MITSUBISHI GCU15CA-130

MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
GCU15CA-130
● Symmetrical GCT unit
● GCT and gate driver are connected
● ITQRM Repetitive controllable on-state current ...... 1500A
● IT(AV): Average on-state current ..................... 500A
● VDRM: Repetitive peak off-state voltage ....... 6500V
● VRRM: Repetitive peak reverse voltage ........ 6500V
● Tj:
Operation junction temperature ......... 125°C
APPLICATION
Current source inverters, DC choppers, Induction heaters, DC to DC converter
OUTLINE DRAWING
Dimensions in mm
208
20
104
160
54.5
K
G
K
G
80
2.2±0.2 DEPTH
K
G
0.2
140
3±
φ6
G
K
85
G
K
80±0.5
165
9
φ3.5±0.2
54.5
G
32.5 32.5
OE2
TPG
TPK
LED4
LED3
LED2
LED1
5
20V POWER SUPPLY INPUT
(MSTB2.5/2-G-5.08AU)
CAPTIV SCREW
(DEPTH OF THE SCREW INTO
THE HEATSINK : 6 ~ 8mm)
6±0.5
160
20
80
120
6±0.5
6±0.5
6±0.5
φ63±0.2
1.6
10MIN
A
13.7
6±0.5
14.5±1.3
20MAX
37
37
FAULT SIGNAL OUTPUT
(HFBR-1521)
170
ADDITIONAL SUPPORT
SHOULD BE ATTACHED
10.1±0.9
FIBER OPTIC
INPUT (HFBR-2521)
26.2±0.3
GATE TEST POINT
CATHODE TEST POINT
LED4 : POWER SUPPLY OK (GREEN)
LED3 : G-K OK (GREEN)
LED2 : GATE ON (YELLOW)
LED1 : GATE OFF (RED)
OE1
166.5
290
K
2-3×M3
6±0.5
A PART MAGNIFICATION
φ3.5±0.2
2.2±0.2 DEPTH
Mar. 2009
MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
GCT PART
MAXIMUM RATINGS
Symbol
VRRM
VRSM
VDRM
VDSM
V(LTDS)
Conditions
Parameter
—
Repetitive peak reverse voltage
—
Non-repetitive peak reverse voltage
Repetitive peak off-state voltage Gate driver energized
Gate driver energized
Non-repetitive peak off-state voltage
Long term DC stability voltage Gate driver energized, λ = 100 Fit
Symbol
IT(RMS)
IT(AV)
Parameter
RMS on-state current
Average on-state current
Repetitive controllable
on-state current
Surge on-state current
Current-squared, time integration
Critical rate of rise of on-state
current
Critical rate of rise of reverse
recovery current
Peak forward gate power dissipation
Peak reverse gate power dissipation
Average forward gate power dissipation
Average reverse gate power dissipation
Peak forward gate voltage
Peak reverse gate voltage
Peak forward gate current
Peak reverse gate current
ITQRM
ITSM
I2t
diT/dt
diR/dt
PFGM
PRGM
PFG(AV)
PRG(AV)
VFGM
VRGM
IFGM
IRGM
Conditions
Applied for all condition angles
f = 60Hz, sinewave θ = 180°, Tf = 66°C
VDM = 3/4 VDRM, VD = 3000V, LC = 0.3µH
Tj = 25/125°C
(See Fig. 1, 3)
One half cycle at 60Hz, Tj = 125°C start
VD = 3000V, IT = 1500A, CS = 0.2µF, RS = 5Ω
Tj = 25/125°C, f = 60Hz
(See Fig. 1, 2)
IT = 1500A, VR = 3000V, Tj = 25/125°C
(See Fig. 4, 5)
CS = 0.2µF, RS = 5Ω
Voltage class
6500
6500
6500
6500
3600
Unit
V
V
V
V
V
Ratings
780
500
Unit
A
A
1500
A
8
2.7 × 105
kA
A 2s
1000
A/µs
1000
A/µs
9
32
kW
kW
180
230
10
21
900
1500
W
W
V
V
A
A
ELECTRICAL CHARACTERISTICS
Parameter
Conditions
IT = 800A, Tj = 125°C
VRM = 6500V, Tj = 125°C
VDM = 6500V, Tj = 125°C, Gata driver energized
