ETC 2SJ318S

2SJ318 L , 2SJ318 S
Silicon P Channel MOS FET
Application
DPAK–1
High speed power switching
4
4
Features
Low on–resistance
High speed switching
Low drive current
4 V gate drive device can be driven from
5 V source
• Suitable for Switching regulator, DC – DC
converter
12
•
•
•
•
3
2, 4
12
3
1
1. Gate
2. Drain
3. Source
4. Drain
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–20
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–5
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–20
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–5
A
———————————————————————————————————————————
Channel dissipation
Pch**
20
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at Tc = 25°C
2SJ318 L , 2SJ318 S
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–20
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–100
µA
VDS = –16 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.25
V
ID = –1 mA, VDS = –10 V
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.09
0.13
Ω
ID = –3 A
VGS = –10 V *
————————————————————————
—
0.14
0.19
Ω
ID = –3 A
VGS = –4 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
3.5
5.5
—
S
ID = –3 A
VDS = –10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
580
—
pF
VDS = –10 V
————————————————————————————————
Output capacitance
Coss
—
520
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
215
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
10
—
ns
ID = –3 A
————————————————————————————————
Rise time
tr
—
60
—
ns
————————————————————————————————
Turn–off delay time
td(off)
—
75
—
ns
VGS = –10 V
RL = 3.3 Ω
————————————————————————————————
Fall time
tf
—
75
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
VDF
—
–1.1
—
V
IF = –5 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
65
—
µs
IF = –5 A, VGS = 0,
diF / dt = 50 A / µs
———————————————————————————————————————————
* Pulse Test
2SJ318 L , 2SJ318 S
Maximum Safe Oeparation Area
Power vs. Temperature Derating
–30
(A)
–10
10
5
DC
at
=
ion
–3
10 µs
100 µs
1m
s
10
m
s(
1s
(T
c=
25
t)
°C
)
Operation in this area
is limited by R DS(on)
–1
ho
–0.3
Ta = 25 °C
0
50
100
150
Case Temperature
200
–0.1
–0.3
–4 V
Drain Current I D (A)
–3.5 V
–4
–3 V
–4
–6
–8
V DS (V)
VDS = –10 V
Pulse Test
–6
–4
–2
VGS = –2.5 V
–2
–30
Pulse Test
–6
0
–10
–10
–5 V
–2
–3
Typical Transfer Characteristics
–10
–8
–1
Drain to Source Voltage
Ta (°C)
Typical Output Charactristics
–10V
Drain Current I D (A)
PW
Op
er
ID
15
Drain Current
Channel Dissipation
Pch (W)
20
75 °C
25 °C
–8
–10
Drain to Source Voltage V DS (V)
0
Tc = –25 °C
–1
–2
–3
–4
–5
Gain to Source Voltage V GS (V)
3
2SJ318 L , 2SJ318 S
Static Drain to Source on State Resistance
vs. Drain Current
0.5
Pusle Test
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Static Drain to Source State Resistance
R DS(on) (Ω)
Drain to Source Saturation Voltage
V DS(on) (V)
–1.0
Pulse Test
–0.8
–0.6
I D = –5 A
–0.4
–2 A
–0.2
–1 A
0.2
V GS = –4 V
0.1
V GS= –10 V
0.05
0.02
0.01
0
–4
–8
–12
–16
–0.1 –0.2 –0.5 –1
–20
Gain to Source Voltage V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
Pulse Test
0.32
I D = –5 A
0.24
–2 A
–1 A
0.16
VGS = –4 V
0.08
VGS = –10 V
–5 A
–2 A
–1 A
0
–40
0
40
80
120
Case Temperature Tc (°C)
160
–5 –10 –20 –50
Foeward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |yfs| (S)
Static Drain to Source on State
Resistance R DS(on) (Ω)
0.4
–2
Drain Current I D (A)
20
10
V DS = –10 V
Pulse Test
5
Tc = 75 °C
25 °C
2
–25 °C
1
0.5
–0.1 –0.2
–0.5
–1
–2
Drain Current I D (A)
–5
–10
2SJ318 L , 2SJ318 S
Body–Drain Diode Reverse Recovery Time
t rr (ns)
Body–Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
200
2000
1000
Capacitance C (pF)
100
50
di / dt = 20 A / µs
V GS = 0
Ta = 25 °C
20
10
–0.1 –0.2
Ciss
500
Coss
200
50
10
–0.5
–1
–2
–5
–10
0
I D = –5 A
V DD = –5 V
–10 V
–20 V
–40
–12
–16
–50
0
–8
–20
8
16
24
32
Gate Charge Qg (nc)
40
V GS = –10 V, V DD = –10 V
PW = 2 µs, duty < 1 %
Switching Time t (ns)
V DS
V GS
–4
Gate to Source Voltage VGS (V)
Drain to Source Voltage V DS (V)
–30
500
0
V DD = –5 V
–10 V
–20 V
–4
–8
–12
–16
–20
Drain to Source Voltage V DS (V)
Switching Characteristics
Dynamic Input Characteristics
0
–20
VGS = 0
f = 1MHz
20
Reverse Drain Current I DR (A)
–10
Crss
100
200
100
tf
50
t d(off)
tr
20
t d(on)
10
5
–0.05 –0.1 –0.2
–0.5 –1
–2
Drain Current I D (A)
–5
–10
2SJ318 L , 2SJ318 S
Reverse Drain Current vs.
Source to Drain Voltage
–8
–10 V
Pulse Test
–6
–5 V
–4
–2
VGS = 0, 5 V
0
–0.4
–0.8
–1.2
–1.6
–2.0
Source to Drain Forward Voltage
Normalized Transient Thermal Impedance vs. Pulse Width
3
Normalized Transient Thermal Impedance
γ s (t)
Reverse Drain Current I DR (A)
–10
Tc = 25°C
1
0.3
0.1
0.03
D=1
0.5
0.2
0.1
0.05
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 6.25 °C/W, Tc = 25 °C
0.02
e
uls
1
0.0
PDM
P
ot
D=
h
1s
PW
T
PW
T
0.01
10 µ
100 µ
1m
10 m
Pulse Width
100 m
PW (S)
1
10
2SJ318 L , 2SJ318 S
Switching Time Test Circuit
Waveforms
Vout
Monitor
Vin Monitor
Vin
10%
D.U.T.
RL
90%
Vin
–10 V 50Ω
V DD
= –10 V
90%
90%
Vout
td(on)
10%
10%
tr
td(off)
tf