IRF IRF6715MTRPBF

PD - 96117A
IRF6715MPbF
IRF6715MTRPbF
DirectFET™ Power MOSFET ‚
l
l
l
l
l
l
l
l
l
l
Typical values (unless otherwise specified)
RoHs Compliant Containing No Lead and Bromide 
VDSS
VGS
RDS(on)
RDS(on)
Low Profile (<0.6 mm)
25V max ±20V max 1.3mΩ@ 10V 2.1mΩ@ 4.5V
Dual Sided Cooling Compatible 
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
Ultra Low Package Inductance
Optimized for High Frequency Switching 
40nC 12.0nC 5.3nC
37nC
26nC
1.9V
Ideal for CPU Core DC-DC Converters
Optimized for Sync. FET socket of Sync. Buck Converter
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
100% Rg tested
MX
DirectFET™ ISOMETRIC
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MX
MQ
MT
MP
Description
The IRF6715MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6715MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6715MPbF has been optimized for parameters that are critical in synchronous buck
including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6715MPbF offers particularly low Rds(on) and high Cdv/dt
immunity for synchronous FET applications.
Absolute Maximum Ratings
Max.
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
Typical RDS(on) (mΩ)
ID = 34A
3
2
T J = 125°C
1
T J = 25°C
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance Vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
h
4
Units
25
±20
34
27
180
270
200
27
VGS, Gate-to-Source Voltage (V)
VDS
V
A
mJ
A
14.0
ID= 27A
12.0
10.0
VDS= 20V
VDS= 13V
8.0
6.0
4.0
2.0
0.0
0
20
40
60
80
100
120
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.56mH, RG = 25Ω, IAS = 27A.
1
08/15/07
IRF6715MPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
∆VGS(th)/∆TJ
IDSS
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Conditions
Min.
Typ. Max. Units
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
25
–––
–––
17
–––
–––
Static Drain-to-Source On-Resistance
–––
–––
1.3
2.1
1.6
2.7
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
1.4
–––
1.9
-6.2
2.4
–––
Drain-to-Source Leakage Current
–––
–––
–––
–––
1.0
150
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
VDS = 20V, VGS = 0V, TJ = 125°C
VGS = 20V
Forward Transconductance
Total Gate Charge
135
–––
–––
40
–––
59
S
VGS = -20V
VDS = 13V, ID = 27A
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
12
5.3
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
12
11
–––
–––
Output Charge
–––
–––
17
26
–––
–––
Gate Resistance
Turn-On Delay Time
–––
–––
1.1
20
2.0
–––
Ω
Rise Time
Turn-Off Delay Time
–––
–––
31
16
–––
–––
ns
VDD = 13V, VGS = 4.5V
ID = 27A
Fall Time
Input Capacitance
–––
–––
12
5340
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
1280
600
–––
–––
pF
See Fig. 17
VGS = 0V
VDS = 13V
Min.
Typ. Max. Units
V VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 34A
VGS = 4.5V, ID
i
= 27A i
V
VDS = VGS, ID = 100µA
mV/°C
µA VDS = 20V, VGS = 0V
VDS = 13V
nC
VGS = 4.5V
ID = 27A
See Fig. 15
nC
VDS = 16V, VGS = 0V
i
RG = 1.8Ω
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
–––
ISM
Pulsed Source Current
(Body Diode)
–––
–––
270
VSD
Diode Forward Voltage
–––
–––
1.0
V
trr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
28
37
42
56
ns
nC
Qrr
g
–––
98
A
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 27A, VGS = 0V
TJ = 25°C, IF = 27A
di/dt = 200A/µs
i
i
Notes:
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%
2
www.irf.com
IRF6715MPbF
Absolute Maximum Ratings
e
e
f
Max.
Parameter
Units
2.8
1.8
78
270
-40 to + 150
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
W
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.6
–––
°C/W
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τA
τ1
τ2
τ2
τ3
τ4
τ3
Ci= τi/Ri
Ci= τi/Ri
0.01
0.001
1E-006
0.0001
Ri (°C/W)
τi (sec)
0.9810
0.000229
3.1819
0.014154
22.8717
1.0333
17.9602
40.9
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
τ4
τA
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
Notes:
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
Š Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6715MPbF
1000
1000
100
10
BOTTOM
1
0.1
2.5V
0.01
≤60µs PULSE WIDTH
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
100
BOTTOM
10
2.5V
1
≤60µs PULSE WIDTH
Tj = 25°C
Tj = 150°C
0.1
0.001
0.1
1
10
100
0.1
1000
10
100
1000
Fig 5. Typical Output Characteristics
2.0
1000
ID = 34A
VDS = 15V
≤60µs PULSE WIDTH
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
1.5
V GS = 10V
V GS = 4.5V
1.0
0.5
0.1
1
2
3
4
5
20
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 8.0V
Vgs = 10V
16
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Crss
12
8
4
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
40
80
120
160
200
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6715MPbF
10000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
T J = 25°C
T J = -40°C
100µsec
100
10
1
10
1msec
1
DC
0.1
VGS = 0V
0
0.01
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.01
0.10
VSD, Source-to-Drain Voltage (V)
Typical VGS(th) Gate threshold Voltage (V)
180
160
140
120
100
80
60
40
20
0
50
75
100
125
10.00
100.00
Fig11. Maximum Safe Operating Area
200
25
1.00
VDS, Drain-to-Source Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
3.0
2.5
2.0
1.5
ID = 100µA
ID = 250µA
ID = 1.0mA
1.0
ID = 1.0A
0.5
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
900
EAS , Single Pulse Avalanche Energy (mJ)
ID, Drain Current (A)
10msec
T A = 25°C
T J = 150°C
Single Pulse
ID
TOP
2.74A
3.70A
BOTTOM 27A
800
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6715MPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
V
RGSG
20V
DRIVER
L
VDS
tp
+
- VDD
IAS
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
V DS
VGS
RG
A
RD
VDS
90%
D.U.T.
+
- VDD
V GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6715MPbF
Driver Gate Drive
D.U.T
ƒ
+
„
-
-

RG
*
•
•
•
•
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
V DD
**
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET™ Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6715MPbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN
MAX
A
6.35
6.25
B
5.05
4.80
C
3.95
3.85
D
0.45
0.35
E
0.72
0.68
F
0.72
0.68
G
1.42
1.38
H
0.84
0.80
J
0.42
0.38
K
1.01
0.88
L
2.41
2.28
M
0.616 0.676
R
0.020 0.080
P
0.17
0.08
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.0274
0.0031
0.007
DirectFET™ Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
8
www.irf.com
IRF6715MPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6715MTRPBF). For 1000 parts on 7"
reel, order IRF6715MTR1PBF
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
N.C
330.0
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
MIN
MAX
12.992
6.9
N.C
N.C
177.77 N.C
0.795
0.75
N.C
N.C
19.06
N.C
0.504
0.53
13.5
0.50
0.520
12.8
0.059
N.C
0.059
N.C
1.5
N.C
3.937
2.31
58.72
N.C
N.C
N.C
N.C
0.53
N.C
0.724
N.C
13.50
0.488
0.47
11.9
N.C
0.567
12.01
0.469
0.47
11.9
0.606
12.01
N.C
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
7.90
0.319
8.10
0.154
3.90
4.10
0.161
0.469
0.484
11.90
12.30
0.215
5.45
5.55
0.219
0.201
0.209
5.10
5.30
0.256
6.50
6.70
0.264
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2007
www.irf.com
9