MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE GCU15CA-130 ● Symmetrical GCT unit ● GCT and gate driver are connected ● ITQRM Repetitive controllable on-state current ...... 1500A ● IT(AV): Average on-state current ..................... 500A ● VDRM: Repetitive peak off-state voltage ....... 6500V ● VRRM: Repetitive peak reverse voltage ........ 6500V ● Tj: Operation junction temperature ......... 125°C APPLICATION Current source inverters, DC choppers, Induction heaters, DC to DC converter OUTLINE DRAWING Dimensions in mm 208 20 104 160 54.5 K G K G 80 2.2±0.2 DEPTH K G 0.2 140 3± φ6 G K 85 G K 80±0.5 165 9 φ3.5±0.2 54.5 G 32.5 32.5 OE2 TPG TPK LED4 LED3 LED2 LED1 5 20V POWER SUPPLY INPUT (MSTB2.5/2-G-5.08AU) CAPTIV SCREW (DEPTH OF THE SCREW INTO THE HEATSINK : 6 ~ 8mm) 6±0.5 160 20 80 120 6±0.5 6±0.5 6±0.5 φ63±0.2 1.6 10MIN A 13.7 6±0.5 14.5±1.3 20MAX 37 37 FAULT SIGNAL OUTPUT (HFBR-1521) 170 ADDITIONAL SUPPORT SHOULD BE ATTACHED 10.1±0.9 FIBER OPTIC INPUT (HFBR-2521) 26.2±0.3 GATE TEST POINT CATHODE TEST POINT LED4 : POWER SUPPLY OK (GREEN) LED3 : G-K OK (GREEN) LED2 : GATE ON (YELLOW) LED1 : GATE OFF (RED) OE1 166.5 290 K 2-3×M3 6±0.5 A PART MAGNIFICATION φ3.5±0.2 2.2±0.2 DEPTH Mar. 2009 MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE GCT PART MAXIMUM RATINGS Symbol VRRM VRSM VDRM VDSM V(LTDS) Conditions Parameter — Repetitive peak reverse voltage — Non-repetitive peak reverse voltage Repetitive peak off-state voltage Gate driver energized Gate driver energized Non-repetitive peak off-state voltage Long term DC stability voltage Gate driver energized, λ = 100 Fit Symbol IT(RMS) IT(AV) Parameter RMS on-state current Average on-state current Repetitive controllable on-state current Surge on-state current Current-squared, time integration Critical rate of rise of on-state current Critical rate of rise of reverse recovery current Peak forward gate power dissipation Peak reverse gate power dissipation Average forward gate power dissipation Average reverse gate power dissipation Peak forward gate voltage Peak reverse gate voltage Peak forward gate current Peak reverse gate current ITQRM ITSM I2t diT/dt diR/dt PFGM PRGM PFG(AV) PRG(AV) VFGM VRGM IFGM IRGM Conditions Applied for all condition angles f = 60Hz, sinewave θ = 180°, Tf = 66°C VDM = 3/4 VDRM, VD = 3000V, LC = 0.3µH Tj = 25/125°C (See Fig. 1, 3) One half cycle at 60Hz, Tj = 125°C start VD = 3000V, IT = 1500A, CS = 0.2µF, RS = 5Ω Tj = 25/125°C, f = 60Hz (See Fig. 1, 2) IT = 1500A, VR = 3000V, Tj = 25/125°C (See Fig. 4, 5) CS = 0.2µF, RS = 5Ω Voltage class 6500 6500 6500 6500 3600 Unit V V V V V Ratings 780 500 Unit A A 1500 A 8 2.7 × 105 kA A 2s 1000 A/µs 1000 A/µs 9 32 kW kW 180 230 10 21 900 1500 W W V V A A ELECTRICAL CHARACTERISTICS Parameter Conditions IT = 800A, Tj = 125°C VRM = 6500V, Tj = 125°C VDM = 6500V, Tj = 125°C, Gata driver