PD - 96130 IRF6714MPbF IRF6714MTRPbF DirectFET Power MOSFET l l l l l l l l l l Typical values (unless otherwise specified) RoHs Compliant Containing No Lead and Bromide VDSS VGS RDS(on) RDS(on) Low Profile (<0.6 mm) 25V max ±20V max 1.6mΩ@ 10V 2.6mΩ@ 4.5V Dual Sided Cooling Compatible Ultra Low Package Inductance Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Optimized for High Frequency Switching 29nC 8.3nC 4.1nC 36nC 23nC 1.9V Ideal for CPU Core DC-DC Converters Optimized for Sync. FET socket of Sync. Buck Converter Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques 100% Rg tested MX DirectFET ISOMETRIC Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MX MQ MT MP Description The IRF6714MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6714MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6714MPbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6714MPbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Max. Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current ID = 29A 4 3 T J = 125°C 2 1 T J = 25°C 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f VGS, Gate-to-Source Voltage (V) Typical RDS(on) (mΩ) 5 Units 25 ±20 29 23 166 234 175 23 V A mJ A 14 ID= 23A 12 VDS= 20V VDS= 13V 10 8 6 4 2 0 0 10 20 30 40 50 60 70 80 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.651mH, RG = 25Ω, IAS = 23A. 1 09/21/07 IRF6714MPbF Parameter Min. Drain-to-Source Breakdown Voltage 25 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 18 1.6 ––– 2.1 2.6 1.9 3.4 2.4 VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 29A mΩ VGS = 4.5V, ID = 23A V VGS(th) Gate Threshold Voltage ––– 1.4 ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -6.5 ––– ––– 1.0 IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– 150 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 122 ––– ––– -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge ––– ––– 29 9.0 44 ––– Post-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– 4.1 8.3 ––– ––– Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 8.1 12 ––– ––– Output Charge Gate Resistance ––– ––– 23 1.2 ––– 2.2 Turn-On Delay Time Rise Time ––– ––– 18 26 ––– ––– Turn-Off Delay Time Fall Time ––– ––– 13 9.6 ––– ––– Input Capacitance Output Capacitance ––– ––– 3890 1110 ––– ––– Reverse Transfer Capacitance ––– 490 ––– Min. Typ. Max. Units gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Conditions Typ. Max. Units BVDSS V mV/°C i i VDS = VGS, ID = 100µA µA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 13V, ID = 23A nC VDS = 13V VGS = 4.5V ID = 23A See Fig. 15 nC VDS = 16V, VGS = 0V Ω i VDD = 13V, VGS = 4.5V ns ID = 23A RG = 1.8Ω, RD = 0.54Ω See Fig. 17 VGS = 0V pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr g (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ––– ––– Conditions MOSFET symbol 112 A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 23A, VGS = 0V TJ = 25°C, IF = 23A ––– ––– 234 ––– ––– 1.0 V ––– ––– 26 36 39 54 ns nC di/dt = 200A/µs i i Notes: Pulse width ≤ 400µs; duty cycle ≤ 2% 2 www.irf.com IRF6714MPbF Absolute Maximum Ratings c c f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Max. Parameter Units 2.8 1.8 89 270 -40 to + 150 Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range W °C Thermal Resistance Parameter cg dg eg fg RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor c Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 0.022 W/°C Thermal Response ( Z thJA ) 100 10 D = 0.50 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ2 τ1 τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci= τi/Ri 0.01 0.001 1E-006 0.0001 τA 1.3634 τi (sec) 0.000202 7.8361 0.096325 19.8534 1.3861 15.9581 51 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Ri (°C/W) R4 R4 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6714MPbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 VGS 10.0V 5.00V 4.50V 4.00V 3.50V 3.25V 3.00V 2.75V TOP ID, Drain-to-Source Current (A) TOP 100 1 2.75V 0.1 ≤60µs PULSE WIDTH BOTTOM 10 2.75V ≤60µs PULSE WIDTH Tj = 25°C Tj = 150°C 0.01 1 0.1 1 10 100 1000 0.1 VDS, Drain-to-Source Voltage (V) Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) T J = 150°C T J = 25°C T J = -40°C 1 0.1 3 4 1.5 V GS = 10V V GS = 4.5V 1.0 0.5 5 -60 -40 -20 0 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 8.0V Vgs = 10V 16 Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 100000 1000 ID = 29A 100 2 100 2.0 VDS = 15V ≤60µs PULSE WIDTH 1 10 Fig 5. Typical Output Characteristics 1000 10 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 10000 Ciss Coss 1000 Crss 12 T J = 25°C 8 4 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 10.0V 5.00V 4.50V 4.00V 3.50V 3.25V 3.00V 2.75V 0 50 100 150 200 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6714MPbF 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 T J = 150°C T J = 25°C T J = -40°C 10 1 10 1msec 1 DC 0.1 T A = 25°C T J = 150°C VGS = 0V Single Pulse 0 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.01 VSD, Source-to-Drain Voltage (V) Typical VGS(th) Gate threshold Voltage (V) 160 140 120 100 80 60 40 20 0 50 75 100 125 1.00 10.00 100.00 Fig11. Maximum Safe Operating Area 180 25 0.10 VDS, Drain-to-Source Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) 10msec 3.5 3.0 2.5 2.0 ID = 100µA 1.5 1.0 ID = 250µA ID = 1.0mA ID = 1.0A 0.5 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 800 ID 2.43A 3.22A BOTTOM 23.0A 700 TOP 600 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6714MPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T V RGSG 20V DRIVER L VDS tp + - VDD IAS tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) Fig 17a. Switching Time Test Circuit 6 tr t d(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6714MPbF Driver Gate Drive D.U.T + - - RG * • • • • *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + V DD ** + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6714MPbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIM EN SION S METRIC CO DE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 M AX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 IMPE RIAL M IN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 M AX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF6714MPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6714MTRPBF). For 1000 parts on 7" reel, order IRF6714MTR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MAX MAX MIN 12.992 N.C 177.77 N.C 0.795 N.C 19.06 N.C 0.504 0.520 13.5 12.8 0.059 1.5 N.C N.C 3.937 N.C 58.72 N.C N.C N.C 13.50 0.724 0.488 11.9 12.01 0.567 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MAX MIN N.C 6.9 N.C 0.75 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 0.319 8.10 7.90 0.154 0.161 3.90 4.10 0.484 0.469 12.30 11.90 0.215 0.219 5.55 5.45 0.209 0.201 5.30 5.10 0.256 0.264 6.70 6.50 0.059 N.C 1.50 N.C 0.059 0.063 1.60 1.50 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2007 www.irf.com 9