GlobalOptoisolator The H11AV1,A and H11AV2,A devices consist of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon phototransistor detector. • Guaranteed 70 Volt V(BR)CEO Minimum • ‘A’ Suffix = 0.400″ Wide Spaced Leadform (Same as ‘T’ Suffix.) • To order devices that are tested and marked per VDE 0884 requirements, the suffix ”V” must be included at end of part number. VDE 0884 is a test option. 6 Applications 1 STANDARD THRU HOLE • General Purpose Switching Circuits • Interfacing and coupling systems of different potentials and impedances • Monitor and Detection Circuits • Regulation and Feedback Circuits SCHEMATIC • Solid State Relays MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating Symbol Value Reverse Voltage VR 6 Volts Forward Current — Continuous IF 60 mA LED Power Dissipation @ TA = 25°C with Negligible Power in Output Detector Derate above 25°C PD 120 mW 1.41 mW/°C OUTPUT TRANSISTOR Collector–Emitter Voltage VCEO 70 Volts Emitter–Base Voltage VEBO 7 Volts Collector–Base Voltage VCBO 70 Volts Collector Current — Continuous IC 150 mA Detector Power Dissipation @ TA = 25°C with Negligible Power in Input LED Derate above 25°C PD 150 mW 1.76 mW/°C VISO 7500 Vac(pk) Total Device Power Dissipation @ TA = 25°C Derate above 25°C PD 250 2.94 mW mW/°C Ambient Operating Temperature Range TA – 55 to +100 °C Tstg – 55 to +150 °C TL 260 °C TOTAL DEVICE Storage Temperature Range Soldering Temperature (10 sec, 1/16″ from case) 1. Isolation surge voltage is an internal device dielectric breakdown rating. 1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. 6 2 5 3 4 Unit INPUT LED Isolation Surge Voltage(1) (Peak ac Voltage, 60 Hz, 1 sec Duration) 1 PIN 1. 2. 3. 4. 5. 6. LED ANODE LED CATHODE N.C. EMITTER COLLECTOR BASE H11AV1,A H11AV2,A ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1) Symbol Min Typ(1) Max Unit VF 0.8 0.9 0.7 1.15 1.3 1.05 1.5 1.7 1.4 Volts Reverse Leakage Current (VR = 6 V) IR — — 10 µA Capacitance (V = 0 V, f = 1 MHz) CJ — 18 — pF Collector–Emitter Dark Current (VCE = 10 V) ICEO — 5 50 nA Collector–Base Dark Current (VCB = 10 V) ICBO — 0.5 — nA Collector–Emitter Breakdown Voltage (IC = 1 mA) V(BR)CEO 70 100 — Volts Collector–Base Breakdown Voltage (IC = 100 µA) V(BR)CBO 70 100 — Volts Emitter–Collector Breakdown Voltage (IE = 100 µA) V(BR)ECO 7 8 — Volts DC Current Gain (IC = 2 mA, VCE = 10 V) (Typical Value) hFE — 500 — — Collector–Emitter Capacitance (f = 1 MHz, VCE = 10 V) CCE — 4.5 — pF 10 (100) 5 (50) 15 (150) 10 (100) 30 (300) — Characteristic INPUT LED Forward Voltage (IF = 10 mA) TA = 25°C TA = –55°C TA = 100°C OUTPUT TRANSISTOR COUPLED IC (CTR)(2) Output Collector Current (IF = 10 mA, VCE = 10 V) H11AV1, H11AV1A H11AV2, H11AV2A Collector–Emitter Saturation Voltage (IC = 2 mA, IF = 20 mA) mA (%) VCE(sat) — 0.15 0.4 Volts Turn–On Time (IC = 2 mA, VCC = 10 V, RL = 100 Ω)(3) ton — 5 15 µs Turn–Off Time (IC = 2 mA, VCC = 10 V, RL = 100 Ω)(3) toff — 4 15 µs Isolation Voltage (f = 60 Hz, t = 1 sec)(4) VISO 7500 — — Vac(pk) Isolation Resistance (V = 500 V)(4) RISO 1011 — — Ω Isolation Capacitance (V = 0 V, f = 1 MHz)(4) CISO — 0.2 0.5 pF 1. 2. 3. 4. Always design to the specified minimum/maximum electrical limits (where applicable). Current Transfer Ratio (CTR) = IC/IF x 100%. For test circuit setup and waveforms, refer to Figure 11. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. 