energized VRG = 21V, Tj = 125°C VD = 3000V, Tj = 125°C Gate driver energized (Expo. wave) tgt td On-state voltage Repetitive peak reverse current Repetitive peak off-state current Reverse gate current Critical rate of rise of off-state voltage Turn-on time Turn-on delay time Eon Turn-on switching energy ts Storage time Eoff Turn-off switching energy Symbol VTM IRRM IDRM IGRM dv/dt QRR Erec IGT VGT Reverse recovery charge Reverse recovery energy Gate trigger current Gate trigger voltage IT = 1500A, VD = 3000V, di/dt = 1000A/µs, Tj = 125°C (See Fig. 1, 2) CS = 0.2µF, RS = 5Ω IT = 800A, VD = 3000V, di/dt = 1000A/µs (See Fig. 1, 2) CS = 0.2µF, RS = 5Ω, Tj = 125°C IT = 1500A, VDM = 3/4 VDRM, VD = 3000V CS = 0.2µF, RS = 5Ω, Tj = 125°C (See Fig. 1, 5) IT = 800A, VDM = 4000V, VD = 3000V CS = 0.2µF, RS = 5Ω, Tj = 125°C (See Fig. 1, 5) VR = 3000V, IT = 800A, di/dt = 1000A/µs CS = 0.2µF, RS = 5Ω, Tj = 125°C (See Fig. 4, 5) VD = 24V, RL = 0.1Ω, Tj = 25°C DC method Min — — — — Limits Typ — — — — Max 6 300 150 100 3000 — — V/µs — — — — 5 1 µs µs — — 1.3 J/P — — 3 µs — — 5.2 J/P — — — — 2000 7.4 µC J/P — — — — 0.75 1.5 A V Unit V mA mA mA Mar. 2009 2 MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE GATE DRIVER PART Parameter Symbol VGIN PGIN tfd trd Power supply voltage Gate power consumption Delay time of on gate current Delay time of off gate current — Control signal — Power supply connector — Status signal Conditions DC power supply IT = 830Arms, f = 780Hz, duty = 0.33 Ta = 25°C Ta = 25°C Optical fiber data link Transmitter : HFBR-1521 : Agilent Receiver : HFBR-2521 : Agilent Phoenix contact Type name : MSTB2.5/2-G-5.08AU — (Note 1) Min 19 — — Limits Typ 20 — — — Max 21 50 3.0 3.0 — — — — — — — — — — — — Min 18 — — — Limits Typ 20 1560 63 26 Max 24 — — — Min –10 –10 –10 — Limits Typ — — — — Max 125 60 60 0.014 Unit V W µs µs MECHANICAL DATA Symbol FM — — — Parameter Conditions — — Mounting force Weight Pole piece diameter (GTC device) ±0.2mm Housing thickness (GTC device) ±0.5mm Unit kN g mm mm THERMAL DATA Symbol Tj Tstg Ta Rt(j-f) Parameter Junction operating temperature Storage temperature Ambient operation temperature Thermal resistance Conditions — — Recommend : ≤ 40°C Junction to Fin Unit °C °C °C K/W Mar. 2009 3 MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE IT VD VD td tgt t(Eoff) = 100µs ts trd tfd IGM diG/dt td ; 0VRG ~ 0.9VD tgt ; 0VRG ~ 0.1VD ts ; 0VRG ~ 0.9IT diG/dt ; 0.1IGM ~ 0.9IGM tw ; 0VRG ~ 0.9IGM diGQ/dt ; 0.1IRG ~ 0.9IRG tfd ; 50% on signal ~ 0VRG trd ; 50% off signal ~ 0VRG Integration area for Eoff ; 5%VD ~ until 100µs IG tw VRG diGQ/dt VRG IGQ Control signal Fig. 1 Turn-on and Turn-off waveform L ANL L (load) Rs FWDi Rc VD VD DUT Cs DUT CDi Lc Cc Fig. 3 Turn-off test circuit Fig. 2 Turn-on test circuit (With clamp circuit) QRR = (trr×IRM)/2 [ Integration area for Erec ; 0IT ~ until 100µs ] ANL Rs t(Erec) = 100µs IT L (Ioad) trr DUT Cs 0 VD DUT di/dt (0 ~ 50%IRM) 50%IRM 50%IT 90%IRM Rs Cs VR VRM Fig. 5 Turn-off and Reverse recovery test circuit Fig. 4 Reverse recovery waveform Mar. 2009 4 MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE Note 1. Status signal 1. Status signal from LED (1) Status signal LED 1 (Red) OFF ON LED 2 (Yellow) ON OFF Status G-K Power Supply Normal Fault Fault Fault Normal Normal G-K short G-K short 20±1V Voltage down 20±1V Voltage down Status of GCT On state Off state (2) Fault signal G-K LED (LED 3) (Green) On Off Off Off PS LED (LED 4) (Green) On Off On Off 2. Status signal from Transmitter (L : Light NL : No light) (1) Normal operation (2) Fault signal (O/V or U/V) L L Control signal (Control board) Control signal (Control board) NL NL L L Control signal (GDU input) Control signal (GDU input) NL NL L L L Status signal (GDU output) NL NL Status signal (GDU output) (3) Fault signal (G-K short) Normal Fault (4) Fault signal (fiber optic) L Control signal (Control board) NL Control signal (GDU input) NL L Control signal (Control board) NL L Control signal (GDU input) NL (Always No light) L NL Status signal (GDU output) Normal Status signal (GDU output) L (Always light) Fault Mar. 2009 5 MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE Note 2. Additional support for vibration test Additional support is necessary for vibration test of GCU15CA-130. Fig. 6 shows detailed figure about connection method between gate driver and heat sink by additional support. 12 0 60 M4×0.7 SCREW 8 DEPTH 71.5 75 H INK T SHeat sink A E 15 3.5 1.5 Additional support G TPTPK D4 3 LELED D2 1 LELED 2 DE E1 D Gate driver Fig. 6 Connection method between gate driver and heat sink by additional support Mar. 2009 6 MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT GCU15CA-130 HIGH POWER INVERTER USE PRESS PACK TYPE PERFORMANCE CURVES MAXIMUM ON-STATE CHARACTERISTIC TURN ON SWITCHING ENERGY Eon (J/P) Eon VS IT (Max) 7 5 3 2 Tj=25°C 103 7 5 3 2 102 7 5 3 2 10 TURN OFF SWITCHING ENERGY Eoff (J/P) Tj=125°C 0 1 2 3 4 5 6 7 8 9 10 VD=3000V, VDM=VD+1.25× IT Tj=125°C, Cs=0.2µF Rs=5Ω 6 4 2 0 Cs=0.2µF, Rs=5Ω 1.5 1.0 0.5 0.0 0 200 400 600 800 1000 1200 1400 1600 1800 Erec VS IT (Max) 8 0 VD=3000V, Tj=125°C 2.0 di/dt=1000A/µs Eoff VS IT (Max) CONDITION 10 CONDITION TURN ON CURRENT IT (A) 14 12 2.5 ON-STATE VOLTAGE VTM (V) REVERSE RECOVERY ENERGY Erec (J/P) ON-STATE CURRENT IT (A) 104 200 400 600 800 1000 1200 1400 1600 1800 TURN OFF CURRENT IT (A) 16 CONDITION 14 VR=3000V, Tj=125°C di/dt=1000A/µs 12 Cs=0.2µF, Rs=5Ω 10 8 6 4 2 0 0 200 400 600 800 1000 1200 1400 1600 1800 ON-STATE CURRENT IT (A) MAXIMUM THERMAL IMPEDANCE CHARACTERISTIC (JUNCTION TO FIN) 0.020 0.018 0.016 Zth (K/W) 0.014 0.012 0.010 0.008 0.006 0.004 0.002 0.000 0 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 TIME (S) Mar. 2009 7