VRG = 21V, Tj = 125°C
VD = 3000V, Tj = 125°C
Gate driver energized
(Expo. wave)
tgt
td
On-state voltage
Repetitive peak reverse current
Repetitive peak off-state current
Reverse gate current
Critical rate of rise of off-state
voltage
Turn-on time
Turn-on delay time
Eon
Turn-on switching energy
ts
Storage time
Eoff
Turn-off switching energy
Symbol
VTM
IRRM
IDRM
IGRM
dv/dt
QRR
Erec
IGT
VGT
Reverse recovery charge
Reverse recovery energy
Gate trigger current
Gate trigger voltage
IT = 1500A, VD = 3000V, di/dt = 1000A/µs, Tj = 125°C
(See Fig. 1, 2)
CS = 0.2µF, RS = 5Ω
IT = 800A, VD = 3000V, di/dt = 1000A/µs
(See Fig. 1, 2)
CS = 0.2µF, RS = 5Ω, Tj = 125°C
IT = 1500A, VDM = 3/4 VDRM, VD = 3000V
CS = 0.2µF, RS = 5Ω, Tj = 125°C
(See Fig. 1, 5)
IT = 800A, VDM = 4000V, VD = 3000V
CS = 0.2µF, RS = 5Ω, Tj = 125°C
(See Fig. 1, 5)
VR = 3000V, IT = 800A, di/dt = 1000A/µs
CS = 0.2µF, RS = 5Ω, Tj = 125°C
(See Fig. 4, 5)
VD = 24V, RL = 0.1Ω, Tj = 25°C
DC method
Min
—
—
—
—
Limits
Typ
—
—
—
—
Max
6
300
150
100
3000
—
—
V/µs
—
—
—
—
5
1
µs
µs
—
—
1.3
J/P
—
—
3
µs
—
—
5.2
J/P
—
—
—
—
2000
7.4
µC
J/P
—
—
—
—
0.75
1.5
A
V
Unit
V
mA
mA
mA
Mar. 2009
2
MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
GATE DRIVER PART
Parameter
Symbol
VGIN
PGIN
tfd
trd
Power supply voltage
Gate power consumption
Delay time of on gate current
Delay time of off gate current
—
Control signal
—
Power supply connector
—
Status signal
Conditions
DC power supply
IT = 830Arms, f = 780Hz, duty = 0.33
Ta = 25°C
Ta = 25°C
Optical fiber data link
Transmitter : HFBR-1521 : Agilent
Receiver : HFBR-2521 : Agilent
Phoenix contact
Type name : MSTB2.5/2-G-5.08AU
—
(Note 1)
Min
19
—
—
Limits
Typ
20
—
—
—
Max
21
50
3.0
3.0
—
—
—
—
—
—
—
—
—
—
—
—
Min
18
—
—
—
Limits
Typ
20
1560
63
26
Max
24
—
—
—
Min
–10
–10
–10
—
Limits
Typ
—
—
—
—
Max
125
60
60
0.014
Unit
V
W
µs
µs
MECHANICAL DATA
Symbol
FM
—
—
—
Parameter
Conditions
—
—
Mounting force
Weight
Pole piece diameter (GTC device) ±0.2mm
Housing thickness (GTC device) ±0.5mm
Unit
kN
g
mm
mm
THERMAL DATA
Symbol
Tj
Tstg
Ta
Rt(j-f)
Parameter
Junction operating temperature
Storage temperature
Ambient operation temperature
Thermal resistance
Conditions
—
—
Recommend : ≤ 40°C
Junction to Fin
Unit
°C
°C
°C
K/W
Mar. 2009
3
MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
IT
VD
VD
td
tgt
t(Eoff) = 100µs
ts
trd
tfd
IGM
diG/dt
td ; 0VRG ~ 0.9VD
tgt ; 0VRG ~ 0.1VD
ts ; 0VRG ~ 0.9IT
diG/dt ; 0.1IGM ~ 0.9IGM
tw ; 0VRG ~ 0.9IGM
diGQ/dt ; 0.1IRG ~ 0.9IRG
tfd ; 50% on signal ~ 0VRG
trd ; 50% off signal ~ 0VRG
Integration area for Eoff ; 5%VD ~ until 100µs
IG
tw
VRG
diGQ/dt
VRG
IGQ
Control signal
Fig. 1 Turn-on and Turn-off waveform
L
ANL
L (load)
Rs
FWDi
Rc
VD
VD
DUT
Cs
DUT
CDi
Lc
Cc
Fig. 3 Turn-off test circuit
Fig. 2 Turn-on test circuit
(With clamp circuit)
QRR = (trr×IRM)/2
[ Integration
area for Erec ; 0IT ~ until 100µs ]
ANL
