PD - 97154 IRGI4045DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • Low VCE (on) Trench IGBT Technology Low Switching Losses 5μs SCSOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package IC = 6.0A, TC = 100°C G tsc > 5µs, Tjmax = 150°C E VCE(on) typ. = 1.70V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI E C G TO-220AB Full-Pak G Gate C Collector E Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C IF@TC=100°C IFM VGE PD @ TC =25°C PD @ TC =100°C TJ TSTG 600 11 6 18 24 11 6 24 ± 20 ± 30 33 13 Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current, VGE=15V Clamped Inductive Load Current, VGE=20V c Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Units Max. V A V W °C -55 to + 150 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 Min. Typ. Max. Junction-to-Case - IGBT e Junction-to-Case - Diode e — — — — 3.76 9.00 Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount e — 0.5 — — — 65 Weight — 2.0 — Units °C/W g www.irf.com 5/22/09 IRGI4045DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — V ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 0.75 — V/°C — 1.70 2.0 — 2.01 — — 2.10 — VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage 4.0 6.5 ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — -14 gfe Forward Transconductance — 3.5 ICES VFM IGES Collector-to-Emitter Leakage Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current — — Conditions VGE = 0V,Ic =100 μA f VGE = 0V, Ic = 250 μA ( -55°C to 150 oC ) IC = 6A, VGE = 15V, TJ = 25°C V f IC = 6A, VGE = 15V, TJ = 125°C IC = 6A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 150 μA o mV/°C VCE = VGE, IC = 1.0mA ( -55°C to 150 C ) VCE = 50V, IC = 6A, PW =80μs S — — 25 μA VGE = 0V,VCE = 600V — — 250 μA VGE = 0v, VCE = 600V, TJ =150°C — 1.60 2.3 V IF = 6A — 1.33 — — — ±100 IF = 6A, TJ = 150°C nA VGE = ± 20 V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Qg Total Gate Charge (turn-on) Parameter — 13 20 Qge Gate-to-Emitter Charge (turn-on) — 3.3 5.0 Qgc Gate-to-Collector Charge (turn-on) — 5.9 8.9 Eon Turn-On Switching Loss — 64 169 Eoff Turn-Off Switching Loss — 123 229 Etotal Total Switching Loss — 187 296 td(on) Turn-On delay time — 26 35 22 tr Rise time — 13 td(off) Turn-Off delay time — 73 84 tf Fall time — 19 28 — 126 — Eon Turn-On Switching Loss Eoff Turn-Off Switching Loss — 169 — Etotal Total Switching Loss — 294 — td(on) Turn-On delay time — 25 — tr Rise time — 13 — td(off) Turn-Off delay time — 86 — tf Fall time — 30 — Cies Input Capacitance — 354 — Coes Output Capacitance — 29 — Cres Reverse Transfer Capacitance — 9.4 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE Units Conditions IC = 6A nC VCC = 400V VGE = 15V IC = 6A, VCC = 400V, VGE = 15V μJ RG = 47Ω, L=1mH, LS= 150nH, TJ = 25°C Energy losses include tail and diode reverse recovery IC = 6A, VCC = 400V ns RG = 47Ω, L=1mH, LS= 150nH TJ = 25°C IC = 6A, VCC = 400V, VGE = 15V μJ RG = 47Ω, L=1mH, LS= 150nH, TJ = 150°C Energy losses include tail and diode reverse recovery IC = 6A, VCC = 400V ns RG = 47Ω, L=1mH, LS= 150nH TJ = 150°C VGE = 0V pF VCC = 30V f = 1Mhz TJ = 150°C, IC = 24A VCC = 480V, Vp =600V Rg =47Ω, VGE = +20V to 0V VCC = 400V, Vp =600V SCSOA Short Circuit Safe Operating Area 5 — — μs Erec Reverse recovery energy of the diode — 147 — μJ trr Diode Reverse recovery time — 73 — ns TJ = 150oC VCC = 400V, IF = 6A Irr Peak Reverse Recovery Current — 11 — A VGE = 15V, Rg = 47Ω, L=1mH, LS=150nH RG = 47Ω, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 28 μH, RG = 47 Ω Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guidelines for measuring V(BR)CES safely 2 www.irf.com IRGI4045DPbF 40 12 10 30 Ptot (W) IC (A) 8 6 20 4 10 2 0 0 0 20 40 60 80 100 120 140 160 0 20 40 60 TC (°C) 80 100 120 140 160 TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 100 μs 10 μs IC A) IC (A) 10 1ms 1 DC 1 0.1 0.01 1 10 100 0 1000 10 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VCE = 15V Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 150°C 20 20 16 16 VGE = 18V VGE = 15V 12 VGE = 12V ICE (A) ICE (A) VGE = 18V VGE = 10V VGE = 8.0V 8 4 VGE = 15V 12 VGE = 12V VGE = 10V VGE = 8.0V 8 4 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp <60μs www.irf.com 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp < 60μs 3 IRGI4045DPbF 