ETC HAT1006F

HAT1006F
Silicon P Channel Power MOF FET
Application
SOP–8
Power switching
8
5
7 6
Features
•
•
•
•
3
1 2
5 6 7 8
D D D D
Low on–resistance
Capable of 4 V gate drive
Low drive current
High density mounting
4
G
Ordering Information
————————————————————
Hitachi Code
4
1, 2, 3
Source
4
Gate
5, 6, 7, 8 Drain
S S S
1 2 3
FP–8D
————————————————————
EIAJ Code
SC–527–8A
————————————————————
JEDEC Code
—
————————————————————
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–60
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–2.5
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–10
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–2.5
A
———————————————————————————————————————————
Channel dissipation
Pch**
1.0
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** When using the glass epoxy board (40 x 40 x 1.6 mm)
HAT1006F
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–60
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–10
µA
VDS = –60 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.25
V
VDS = –10 V, ID = –1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.1
0.14
Ω
ID = –2 A
VGS = –10 V *
————————————————————————
—
0.14
0.2
Ω
ID = –2 A
VGS = –4 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
3.5
5.5
—
S
ID = –2 A
VDS = - 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
910
—
pF
VDS = - 10 V
————————————————————————————————
Output capacitance
Coss
—
440
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
170
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
tr
—
td(off)
—
tf
—
VDF
—
35
—
ns
VGS = –4 V, ID = –2 A
————————————————————————————————
Rise time
190
—
ns
VDD = –10 V
————————————————————————————————
Turn–off delay time
85
—
ns
————————————————————————————————
Fall time
105
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
–0.8
—
V
IF = –2.5 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
130
—
ns
IF = –2.5 A, VGS = 0
diF / dt = 20A / µs
———————————————————————————————————————————
* Pulse Test
HAT1006F
Power vs. Temperature Derating
Maximum Safe Operation Area
–100
1.5
1.0
0.5
–30
I D (A)
Test Condition :
When using the glass epoxy board
(40 x 40 x 1.6 mm)
Drain Current
Channel Dissipation
Pch (W)
2.0
10 µs
100 µs
–10
–3
PW
–1
DC
1
=
10
–0.1
s
m
s
Op
Operation in
er
this area is
at
ion
limited by R DS(on)
*
–0.3
m
*
–0.03 Ta = 25 °C
–0.01 1 shot pulse
0
50
100
Ambient Temperature
150
200
–1
–3
–10 –30 –100
–0.1 –0.3
Drain to Source Voltage V DS (V)
Ta (°C)
** When using the glass epoxy board
(40 x 40 x 1.6 mm)
Typical Output Characteristics
Pulse Test
–10 V
(A)
–5 V
–4.5 V
–12
–8
–3.5 V
–3 V
–4
VGS = –2.5 V
0
V DS = –10 V
Pulse Test
–4 V
ID
–16
Typical Transfer Characteristics
–10
Drain Current
Drain Current
I D (A)
–20
–4
–8
–12
Drain to Source Voltage
–16
–20
V DS (V)
–8
–6
–4
–2
75 °C
Tc = –25 °C
25 °C
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
HAT1006F
–0.5
Drain to Source Saturation Voltage
V DS(on) (V)
Pulse Test
–0.4
–0.3
I D = –2 A
–0.2
–1 A
–6
–2
–4
Gate to Source Voltage
VGS = –4 V
0.1
–10 V
–10
V GS (V)
0.3
I D = –2 A, –1 A, –0.5 A
V GS = –4 V
0.1
0.01
–0.1 –0.2
–8
0.4
–2 A, –1 A, –0.5 A
–10 V
0
–40
0.2
0.02
0
40
80
120
160
Case Temperature Tc (°C)
–5
–0.5 –1
–2
Drain Current I D (A)
–10
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
Static Drain to Source on State Resistance
R DS(on) ( Ω)
–0.5 A
Static Drain to Source on State Resistance
vs. Temperature
0.5
Pulse Test
0.2
Static Drain to Source on State Resistance
vs. Drain Current
1
Pulse Test
0.5
0.05
–0.1
0
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
20
10
Tc = –25 °C
5
2
25 °C
75 °C
1
0.5
0.2
–0.1 –0.2
V DS = –10 V
Pulse Test
–0.5 –1 –2
–5
Drain Current I D (A)
–10
HAT1006F
Reverse Recovery Time trr (ns)
1000
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
10000
Capacitance C (pF)
500
200
100
50
20
–80
–100
0
–8
–12
I D = –2.5 A
8
16
24
32
Gate Charge Qg (nc)
–16
–20
40
Switching Time t (ns)
V GS
V DD = –50 V
–25 V
V DS
–10 V
–60
500
V GS (V)
–4
VGS = 0
f = 1 MHz
–10
–20
–30
-40
–50
Drain to Source Voltage V DS (V)
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
0
–40
Crss
100
0
Dynamic Input Characteristics
–20
Coss
300
10
10
–0.5 –1 –2
–5 –10
–0.1 –0.2
Reverse Drain Current I DR (A)
V DD = –10 V
–25 V
–50 V
Ciss
1000
30
di / dt = 20 A / µs
VGS = 0, Ta = 25 °C
0
3000
Switching Characteristics
200
tr
tf
100
50
t d(on)
t d(off)
20
10
5
–0.1 –0.2
V GS = –4 V, V DD = –10 V
PW = 3 µs, duty < 1 %
–0.5 –1 –2
–5
Drain Current I D (A)
–10
HAT1006F
Reverse Drain Current vs.
Source to Drain Voltage
–10
Reverse Drain Current I DR (A)
Pulse Test
–8
V GS = –5 V
–6
0, 5 V
–4
–2
0
–0.4
–0.8
–1.2
Source to Drain Voltage
–1.6
–2.0
V SD (V)
Package Dimensions
Unit : mm
• SOP–8
0.75 Max
6.8 Max
+ 0.05
4
0.20 – 0.02
1
2.03 Max
5
2.00 Max
8
4.55 Max
5.25 Max
0 – 10 °
0.40
+ 0.10
– 0.05
0.10 ± 0.10
1.27
0.25
0.60 +– 0.18
0.1
0.12 M
FP–8D
Hitachi Code
SC–527–8A
EIAJ
—
JEDEC