Rs
t(Erec) = 100µs
IT
L (Ioad)
trr
DUT
Cs
0
VD
DUT
di/dt (0 ~ 50%IRM)
50%IRM
50%IT
90%IRM
Rs
Cs
VR
VRM
Fig. 5 Turn-off and Reverse recovery test circuit
Fig. 4 Reverse recovery waveform
Mar. 2009
4
MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
Note 1. Status signal
1. Status signal from LED
(1) Status signal
LED 1
(Red)
OFF
ON
LED 2
(Yellow)
ON
OFF
Status
G-K
Power Supply
Normal
Fault
Fault
Fault
Normal
Normal
G-K short
G-K short
20±1V
Voltage down
20±1V
Voltage down
Status of GCT
On state
Off state
(2) Fault signal
G-K LED (LED 3)
(Green)
On
Off
Off
Off
PS LED (LED 4)
(Green)
On
Off
On
Off
2. Status signal from Transmitter
(L : Light NL : No light)
(1) Normal operation
(2) Fault signal (O/V or U/V)
L
L
Control signal
(Control board)
Control signal
(Control board)
NL
NL
L
L
Control signal
(GDU input)
Control signal
(GDU input)
NL
NL
L
L
L
Status signal
(GDU output)
NL
NL
Status signal
(GDU output)
(3) Fault signal (G-K short)
Normal
Fault
(4) Fault signal (fiber optic)
L
Control signal
(Control board)
NL
Control signal
(GDU input)
NL
L
Control signal
(Control board)
NL
L
Control signal
(GDU input)
NL
(Always No light)
L
NL
Status signal
(GDU output)
Normal
Status signal
(GDU output)
L
(Always light)
Fault
Mar. 2009
5
MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
Note 2. Additional support for vibration test
Additional support is necessary for vibration test of GCU15CA-130.
Fig. 6 shows detailed figure about connection method between gate driver and heat sink by additional support.
12
0
60
M4×0.7 SCREW 8 DEPTH
71.5
75
H
INK
T SHeat sink
A
E
15
3.5
1.5
Additional support
G
TPTPK D4 3
LELED D2 1
LELED
2
DE E1
D
Gate driver
Fig. 6 Connection method between gate driver and heat sink by additional support
Mar. 2009
6
MITSUBISHI GCT (Gate Commutated Turn-off) THYRISTOR UNIT
GCU15CA-130
HIGH POWER INVERTER USE
PRESS PACK TYPE
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTIC
TURN ON SWITCHING ENERGY Eon (J/P)
Eon VS IT (Max)
7
5
3
2
Tj=25°C
103
7
5
3
2
102
7
5
3
2
10
TURN OFF SWITCHING ENERGY Eoff (J/P)
Tj=125°C
0
1
2
3
4
5
6
7
8
9 10
VD=3000V, VDM=VD+1.25× IT
Tj=125°C, Cs=0.2µF
Rs=5Ω
6
4
2
0
Cs=0.2µF, Rs=5Ω
1.5
1.0
0.5
0.0
0
200 400 600 800 1000 1200 1400 1600 1800
Erec VS IT (Max)
8
0
VD=3000V, Tj=125°C
2.0 di/dt=1000A/µs
Eoff VS IT (Max)
CONDITION
10
CONDITION
TURN ON CURRENT IT (A)
14
12
2.5
ON-STATE VOLTAGE VTM (V)
REVERSE RECOVERY ENERGY Erec (J/P)
ON-STATE CURRENT IT (A)
104
200 400 600 800 1000 1200 1400 1600 1800
TURN OFF CURRENT IT (A)
16
CONDITION
14 VR=3000V, Tj=125°C
di/dt=1000A/µs
12 Cs=0.2µF, Rs=5Ω
10
8
6
4
2
0
0
200 400 600 800 1000 1200 1400 1600 1800
ON-STATE CURRENT IT (A)
MAXIMUM THERMAL IMPEDANCE
CHARACTERISTIC
(JUNCTION TO FIN)
0.020
0.018
0.016
Zth (K/W)
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000
0
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
TIME (S)
Mar. 2009
7