2 VF, FORWARD VOLTAGE (VOLTS) PULSE ONLY PULSE OR DC 1.8 1.6 1.4 TA = –55°C 1.2 25°C 100°C 1 1 10 100 IF, LED FORWARD CURRENT (mA) 1000 Figure 1. LED Forward Voltage versus Forward Current I C , OUTPUT COLLECTOR CURRENT (NORMALIZED) TYPICAL CHARACTERISTICS 10 NORMALIZED TO: IF = 10 mA 1 0.1 0.01 0.1 0.2 0.5 1 2 5 10 20 IF, LED INPUT CURRENT (mA) 50 100 Figure 2. Output Current versus Input Current I CURRENT (mA) C, COLLECTOR 14 12 IF = 10 mA 10 8 6 5 mA 4 2 2 mA 1 mA 0 0 1 2 3 4 5 6 7 8 9 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 10 I C , OUTPUT COLLECTOR CURRENT (NORMALIZED) H11AV1,A H11AV2,A 7 5 NORMALIZED TO TA = 25°C 2 1 0.7 0.5 0.2 0.1 –60 –40 100 NORMALIZED TO: VCE = 10 V TA = 25°C 103 102 VCE = 70 V 50 30 V 20 10 V 101 VCC = 10 V 10 RL = 1000 5 RL = 100 100 tf { { tr tf tr 2 10–1 0 20 40 60 TA, AMBIENT TEMPERATURE (°C) 80 1 0.1 100 0.2 Figure 5. Dark Current versus Ambient Temperature 1 2 5 10 20 IF, LED INPUT CURRENT (mA) 50 100 100 VCC = 10 V 20 RL = 1000 10 100 5 10 VCC = 10 V 50 t off, TURN–OFF TIME ( s) µ 50 20 RL = 1000 10 5 100 10 2 2 1 0.1 0.5 Figure 6. Rise and Fall Times (Typical Values) 100 t on, TURN–ON TIME ( s) µ 100 Figure 4. Output Current versus Ambient Temperature t, TIME (µs) ICEO, COLLECTOR–EMITTER DARK CURRENT (NORMALIZED) Figure 3. Collector Current versus Collector–Emitter Voltage –20 0 20 40 60 80 TA, AMBIENT TEMPERATURE (°C) 0.2 0.5 1 2 5 10 20 IF, LED INPUT CURRENT (mA) Figure 7. Turn–On Switching Times 50 100 1 0.1 0.2 0.5 1 2 5 10 20 IF, LED INPUT CURRENT (mA) Figure 8. Turn–Off Switching Times 50 100 20 4 IF = 0 IB = 8 µA 18 7 µA 16 3 6 µA 5 µA 4 µA 2 3 µA 2 µA 1 f = 1 MHz 14 12 10 8 CLED CCB CCE CEB 6 4 1 µA 0 C, CAPACITANCE (pF) IC, TYPICAL COLLECTOR CURRENT (mA) H11AV1,A H11AV2,A 2 4 6 8 10 12 14 16 18 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 9. DC Current Gain (Detector Only) 20 2 0 0.5 0.1 0.2 0.5 1 2 5 V, VOLTAGE (VOLTS) 20 Figure 10. Capacitances versus Voltage TEST CIRCUIT WAVEFORMS INPUT PULSE VCC = 10 V IC 10 RL = 100 Ω 10% INPUT INPUT CURRENT ADJUSTED TO ACHIEVE IC = 2 mA. OUTPUT OUTPUT PULSE 90% tr ton Figure 11. Switching Time Test Circuit and Waveforms tf toff 50 H11AV1,A H11AV2,A PACKAGE DIMENSIONS –A– 6 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4 –B– 1 3 F 4 PL C N –T– L K SEATING PLANE J 6 PL 0.13 (0.005) G M E 6 PL D 6 PL 0.13 (0.005) M T A B M M T B M M A M DIM A B C D E F G J K L M N INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.008 0.012 0.100 0.150 0.300 BSC 0_ 15 _ 0.015 0.100 STYLE 1: PIN 1. 2. 3. 4. 5. 6. MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.21 0.30 2.54 3.81 7.62 BSC 0_ 15 _ 0.38 2.54 ANODE CATHODE NC EMITTER COLLECTOR BASE THRU HOLE –A– 6 4 –B– 1 S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3 F 4 PL L H C –T– G J K 6 PL E 6 PL 0.13 (0.005) D 6 PL 0.13 (0.005) M T A M B M SEATING PLANE T B M A M M SURFACE MOUNT DIM A B C D E F G H J K L S INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.020 0.025 0.008 0.012 0.006 0.035 0.320 BSC 0.332 0.390 MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.51 0.63 0.20 0.30 0.16 0.88 8.13 BSC 8.43 9.90 H11AV1,A H11AV2,A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. –A– 6 4 –B– 1 3 L N F 4 PL C –T– SEATING PLANE G J K D 6 PL E 6 PL 0.13 (0.005) M T A M B M 0.4" LEAD SPACING DIM A B C D E F G J K L N INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.008 0.012 0.100 0.150 0.400 0.425 0.015 0.040 MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.21 0.30 2.54 3.81 10.16 10.80 0.38 1.02 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. www.fairchildsemi.com 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. © 2000 Fairchild Semiconductor Corporation