IRF IRF6613

PD - 95881
IRF6613
l
l
l
l
l
l
l
HEXFET® Power MOSFET
Application Specific MOSFETs
Ideal for Synchronous Rectification in Isolated
DC-DC Converters
Low Conduction Losses
Low Switching Losses
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible
Compatible with existing Surface Mount Techniques
VDSS
RDS(on) max
Qg(typ.)
40V
3.4mΩ@VGS = 10V
42nC
4.1mΩ@VGS = 4.5V
DirectFET™ ISOMETRIC
MT
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6613 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6613 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6613 has been optimized for parameters that are critical in synchronous buck converters including
Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6613 offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TC = 25°C
PD @TA = 25°C
PD @TA = 70°C
EAS
IAR
TJ
TSTG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
c
Pulsed Drain Current
Power Dissipation
Power Dissipation
Power Dissipation
Single Pulse Avalanche Energy
Avalanche Current
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
g
c
d
f
Max.
Units
40
±20
150
23
18
180
89
2.8
1.8
200
18
0.022
-40 to + 150
V
A
W
mJ
A
W/°C
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
fj
gj
hj
ij
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Notes  through ˆ are on page 2
www.irf.com
1
8/18/04
IRF6613
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
40
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
38
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
2.6
3.4
–––
3.1
4.1
V
mV/°C Reference to 25°C, ID = 1mA
mΩ
Gate Threshold Voltage
1.35
–––
2.25
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.8
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
µA
IGSS
–––
–––
1.0
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
VGS = 10V, ID = 23A e
VGS = 4.5V, ID = 18A e
VGS(th)
–––
Conditions
VGS = 0V, ID = 250µA
VDS = VGS, ID = 250µA
VDS = 32V, VGS = 0V
VDS = 32V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 18A
gfs
Forward Transconductance
93
–––
–––
Qg
Total Gate Charge
–––
42
63
Qgs1
Pre-Vth Gate-to-Source Charge
–––
11.5
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
3.3
–––
Qgd
Gate-to-Drain Charge
–––
12.6
–––
ID = 18A
Qgodr
Gate Charge Overdrive
–––
14.6
–––
See Fig. 6 and 16
Qsw
Switch Charge (Qgs2 + Qgd)
–––
15.9
–––
Qoss
Output Charge
–––
22
–––
td(on)
Turn-On Delay Time
–––
18
–––
VDD = 16V, VGS = 4.5Ve
tr
Rise Time
–––
47
–––
ID = 18A
td(off)
Turn-Off Delay Time
–––
27
–––
tf
Fall Time
–––
4.9
–––
Ciss
Input Capacitance
–––
5950
–––
Coss
Output Capacitance
–––
990
–––
Crss
Reverse Transfer Capacitance
–––
460
–––
VDS = 20V
nC
nC
ns
VGS = 4.5V
VDS = 16V, VGS = 0V
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
Min.
Typ. Max. Units
Conditions
D
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
–––
–––
180
VSD
(Body Diode)c
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 18A, VGS = 0V e
trr
Reverse Recovery Time
–––
38
57
ns
TJ = 25°C, IF = 18A
Qrr
Reverse Recovery Charge
–––
42
63
nC
di/dt = 100A/µs e
–––
–––
3.5
MOSFET symbol
A
showing the
integral reverse
G
S
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.2mH,
RG = 25Ω, IAS = 18A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
2
… Used double sided cooling, mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of
part.
