2SJ318 L , 2SJ318 S Silicon P Channel MOS FET Application DPAK–1 High speed power switching 4 4 Features Low on–resistance High speed switching Low drive current 4 V gate drive device can be driven from 5 V source • Suitable for Switching regulator, DC – DC converter 12 • • • • 3 2, 4 12 3 1 1. Gate 2. Drain 3. Source 4. Drain 3 Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS –20 V ——————————————————————————————————————————— Gate to source voltage VGSS ±20 V ——————————————————————————————————————————— Drain current ID –5 A ——————————————————————————————————————————— Drain peak current ID(pulse)* –20 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR –5 A ——————————————————————————————————————————— Channel dissipation Pch** 20 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** Value at Tc = 25°C 2SJ318 L , 2SJ318 S Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS –20 — — V ID = –10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — –100 µA VDS = –16 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) –1.0 — –2.25 V ID = –1 mA, VDS = –10 V ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.09 0.13 Ω ID = –3 A VGS = –10 V * ———————————————————————— — 0.14 0.19 Ω ID = –3 A VGS = –4 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 3.5 5.5 — S ID = –3 A VDS = –10 V * ——————————————————————————————————————————— Input capacitance Ciss — 580 — pF VDS = –10 V ———————————————————————————————— Output capacitance Coss — 520 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 215 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — 10 — ns ID = –3 A ———————————————————————————————— Rise time tr — 60 — ns ———————————————————————————————— Turn–off delay time td(off) — 75 — ns VGS = –10 V RL = 3.3 Ω ———————————————————————————————— Fall time tf — 75 — ns ——————————————————————————————————————————— Body–drain diode forward voltage VDF — –1.1 — V IF = –5 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 65 — µs IF = –5 A, VGS = 0, diF / dt = 50 A / µs ——————————————————————————————————————————— * Pulse Test 2SJ318 L , 2SJ318 S Maximum Safe Oeparation Area Power vs. Temperature Derating –30 (A) –10 10 5 DC at = ion –3 10 µs 100 µs 1m s 10 m s( 1s (T c= 25 t) °C ) Operation in this area is limited by R DS(on) –1 ho –0.3 Ta = 25 °C 0 50 100 150 Case Temperature 200 –0.1 –0.3 –4 V Drain Current I D (A) –3.5 V –4 –3 V –4 –6 –8 V DS (V) VDS = –10 V Pulse Test –6 –4 –2 VGS = –2.5 V –2 –30 Pulse Test –6 0 –10 –10 –5 V –2 –3 Typical Transfer Characteristics –10 –8 –1 Drain to Source Voltage Ta (°C) Typical Output Charactristics –10V Drain Current I D (A) PW Op er ID 15 Drain Current Channel Dissipation Pch (W) 20 75 °C 25 °C –8 –10 Drain to Source Voltage V DS (V) 0 Tc = –25 °C –1 –2 –3 –4 –5 Gain to Source Voltage V GS (V) 3 2SJ318 L , 2SJ318 S Static Drain to Source on State Resistance vs. Drain Current 0.5 Pusle Test Drain to Source Saturation Voltage vs. Gate to Source Voltage Static Drain to Source State Resistance R DS(on) (Ω) Drain to Source Saturation Voltage V DS(on) (V) –1.0 Pulse Test –0.8 –0.6 I D = –5 A –0.4 –2 A –0.2 –1 A 0.2 V GS = –4 V 0.1 V GS= –10 V 0.05 0.02 0.01 0 –4 –8 –12 –16 –0.1 –0.2 –0.5 –1 –20 Gain to Source Voltage V GS (V) Static Drain to Source on State Resistance vs. Temperature Pulse Test 0.32 I D = –5 A 0.24 –2 A –1 A 0.16 VGS = –4 V 0.08 VGS = –10 V –5 A –2 A –1 A 0 –40 0 40 80 120 Case Temperature Tc (°C) 160 –5 –10 –20 –50 Foeward Transfer Admittance vs. Drain Current Forward Transfer Admittance |yfs| (S) Static Drain to Source on State Resistance R DS(on) (Ω) 0.4 –2 Drain Current I D (A) 20 10 V DS = –10 V Pulse Test 5 Tc = 75 °C 25 °C 2 –25 °C 1 0.5 –0.1 –0.2 –0.5 –1 –2 Drain Current I D (A) –5 –10 2SJ318 L , 2SJ318 S Body–Drain Diode Reverse Recovery Time t rr (ns) Body–Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 200 2000 1000 Capacitance C (pF) 100 50 di / dt = 20 A / µs V GS = 0 Ta = 25 °C 20 10 –0.1 –0.2 Ciss 500 Coss 200 50 10 –0.5 –1 –2 –5 –10 0 I D = –5 A V DD = –5 V –10 V –20 V –40 –12 –16 –50 0 –8 –20 8 16 24 32 Gate Charge Qg (nc) 40 V GS = –10 V, V DD = –10 V PW = 2 µs, duty < 1 % Switching Time t (ns) V DS V GS –4 Gate to Source Voltage VGS (V) Drain to Source Voltage V DS (V) –30 500 0 V DD = –5 V –10 V –20 V –4 –8 –12 –16 –20 Drain to Source Voltage V DS (V) Switching Characteristics Dynamic Input Characteristics 0 –20 VGS = 0 f = 1MHz 20 Reverse Drain Current I DR (A) –10 Crss 100 200 100 tf 50 t d(off) tr 20 t d(on) 10 5 –0.05 –0.1 –0.2 –0.5 –1 –2 Drain Current I D (A) –5 –10 2SJ318 L , 2SJ318 S Reverse Drain Current vs. Source to Drain Voltage –8 –10 V Pulse Test –6 –5 V –4 –2 VGS = 0, 5 V 0 –0.4 –0.8 –1.2 –1.6 –2.0 Source to Drain Forward Voltage Normalized Transient Thermal Impedance vs. Pulse Width 3 Normalized Transient Thermal Impedance γ s (t) Reverse Drain Current I DR (A) –10 Tc = 25°C 1 0.3 0.1 0.03 D=1 0.5 0.2 0.1 0.05 θ ch – c(t) = γ s (t) • θ ch – c θ ch – c = 6.25 °C/W, Tc = 25 °C 0.02 e uls 1 0.0 PDM P ot D= h 1s PW T PW T 0.01 10 µ 100 µ 1m 10 m Pulse Width 100 m PW (S) 1 10 2SJ318 L , 2SJ318 S Switching Time Test Circuit Waveforms Vout Monitor Vin Monitor Vin 10% D.U.T. RL 90% Vin –10 V 50Ω V DD = –10 V 90% 90% Vout td(on) 10% 10% tr td(off) tf