PD - 95881 IRF6613 l l l l l l l HEXFET® Power MOSFET Application Specific MOSFETs Ideal for Synchronous Rectification in Isolated DC-DC Converters Low Conduction Losses Low Switching Losses Low Profile (<0.7 mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques VDSS RDS(on) max Qg(typ.) 40V 3.4mΩ@VGS = 10V 42nC 4.1mΩ@VGS = 4.5V DirectFET ISOMETRIC MT Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details) SQ SX ST MQ MX MT Description The IRF6613 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6613 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6613 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6613 offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM PD @TC = 25°C PD @TA = 25°C PD @TA = 70°C EAS IAR TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V c Pulsed Drain Current Power Dissipation Power Dissipation Power Dissipation Single Pulse Avalanche Energy Avalanche Current Linear Derating Factor Operating Junction and Storage Temperature Range g g c d f Max. Units 40 ±20 150 23 18 180 89 2.8 1.8 200 18 0.022 -40 to + 150 V A W mJ A W/°C °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB fj gj hj ij Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Notes through are on page 2 www.irf.com 1 8/18/04 IRF6613 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 40 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 38 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 2.6 3.4 ––– 3.1 4.1 V mV/°C Reference to 25°C, ID = 1mA mΩ Gate Threshold Voltage 1.35 ––– 2.25 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.8 ––– mV/°C IDSS Drain-to-Source Leakage Current µA IGSS ––– ––– 1.0 ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 VGS = 10V, ID = 23A e VGS = 4.5V, ID = 18A e VGS(th) ––– Conditions VGS = 0V, ID = 250µA VDS = VGS, ID = 250µA VDS = 32V, VGS = 0V VDS = 32V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 18A gfs Forward Transconductance 93 ––– ––– Qg Total Gate Charge ––– 42 63 Qgs1 Pre-Vth Gate-to-Source Charge ––– 11.5 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 3.3 ––– Qgd Gate-to-Drain Charge ––– 12.6 ––– ID = 18A Qgodr Gate Charge Overdrive ––– 14.6 ––– See Fig. 6 and 16 Qsw Switch Charge (Qgs2 + Qgd) ––– 15.9 ––– Qoss Output Charge ––– 22 ––– td(on) Turn-On Delay Time ––– 18 ––– VDD = 16V, VGS = 4.5Ve tr Rise Time ––– 47 ––– ID = 18A td(off) Turn-Off Delay Time ––– 27 ––– tf Fall Time ––– 4.9 ––– Ciss Input Capacitance ––– 5950 ––– Coss Output Capacitance ––– 990 ––– Crss Reverse Transfer Capacitance ––– 460 ––– VDS = 20V nC nC ns VGS = 4.5V VDS = 16V, VGS = 0V Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter Min. Typ. Max. Units Conditions D IS Continuous Source Current ISM (Body Diode) Pulsed Source Current ––– ––– 180 VSD (Body Diode)c Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 18A, VGS = 0V e trr Reverse Recovery Time ––– 38 57 ns TJ = 25°C, IF = 18A Qrr Reverse Recovery Charge ––– 42 63 nC di/dt = 100A/µs e ––– ––– 3.5 MOSFET symbol A showing the integral reverse G S Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.2mH, RG = 25Ω, IAS = 18A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. 2 Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. www.irf.com IRF6613 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 2.7V 10 ≤ 60µs PULSE WIDTH Tj = 25°C BOTTOM 100 2.7V ≤ 60µs PULSE WIDTH Tj = 150°C 1 10 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000.0 2.0 RDS(on) , Drain-to-Source On Resistance 100.0 TJ = 150°C 10.0 TJ = 25°C 1.0 VDS = 15V ≤ 60µs PULSE WIDTH 0.1 1.5 2.0 ID = 23A VGS = 10V 1.5 (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 2.5 3.0 3.5 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 100000 20 40 60 80 100 120 140 160 Fig 4. Normalized On-Resistance vs. Temperature 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd VGS, Gate-to-Source Voltage (V) ID= 18A Coss = Cds + Cgd 10000 Ciss Coss 1000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V Crss VDS = 32V VDS= 20V 10 8 6 4 2 0 100 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6613 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 100.0 TJ = 150°C 10.0 TJ = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 10 100µsec 1 0.1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 10msec 0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 1 VSD , Source-to-Drain Voltage (V) 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 150 VGS(th) Gate threshold Voltage (V) 2.5 120 ID , Drain Current (A) 1msec 90 60 30 0 2.0 ID = 250µA 1.5 1.0 0.5 25 50 75 100 125 150 -75 -50 -25 T J , Junction Temperature (°C) 0 25 50 75 100 125 150 TJ , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ3 τ2 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 0.6784 0.00086 17.299 0.57756 17.566 Ci= τi/Ri Ci i/Ri 9.4701 8.94 106 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com 1000 7.0 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (mΩ) IRF6613 ID = 23A 6.0 5.0 TJ = 125°C 4.0 3.0 TJ = 25°C 2.0 2.0 4.0 6.0 8.0 ID 6.7A 8.1A BOTTOM 18A TOP 800 600 400 200 0 10.0 25 50 VGS, Gate-to-Source Voltage (V) 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS Fig 14a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 13b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. tr td(off) Fig 14b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 15. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 16. Gate Charge Waveform 5 IRF6613 D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + VDD + Re-Applied Voltage - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode InductorCurent Current Inductor VDD Forward Drop ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 3 1 5 7 6 4 2 www.irf.com IRF6613 DirectFET Outline Dimension, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS NOTE: CONTROLLING DIMENSIONS ARE IN MM METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.82 E 0.78 0.92 F 0.88 1.82 G 1.78 H 0.98 1.02 0.67 J 0.63 K O.88 1.01 2.63 L 2.46 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.023 0.001 0.003 MAX 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.028 0.003 0.007 DirectFET Part Marking www.irf.com 7 IRF6613 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6613). For 1000 parts on 7" reel, order IRF6613TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MAX MIN MIN CODE MAX MIN MIN MAX MAX N.C 6.9 A 12.992 N.C 330.0 177.77 N.C N.C 0.75 0.795 B N.C 20.2 N.C 19.06 N.C N.C 0.53 C 0.504 0.50 12.8 0.520 13.5 13.2 12.8 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C 2.31 E 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 N.C 11.9 11.9 0.606 15.4 12.01 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.8/04 8 www.irf.com