ˆ Rθ is measured at TJ of approximately 90°C.
www.irf.com
IRF6613
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
2.7V
10
≤ 60µs PULSE WIDTH
Tj = 25°C
BOTTOM
100
2.7V
≤ 60µs PULSE WIDTH
Tj = 150°C
1
10
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000.0
2.0
RDS(on) , Drain-to-Source On Resistance
100.0
TJ = 150°C
10.0
TJ = 25°C
1.0
VDS = 15V
≤ 60µs PULSE WIDTH
0.1
1.5
2.0
ID = 23A
VGS = 10V
1.5
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
2.5
3.0
3.5
1.0
0.5
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
100000
20
40
60
80 100 120 140 160
Fig 4. Normalized On-Resistance vs. Temperature
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
VGS, Gate-to-Source Voltage (V)
ID= 18A
Coss = Cds + Cgd
10000
Ciss
Coss
1000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
Crss
VDS = 32V
VDS= 20V
10
8
6
4
2
0
100
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF6613
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.0
100.0
TJ = 150°C
10.0
TJ = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
10
100µsec
1
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
10msec
0.01
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0
1
VSD , Source-to-Drain Voltage (V)
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
150
VGS(th) Gate threshold Voltage (V)
2.5
120
ID , Drain Current (A)
1msec
90
60
30
0
2.0
ID = 250µA
1.5
1.0
0.5
25
50
75
100
125
150
-75
-50
-25
T J , Junction Temperature (°C)
0
25
50
75
100
125
150
TJ , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
0.1
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τC
τ
τ3
τ2
τ3
τ4
τi (sec)
Ri (°C/W)
R4
R4
τ4
0.6784
0.00086
17.299
0.57756
17.566
Ci= τi/Ri
Ci i/Ri
9.4701
8.94
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
1000
7.0
EAS, Single Pulse Avalanche Energy (mJ)
RDS (on), Drain-to -Source On Resistance (mΩ)
IRF6613
ID = 23A
6.0
5.0
TJ = 125°C
4.0
3.0
TJ = 25°C
2.0
2.0
4.0
6.0
8.0
ID
6.7A
8.1A
BOTTOM 18A
TOP
800
600
400
200
0
10.0
25
50
VGS, Gate-to-Source Voltage (V)
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy Vs. Drain Current
15V
LD
VDS
DRIVER
L
VDS
+
VDD -
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 13a. Unclamped Inductive Test Circuit
V(BR)DSS
Fig 14a. Switching Time Test Circuit
VDS
tp
90%
10%
VGS
td(on)
I AS
Fig 13b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
tr
td(off)
Fig 14b. Switching Time Waveforms
Id
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
VGS
Vgs(th)
3mA
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Fig 15. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 16. Gate Charge Waveform
5
IRF6613
D.U.T
Driver Gate Drive
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
VDD
+
Re-Applied
Voltage
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
InductorCurent
Current
Inductor
VDD
Forward Drop
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
1- Drain
2- Drain
3- Source
4- Source
5- Gate
6- Drain
7- Drain
6
3
1
5
7
6
4
2
www.irf.com
IRF6613
DirectFET™ Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
NOTE: CONTROLLING
DIMENSIONS ARE IN MM
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.82
E
0.78
0.92
F
0.88
1.82
G
1.78
H
0.98 1.02
0.67
J
0.63
K
O.88 1.01
2.63
L
2.46
0.70
M
0.59
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.031
0.035
0.070
0.039
0.025
0.035
0.097
0.023
0.001
0.003
MAX
0.250
0.199
0.156
0.018
0.032
0.036
0.072
0.040
0.026
0.039
0.104
0.028
0.003
0.007
DirectFET™ Part Marking
www.irf.com
7
IRF6613
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6613). For 1000 parts on 7" reel,
order IRF6613TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MAX
MIN
MIN
CODE
MAX
MIN
MIN
MAX
MAX
N.C
6.9
A
12.992
N.C
330.0
177.77 N.C
N.C
0.75
0.795
B
N.C
20.2
N.C
19.06
N.C
N.C
0.53
C
0.504
0.50
12.8
0.520
13.5
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
2.31
E
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.47
0.488
N.C
12.4
11.9
0.567
14.4
12.01
H
0.47
0.469
N.C
11.9
11.9
0.606
15.4
12.01
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.8/04
8
www.irf.com