ETC H11AV1A

GlobalOptoisolator
The H11AV1,A and H11AV2,A devices consist of a gallium arsenide infrared
emitting diode optically coupled to a monolithic silicon phototransistor detector.
• Guaranteed 70 Volt V(BR)CEO Minimum
• ‘A’ Suffix = 0.400″ Wide Spaced Leadform (Same as ‘T’ Suffix.)
• To order devices that are tested and marked per VDE 0884 requirements, the
suffix ”V” must be included at end of part number. VDE 0884 is a test option.
6
Applications
1
STANDARD THRU HOLE
• General Purpose Switching Circuits
• Interfacing and coupling systems of different potentials and impedances
• Monitor and Detection Circuits
• Regulation and Feedback Circuits
SCHEMATIC
• Solid State Relays
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
Symbol
Value
Reverse Voltage
VR
6
Volts
Forward Current — Continuous
IF
60
mA
LED Power Dissipation @ TA = 25°C
with Negligible Power in Output Detector
Derate above 25°C
PD
120
mW
1.41
mW/°C
OUTPUT TRANSISTOR
Collector–Emitter Voltage
VCEO
70
Volts
Emitter–Base Voltage
VEBO
7
Volts
Collector–Base Voltage
VCBO
70
Volts
Collector Current — Continuous
IC
150
mA
Detector Power Dissipation @ TA = 25°C
with Negligible Power in Input LED
Derate above 25°C
PD
150
mW
1.76
mW/°C
VISO
7500
Vac(pk)
Total Device Power Dissipation @ TA = 25°C
Derate above 25°C
PD
250
2.94
mW
mW/°C
Ambient Operating Temperature Range
TA
– 55 to +100
°C
Tstg
– 55 to +150
°C
TL
260
°C
TOTAL DEVICE
Storage Temperature Range
Soldering Temperature (10 sec, 1/16″ from case)
1. Isolation surge voltage is an internal device dielectric breakdown rating.
1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
6
2
5
3
4
Unit
INPUT LED
Isolation Surge Voltage(1)
(Peak ac Voltage, 60 Hz, 1 sec Duration)
1
PIN 1.
2.
3.
4.
5.
6.
LED ANODE
LED CATHODE
N.C.
EMITTER
COLLECTOR
BASE
H11AV1,A H11AV2,A
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1)
Symbol
Min
Typ(1)
Max
Unit
VF
0.8
0.9
0.7
1.15
1.3
1.05
1.5
1.7
1.4
Volts
Reverse Leakage Current (VR = 6 V)
IR
—
—
10
µA
Capacitance (V = 0 V, f = 1 MHz)
CJ
—
18
—
pF
Collector–Emitter Dark Current (VCE = 10 V)
ICEO
—
5
50
nA
Collector–Base Dark Current (VCB = 10 V)
ICBO
—
0.5
—
nA
Collector–Emitter Breakdown Voltage (IC = 1 mA)
V(BR)CEO
70
100
—
Volts
Collector–Base Breakdown Voltage (IC = 100 µA)
V(BR)CBO
70
100
—
Volts
Emitter–Collector Breakdown Voltage (IE = 100 µA)
V(BR)ECO
7
8
—
Volts
DC Current Gain (IC = 2 mA, VCE = 10 V) (Typical Value)
hFE
—
500
—
—
Collector–Emitter Capacitance (f = 1 MHz, VCE = 10 V)
CCE
—
4.5
—
pF
10 (100)
5 (50)
15 (150)
10 (100)
30 (300)
—
Characteristic
INPUT LED
Forward Voltage (IF = 10 mA)
TA = 25°C
TA = –55°C
TA = 100°C
OUTPUT TRANSISTOR
COUPLED
IC (CTR)(2)
Output Collector Current (IF = 10 mA, VCE = 10 V)
H11AV1, H11AV1A
H11AV2, H11AV2A
Collector–Emitter Saturation Voltage (IC = 2 mA, IF = 20 mA)
mA (%)
VCE(sat)
—
0.15
0.4
Volts
Turn–On Time (IC = 2 mA, VCC = 10 V, RL = 100 Ω)(3)
ton
—
5
15
µs
Turn–Off Time (IC = 2 mA, VCC = 10 V, RL = 100 Ω)(3)
toff
—
4
15
µs
Isolation Voltage (f = 60 Hz, t = 1 sec)(4)
VISO
7500
—
—
Vac(pk)
Isolation Resistance (V = 500 V)(4)
RISO
1011
—
—
Ω
Isolation Capacitance (V = 0 V, f = 1 MHz)(4)
CISO
—
0.2
0.5
pF
1.
2.
3.
4.
Always design to the specified minimum/maximum electrical limits (where applicable).
Current Transfer Ratio (CTR) = IC/IF x 100%.
For test circuit setup and waveforms, refer to Figure 11.