60 20 VGE = 18V VGE = 15V 50 VGE = 10V 40 VGE = 12V VGE = 8.0V 12 IF (A) ICE (A) 16 30 8 -40°C 25°C 150°C 20 4 10 0 0 0 2 4 6 8 0.0 10 1.0 2.0 Fig. 8 - Typ. Diode Forward Characteristics tp < 60μs 14 14 12 12 10 10 ICE = 3.0A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp < 60μs ICE = 6.0A ICE = 11A 6 ICE = 3.0A 8 ICE = 6.0A ICE = 11A 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 14 12 TJ = -40°C TJ = 25°C 16 TJ = 150°C 10 ICE = 3.0A 8 ICE (A) VCE (V) 4.0 VF (V) VCE (V) 8 3.0 ICE = 6.0A ICE = 11A 6 12 8 4 4 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 4 20 2 4 6 8 10 12 14 16 18 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp < 60μs www.irf.com IRGI4045DPbF 1000 400 Energy (μJ) Swiching Time (ns) EOFF 300 EON 200 tdOFF 100 tF tdON 10 tR 100 0 0 4 8 12 1 16 0 4 8 I C (A) 12 16 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1mH; VCE= 400V RG= 47Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 1mH; VCE = 400V, RG = 47Ω; VGE = 15V. 1000 200 EOFF Swiching Time (ns) 150 Energy (μJ) EON 100 tdOFF 100 tF 50 tdON tR 10 0 0 25 50 75 100 0 125 25 50 75 100 125 RG (Ω) RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 1mH; VCE = 400V, ICE = 6.0A; VGE = 15V 20 Fig. 16- Typ. Switching Time vs. RG TJ = 150°C; L=1mH; VCE= 400V ICE= 6.0A; VGE= 15V 20 RG =10 Ω 16 16 12 IRR (A) IRR (A) RG =22 Ω RG =47 Ω 8 12 RG = 100 Ω 8 4 0 4 0 4 8 12 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C www.irf.com 16 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 6.0A 5 IRGI4045DPbF 20 1100 10Ω 1000 QRR (nC) IRR (A) 12 11A 22Ω 900 16 47 Ω 800 6.0A 100Ω 700 600 500 8 3.0A 400 300 4 500 0 1000 500 diF /dt (A/μs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 150°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 11A; TJ = 150°C 400 42 18 Time (μs) 300 200 10 Ω 22 Ω 47 Ω 100 100 Ω Isc Tsc 16 Energy (μJ) 1000 diF /dt (A/μs) 14 34 12 30 10 26 8 22 6 18 14 4 0 0 2 4 6 8 10 12 8 14 10 12 14 VGE (V) IF (A) 16 18 Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 300V 14 Cies 400V 12 100 VGE (V) Capacitance (pF) 38 Current (A) 0 8 6 Coes 10 10 4 Cres 2 0 1 0 100 200 300 400 VCE (V) Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 500 0 2 4 6 8 10 12 14 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 11A, L=600μH www.irf.com IRGI4045DPbF Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ2 τ1 τ3 τ2 τ3 τ4 τ τ4 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τι (sec) 0.607824 0.000136 0.70386 0.000476 1.013851 0.019288 1.433249 0.82437 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 0.20 1 0.10 0.05 τJ 0.02 0.01 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri R4 R4 τC τ τ3 τ4 τ4 Ri (°C/W) τι (sec) 0.412651 0.000026 3.337349 0.00051 3.051205 0.006671 2.198795 0.64363 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGI4045DPbF L L VCC DUT 0 80 V + - 1K DUT Rg 480V VCC Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) VCC Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force 100K D1 22K C sense 0.0075μ G force DUT E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGI4045DPbF 10 450 18 90% VCE 400 400 8 90% ICE 250 5% ICE 4 5% VCE 100 0 2 8 150 6 10% test current 100 0.8 2 1.3 0 80 VCE 70 4 tRR -2 10% Peak IRR -5 -400 VCE 1 IF (A) VF (V) 450 400 QRR -500 -0.10 0.2 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 7 -200 -300 -2 time (μs) 100 Peak IRR 0 Eon Loss -50 -0.2 Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 -100 4 50 time(μs) 0 10 90% test current 0 -2 0.3 12 200 0 Eoff Loss -100 -0.2 VCE (V) 200 14 tr 300 6 tf TEST CURRENT 350 ICE (A) VCE (V) 300 16 ICE (A) 500 350 60 300 50 ICE 250 40 200 30 150 20 100 10 50 0 -8 0.00 0.10 0.20 -11 0.30 0 -7.E-06 -10 -3.E-06 1.E-06 5.E-06 9.E-06 1.E-05 TIME(S) time (μS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 150°C using CT.4 www.irf.com WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGI4045DPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information EXAMPLE: T HIS IS AN IRFI840G WIT H AS S EMBLY LOT CODE 3432 AS S EMBLED ON WW 24, 2001 IN T HE AS S EMBLY LINE "K" Note: "P" in as sembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFI840G 124K 34 32 DATE CODE YEAR 1 = 2001 WEEK 24 LINE K TO-220 Full-Pak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/09 10 www.irf.com