PD -91690A IRG4IBC30KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Short Circuit Rated UltraFast IGBT C • High switching speed optimized for up to 25kHz with low VCE(on) • Short Circuit Rating 10µs @ 125°C, VGE = 15V • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220 FULLPAK VCES = 600V VCE(on) typ. = 2.21V G @VGE = 15V, IC = 9.2A E n-ch an nel Benefits • Generation 4 IGBTs offer highest efficiencies available maximizing the power density of the system • IGBT's optimized for specific application conditions • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise EMI • Designed to exceed the power handling capability of equivalent industry-standard IGBT TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VISOL VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current QU Clamped Inductive Load Current RU Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 17 9.2 34 34 9.2 34 10 2500 ± 20 45 18 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– ––– ––– 2.0 (0.07) 2.8 3.7 65 ––– Units °C/W g (oz) 1 4/24/2000 IRG4IBC30KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown VoltageS 600 — — V Temperature Coeff. of Breakdown Voltage — 0.54 — V/°C Collector-to-Emitter Saturation Voltage — 2.21 2.7 — 2.88 — V — 2.36 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -12 — mV/°C Forward Transconductance T 5.4 8.1 — S Zero Gate Voltage Collector Current — — 250 µA — — 2500 Diode Forward Voltage Drop — 1.4 1.7 V — 1.3 1.6 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 16A VGE = 15V See Fig. 2, 5 IC = 28A IC = 16A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 16A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 12A See Fig. 13 IC = 12A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 67 100 IC = 16A 11 16 nC VCC = 400V See Fig.8 25 37 VGE = 15V 60 — 42 — TJ = 25°C ns 160 250 IC = 16A, VCC = 480V 80 120 VGE = 15V, RG = 23Ω 0.60 — Energy losses include "tail" 0.58 — mJ and diode reverse recovery 1.18 1.6 See Fig. 9,10,14 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10Ω , VCPK < 500V 58 — TJ = 150°C, See Fig. 10,11,18 42 — IC = 16A, VCC = 480V ns 210 — VGE = 15V, RG = 23Ω 160 — Energy losses include "tail" 1.69 — mJ and diode reverse recovery 7.5 — nH Measured 5mm from package 920 — VGE = 0V 110 — pF VCC = 30V See Fig. 7 27 — ƒ = 1.0MHz 42 60 ns TJ = 25°C See Fig. 80 120 TJ = 125°C 14 IF = 12A 3.5 6.0 A TJ = 25°C See Fig. 5.6 10 TJ = 125°C 15 VR = 200V 80 180 nC TJ = 25°C See Fig. 220 600 TJ = 125°C 16 di/dt = 200Aµs 180 — A/µs TJ = 25°C See Fig. 160 — TJ = 125°C 17 www.irf.com IRG4IBC30KD 12 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified LOAD CURRENT (A) 10 8 P ow e r Dis sip ation = 13 W S q u a re w a v e : 6 0% of rate d volta ge 6 I 4 Id e a l d io d e s 2 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 o C TJ = 150 o C 10 1 V = 15V 20µs PULSE WIDTH GE 0.1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 o C 10 TJ = 25 oC 1 V = 50V 5µs PULSE WIDTH CC 0.1 5 10 15 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC30KD 4.0 V = 15V 80 us PULSE WIDTH GE VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 20 15 10 5 25 50 75 100 125 150 I C = 16 A I C = 8.0A 8A 2.0 0 20 40 60 80 100 120 140 160 , Junction Temperature ( °C) TT J J, Junction Temperature ( °C ) TC , Case Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature 3.0 1.0 -60 -40 -20 0 I C = 32 A Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 P DM 0.1 0.01 0.00001 0.02 t1 0.01 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30KD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 1200 Cies 900 600 C oes 300 20 VGE , Gate-to-Emitter Voltage (V) 1500 VCC = 400V I C = 16A 16 12 8 4 C res 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 V CC = 480V V GE = 15V TJ = 25 ° C 1.40 I C = 16A 1.30 1.20 1.10 1.00 0 10 20 30 40 RG, ,Gate Gate Resistance Resistance ((Ohm) Ω) RG Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 60 80 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 1.50 20 QG , Total Gate Charge (nC) 50 RG = Ohm 23Ω VGE = 15V VCC = 480V IC = 32 A IC = 16 A 1 IC = 8.0A 8A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC30KD RG TJ VCC 4.0 VGE Ω = 23 Ohm = 150 ° C = 480V = 15V 100 I C , Collector Current (A) Total Switching Losses (mJ) 5.0 3.0 2.0 VGE = 20V T J = 125 o C 10 1.0 SAFE OPERATING AREA 1 0.0 0 8 16 24 32 1 40 10 100 1000 VCE , Collector-to-Emitter Voltage (V) I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Insta ntane ous Forward C urrent - I F (A ) 100 TJ = 15 0°C TJ = 12 5°C 10 TJ = 2 5°C 1 0.4 0.8 1.2 1.6 2.0 2.4 Fo rwa rd V oltage D rop - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4IBC30KD 100 160 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 120 I IR R M - (A ) t rr - (ns) I F = 24 A I F = 1 2A 80 I F = 6 .0 A I F = 2 4A I F = 1 2A 10 I F = 6 .0A 40 0 100 d i f /d t - (A /µ s) 1 100 1000 1000 di f /dt - (A /µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 600 10000 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C d i(re c )M /d t - (A /µ s) VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C Q R R - (n C ) 400 I F = 24 A I F = 12 A 200 1000 IF = 6.0 A I F = 12 A 100 I F = 2 4A I F = 6.0 A 0 100 d i f /dt - (A /µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 10 100 1000 d i f /d t - (A /µ s) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4IBC30KD 90% Vge Same ty pe device as D .U.T. +Vge V ce 430µF 80% of Vce D .U .T. Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf E o ff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1 + 5 µ S V c e icIcd tdt Vce t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Ic ddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt Vce E on = V t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVc d idIcd t dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4IBC30KD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4IBC30KD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. U Uses IRG4BC30KD data and test conditions Case Outline — TO-220 FULLPAK 1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) 4 .8 0 (.1 8 9 ) 4 .6 0 (.1 8 1 ) -A 3 .7 0 (.1 4 5 ) 3 .2 0 (.1 2 6 ) 1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 ) 2 .8 0 (.1 1 0 ) 2 .6 0 (.1 0 2 ) L E A DASSIGMENTS A S S IG N M E N T S LEAD 1 - GA TE 1- GATE 2 - D R A IN 2- COLLECTOR 3- EMITTER 3 - SOURCE 7 .1 0 (.2 8 0 ) 6 .7 0 (.2 6 3 ) 1 .1 5 (.0 4 5) M IN . NOTES : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4.5 M , 1 9 8 2 1 2 3 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 .3 0 (.1 3 0 ) 3 .1 0 (.1 2 2 ) -B - 1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C A 1 .4 0 (.0 5 5 ) 3X 1 .0 5 (.0 4 2 ) 0 .9 0 (.0 35 ) 3 X 0 .7 0 (.0 28 ) 0 .2 5 (.0 1 0 ) 2 .5 4 (.1 0 0 ) 2X 3X M A M B 0 .4 8 (.0 1 9 ) 0 .4 4 (.0 1 7 ) 2 .8 5 (.1 1 2 ) 2 .6 5 (.1 0 4 ) D B M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 (.1 89 ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00 10 www.irf.com