For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
2
VF, FORWARD VOLTAGE (VOLTS)
PULSE ONLY
PULSE OR DC
1.8
1.6
1.4
TA = –55°C
1.2
25°C
100°C
1
1
10
100
IF, LED FORWARD CURRENT (mA)
1000
Figure 1. LED Forward Voltage versus Forward Current
I C , OUTPUT COLLECTOR CURRENT (NORMALIZED)
TYPICAL CHARACTERISTICS
10
NORMALIZED TO:
IF = 10 mA
1
0.1
0.01
0.1
0.2
0.5
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
50 100
Figure 2. Output Current versus Input Current
I CURRENT (mA)
C, COLLECTOR
14
12
IF = 10 mA
10
8
6
5 mA
4
2
2 mA
1 mA
0
0
1
2
3
4
5
6
7
8
9
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
10
I C , OUTPUT COLLECTOR CURRENT (NORMALIZED)
H11AV1,A H11AV2,A
7
5
NORMALIZED TO TA = 25°C
2
1
0.7
0.5
0.2
0.1
–60
–40
100
NORMALIZED TO:
VCE = 10 V
TA = 25°C
103
102
VCE = 70 V
50
30 V
20
10 V
101
VCC = 10 V
10
RL = 1000
5
RL = 100
100
tf
{
{
tr
tf
tr
2
10–1
0
20
40
60
TA, AMBIENT TEMPERATURE (°C)
80
1
0.1
100
0.2
Figure 5. Dark Current versus
Ambient Temperature
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
50 100
100
VCC = 10 V
20
RL = 1000
10
100
5
10
VCC = 10 V
50
t off, TURN–OFF TIME ( s)
µ
50
20
RL = 1000
10
5
100
10
2
2
1
0.1
0.5
Figure 6. Rise and Fall Times
(Typical Values)
100
t on, TURN–ON TIME ( s)
µ
100
Figure 4. Output Current versus
Ambient Temperature
t, TIME (µs)
ICEO, COLLECTOR–EMITTER DARK CURRENT (NORMALIZED)
Figure 3. Collector Current versus
Collector–Emitter Voltage
–20
0
20
40
60
80
TA, AMBIENT TEMPERATURE (°C)
0.2
0.5
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
Figure 7. Turn–On Switching Times
50 100
1
0.1
0.2
0.5
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
Figure 8. Turn–Off Switching Times
50 100
20
4
IF = 0
IB = 8 µA
18
7 µA
16
3
6 µA
5 µA
4 µA
2
3 µA
2 µA
1
f = 1 MHz
14
12
10
8
CLED
CCB
CCE
CEB
6
4
1 µA
0
C, CAPACITANCE (pF)
IC, TYPICAL COLLECTOR CURRENT (mA)
H11AV1,A H11AV2,A
2
4
6
8
10
12
14
16
18
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 9. DC Current Gain (Detector Only)
20
2
0
0.5
0.1
0.2
0.5
1
2
5
V, VOLTAGE (VOLTS)
20
Figure 10. Capacitances versus Voltage
TEST CIRCUIT
WAVEFORMS
INPUT PULSE
VCC = 10 V
IC
10
RL = 100 Ω
10%
INPUT
INPUT CURRENT ADJUSTED
TO ACHIEVE IC = 2 mA.
OUTPUT
OUTPUT PULSE
90%
tr
ton
Figure 11. Switching Time Test Circuit and Waveforms
tf
toff
50
H11AV1,A H11AV2,A
PACKAGE DIMENSIONS
–A–
6
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4
–B–
1
3
F 4 PL
C
N
–T–
L
K
SEATING
PLANE
J 6 PL
0.13 (0.005)
G
M
E 6 PL
D 6 PL
0.13 (0.005)
M
T A
B
M
M
T B
M
M
A
M
DIM
A
B
C
D
E
F
G
J
K
L
M
N
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.008
0.012
0.100
0.150
0.300 BSC
0_
15 _
0.015
0.100
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.21
0.30
2.54
3.81
7.62 BSC
0_
15 _
0.38
2.54
ANODE
CATHODE
NC
EMITTER
COLLECTOR
BASE
THRU HOLE
–A–
6
4
–B–
1
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3
F 4 PL
L
H
C
–T–
G
J
K 6 PL
E 6 PL
0.13 (0.005)
D 6 PL
0.13 (0.005)
M
T A
M
B
M
SEATING
PLANE
T B
M
A
M
M
SURFACE MOUNT
DIM
A
B
C
D
E
F
G
H
J
K
L
S
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.020
0.025
0.008
0.012
0.006
0.035
0.320 BSC
0.332
0.390
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.51
0.63
0.20
0.30
0.16
0.88
8.13 BSC
8.43
9.90
H11AV1,A H11AV2,A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
–A–
6
4
–B–
1
3
L
N
F 4 PL
C
–T–
SEATING
PLANE
G
J
K
D 6 PL
E 6 PL
0.13 (0.005)
M
T A
M
B
M
0.4" LEAD SPACING
DIM
A
B
C
D
E
F
G
J
K
L
N
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.008
0.012
0.100
0.150
0.400
0.425
0.015
0.040
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.21
0.30
2.54
3.81
10.16
10.80
0.38
1.02
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
www.fairchildsemi.com
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
© 2000 Fairchild Semiconductor Corporation