GP1A20 GP1A20 OPIC Photointerrupter with Cover Case ■ Features ■ Outline Dimensions 8.0 4. PWB mounting type package 2 1 Anode 2 Cathode 6.15 6.45 1.65 1.35 1.6 7.5 GP1A20 5- 2.5 8.0MIN. 7.0MIN. + 3.0 - 0.3 0 13.9 15.6 1. Printers 2. Ticket vending machines ( 3.6) Detector center ■ Applications 3 3 V CC 4 VO 5 GND Slit width (Both side of emitter and detector ) 0.5 4.0 0.5 1. With cover case 2. High sensing accuracy ( Slit width : 0.5mm ) 3. Operating supply voltage V CC : 4.5 to 17V ( Unit : mm ) Internal connection diagram Voltage regulator Amp. 1 5 10k Ω 4 0.45 +- 0.3 0.1 (1.5) (5.445) (1.27) (1.27) (0.75) (0.75) 1.6 (10.6) 1.0 2 1 3 1.0 * Unspecified tolerances shall be as follows; Dimensions(d) Tolerance d<=6.0 ± 0.15 6.0 < d<=16.0 ± 0.2 * ( ): Reference dimensions 5 4 *“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC IO PO T opr T stg T sol Rating 50 1 6 75 - 0.5 to + 17 50 250 - 25 to + 85 - 40 to + 100 260 Unit mA A V mW V mA mW ˚C ˚C ˚C *1 Pulse width <=100µ s, Duty ratio= 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GP1A20 ■ Erectro-optical Characteristics Output Transfer characteristics Response time Input Parameter Forward voltage Reverse current Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current *3 “ Low→High” threshold input current *4 Hysteresis “ Low→High” propagation delay time “ High→Low” propagation delay time Rise time Fall time ( Ta = 25˚C ) Symbol VF IR V CC V OL V OH I CCL I CCH I FLH I FHL /I FLH t PLH t PHL tr tf Conditions I F = 10mA V R = 3V I OL = 16mA, V CC = 5V, I F = 0 V CC = 5V, I F = 10mA V CC = 5V, I F = 0 V CC = 5V, I F = 10mA V CC = 5V V CC = 5V V CC = 5V I F = 10mA R L = 280Ω MIN. 4.5 4.9 0.55 - TYP. 1.1 0.15 2.5 1.0 2.0 0.75 3 5 0.1 0.05 MAX. 1.4 10 17 0.4 5.0 3.0 9.5 0.95 9 15 0.5 0.5 *3 I FLH represents forward current when output changes from low to high. *4 I FHL represents forward current when output changes from high to low. Hysteresis stands for IFHL /I FLH . ■ Recommended Operating Conditions Parameter Low level output current Forward current Symbol I OL IF Operating temperature Ta = 0 to + 70˚C 300 50 250 Output power dissipation PO ( mW ) 60 40 30 20 10 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C ) MAX. 16 20 Unit mA mA Fig. 2 Output Power Dissipation vs. Ambient Temperature F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature Forward current I MIN. 10 100 200 150 100 50 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C ) 100 Unit V µA V V V mA mA mA µs GP1A20 Fig. 4 Forward Current vs. Forward Voltage 60 500 50 200 Forward current I F ( mA ) Low level output current I OL ( mA ) Fig. 3 Low Level Output Current vs. Ambient Temperature 40 30 20 25˚C 0˚C - 25˚C Ta = 75˚C 50˚C 100 50 20 10 5 10 2 0 1 0 - 25 25 50 75 85 100 0 0.5 1 Ambient temperature Ta ( ˚C ) 1.5 2 2.5 3 3.5 Forward voltage VF ( V) Fig. 5 Relative Threshold Input Current vs. Supply Voltage Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.4 1.2 1.0 Relative threshold input current I FHL /I FLH Relative threshold input current I FHL /I FLH V CC = 5V T a = 25˚C I FLH 0.8 I FHL 0.6 0.4 I FLH = 1 at VCC = 5V 0.2 10 5 0 15 20 1.2 I FLH 1.0 I FHL 0.8 0.6 IFLH = 1 at Ta = 25˚C 0.4 - 25 0 Supply voltage VCC ( V) 25 50 75 100 Ambient temperature Ta ( ˚C ) Fig. 7 Low Level Output Voltage vs. Low Level Output Current Fig. 8 Low Level Output Voltage vs. Ambient Temperature 1 0.4 V CC = 5V T a = 25˚C 0.5 Low level output voltage VOL ( V) Low level output voltage VOL ( V) V CC = 5V 0.2 0.1 0.05 0.02 0.01 1 2 5 10 20 50 Low level output current I OL ( mA ) 100 0.3 I OL = 30mA 0.2 16mA 5mA 0.1 0 - 25 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 GP1A20 Fig. 9 Supply Current vs. Supply Voltage Fig.10 Propagation Delay Time vs. Forward Current 7 ( µs ) 6 PHL T a =- 25˚C Propagation delay time t PLH , t Supply current I CCL /ICCH ( mA) 5 4 25˚C 3 85˚C ICCL 2 Ta =- 25˚C 25˚C 85˚C 1 ICCH t PHL 6 5 4 3 t PLH 2 V CC = 5V R L = 280 Ω 1 T a = 25˚C 0 0 2 6 4 8 10 12 14 16 0 20 10 30 Forward current I F ( mA ) Supply voltage VCC ( V ) Fig.11 Rise Time, Fall Time vs. Load Resistance Rise time, fall time t r , t f ( µs ) 0.5 V CC = 5V I F = 10mA T a = 25˚C 0.4 0.3 tr 0.2 0.1 tf 0 0.2 0.5 2 1 5 10 Load resistance RL ( kΩ ) Test Circuit for Response Time Voltage regulator (10kΩ ) Input Amp. 47 Ω 50% tPLH VO VIN t r = tf = 0.01 µ s ZO = 50 Ω + 5V 280 Ω 0.01 µ F GND tPHL 90% Output 10% tr tf VOH 1.5V VOL ■ Precautions for Use ( 1 ) In this product, flux in the cleaning solvent may remain inside the slit of holder. It sometimes causes lower output;therefore, cleaning is prrhibited. ( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF between Vcc and GND near the device. ( 3 ) As for other general cautions< refer to the chapter “ Precautions for Use ” . 40 50