HITACHI 2SJ246S

2SJ246 L , 2SJ246 S
SILICON P-CHANNEL MOS FET
Application
DPAK–1
High speed power switching
4
4
Features
12
3
12
•
•
•
•
Low on–resistance
High speed switching
Low drive current
4V gate drive device can be driven from
5V source.
• Suitable for Switching regulator, DC – DC
converter
3
2, 4
1
1. Gate
2. Drain
3. Source
4. Drain
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–30
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–7
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–28
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–7
A
———————————————————————————————————————————
Channel dissipation
Pch**
20
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at Tc = 25 °C
2SJ246 L , 2SJ246 S
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–30
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–100
µA
VDS = –25 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.5
V
VDS = –10 V, ID = –1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.12
0.17
Ω
ID = –4 A
VGS = –10 V
————————————————————————
—
0.21
0.31
Ω
ID = –4 A
VGS = –4 V
———————————————————————————————————————————
Forward transfer admittance
|yfs|
3.0
5.0
—
S
VDS = –10 V
ID = –4 A
———————————————————————————————————————————
Input capacitance
Ciss
—
660
—
pF
VDS = –10 V
————————————————————————————————
Output capacitance
Coss
—
465
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
180
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
10
—
ns
VGS = –10 V
————————————————————————————————
Rise time
tr
—
55
—
ns
————————————————————————————————
Turn–off delay time
td(off)
—
135
—
ns
ID = –4 V
RL = 7.5 Ω
————————————————————————————————
Fall time
tf
—
135
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
VDF
—
–1.2
—
V
IF = –7 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
90
—
µs
IF = –7 A, VGS = 0,
diF / dt = 50 A / µs
———————————————————————————————————————————
2SJ246 L , 2SJ246 S
Maximum Safe Operation Area
Power vs. Temperature Derating
–50
–30
I D (A)
30
20
10
10µs
100µs
–10
PW
DC
–1
1
=
m
s
10
Op
m
s(
1
er
–3
Drain Current
Power Dissipation
Pch (W)
40
at
ion
ot
)
(T
c=
Operation in this area is
limited by R DS(on)
sh
25
°C
)
–0.3
Ta = 25°C
0
50
100
Case Temperature
150
Tc (°C)
200
–0.1
–0.3
–1
–3
–10
–30 –50
Drain to Source Voltage V DS (V)
Typical Output Characteristics
–6
–5 V
–6 V
Tc = –25°C
Pulse test
–10V
–3.5 V
(A)
–4 V
ID
–8
Typical Transfer Characteristics
–10
Drain Current
Drain Current
ID
(A)
–10
–4
–3 V
–2
–8
Pulse test
–6
VDS = –10 V
25°C
75°C
–4
–2
VGS = –2.5 V
0
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
2SJ246 L , 2SJ246 S
Pulse test
–1.6
–1.2
Static Drain to Source on State Resistance
R DS (on) (Ω )
–2.0
Static Drain to Source on State
Resistance vs. Drain Current
5
Pulse test
2
1
0.5
I D = –5 A
–0.8
VGS = –4 V
0.2
–0.4
Static Drain to Source on State Resistance
R DS (on) (Ω )
0
–1 A
–2 A
–10 V
0.1
–2
–4
–6
–8
–10
Gate to Source Voltage VGS (V)
Static Drain to Source on State
Resistance vs. Temperature
0.5
0.05
–0.1
10
Pulse test
0.4
–2 A
–1 A
VGS = –4 V
0.2
2
–5 A
–10 V
0.1
0
–40
–1
Drain Current
–10
I D (A)
–100
Forward Transfer Admittance vs.
Drain Current
Pusle test
V DS = –10 V
5
I D = –5 A
0.3
Forward Transfer Admittance
|y fs | (S)
Drain to Source Saturation Voltage
V DS(on) (V)
Drain to Source Saturation Voltage
vs. Gate to Source Voltage
–25°C
Tc = 25°C
75°C
1
–1 A, –2 A
0
40
80
120
160
Case Temperature Tc (°C)
0.5
–0.1 –0.2 –0.5 –1 –2
–5
Drain Current I D (A)
–10
2SJ246 L , 2SJ246 S
Typical Capacitance vs. Drain to
Source Voltage
Body to Drain Diode Reverse
Recovery Time
10000
(pF)
100
C
2000
50
20
di/dt = 50 A/µs, Ta = 25°C
VGS = 0, Pulse test
–60
–80
–100
0
VGS
I D= –7 A
–8
–16
–24
–32
Gate Charge Qg (nc)
Crss
–10
–20
–30
Drain to Source Voltage
–40
–50
V DS (V)
–12
–16
–20
–40
t (ns)
–8
VGS = –10 V, PW = 2 µs,
VDD =: –30 V, duty <
=1 %
200
Switching Time
VDD = –25 V
–10 V
V GS (V)
–4
–40
200
500
Gate to Source Voltage
V DS (V)
VDD = –10 V
–25 V
VDS
Coss
Switching Characteristics
0
–20
Ciss
500
0
Dynamic Input Characteristics
0
1000
100
10
–0.1 –0.2 –0.5 –1 –2
–5 –10
Reverse Drain Current I DR (A)
Drain to Source Voltage
VGS = 0
f = 1 MHz
5000
Capacitance
Reverse Recovery Time
t rr (ns)
200
100
td(off)
tf
50
tr
20
10
5
–0.1 –0.2
td(on)
–0.5 –1
–2
–5
Drain Current I D (A)
–10
2SJ246 L , 2SJ246 S
Reverse Drain Current vs. Source to
Drain Voltage
–10
Reverse Drain Current
I DR
(A)
Pulse test
–8
–6
–10 V
–4
–5 V
–2
0
0
VGS = 0, 5 V
–0.4 –0.8 –1.2
Source to Drain Voltage
–1.6
–2.0
V SD (V)
2SJ246 L , 2SJ246 S
Normal Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
3
Tc = 25°C
1
D=1
0.5
0.3
0.1
0.2
0.1
0.05
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 6.25 °C/W, Tc = 25 °C
0.02
e
uls
1
0.03
0.0
PDM
P
ot
D=
h
1s
PW
T
PW
T
0.01
10 µ
100 µ
1m
10 m
Pulse Width
100 m
1
10
PW (s)
Switching Time Test Circuit Waveform
Vout
Monitor
Vin Monitor
Vin
10%
D.U.T.
RL
90%
Vin
–10 V 50Ω
V DD
. –30 V
=
.
90%
90%
Vout
t d (on)
10%
10%
tr
t d (off)
tf