In pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. VDD 100 kΩ 50 kΩ Bypass 100 kΩ Figure D Junction Temperature Measurement Characterizing a PCB layout with respect to thermal impedance is very difficult, as it is usually impossible to know the junction temperature of the IC. G1420 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ sources–120µA for a 5V supply at 25°C. And the slope is approximately 0.22µA/°C. As the resistors have a tolerance of ±20%, these values should be calibrated on each device. When the temperature sensing function is not used, TJ pin can be left floating or tied to VDD to reduce the current consumption. Temperature sensing circuit is shown on Figure E. Optimizing DEPOP Operation Circuitry has been implemented in G1420 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. VDD R De-popping circuitry of G1420 is shown on Figure D. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. R 5R TJ Figure E TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 19 G1420 Global Mixed-mode Technology Inc. Package Information C D 24 L D1 E1 E E2 1 Note 5 θ A2 A A1 e b TSSOP-24 (FD) Package NOTE: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance ±0.1mm unless otherwise specified 3. Coplanarity : 0.1mm 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. 5. Die pad exposure size is according to lead frame design. 6. Follow JEDEC MO-153 SYMBOLS A A1 A2 b C D D1 E E1 E2 e L θ MIN DIMENSION IN MM NOM ----0.00 0.80 0.19 0.20 7.7 4.4 4.30 2.7 0.45 0º --------1.00 --------7.8 ----6.40 BSC 4.40 ----0.65 BSC 0.60 ----- MAX MIN 1.20 0.15 1.05 0.30 ----7.9 4.9 ----0.000 0.031 0.007 0.008 0.303 0.173 4.50 3.2 0.169 0.106 0.75 8º 0.018 0º DIMENSION IN INCH NOM --------0.039 --------0.307 ----0.252 BSC 0.173 ----0.026 BSC 0.024 ----- MAX 0.047 0.006 0.041 0.012 ----0.311 0.193 0.177 0.126 0.030 8º Taping Specification PACKAGE Q’TY/REEL TSSOP-24 (FD) 2,500 ea Feed Direction T ypical T S SO P Package O rientation GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.5 Aug 04, 2005 20