PD - 97347 IRGI4062DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low switching losses 5 µS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra fast soft Recovery Co-Pak Diode Tight parameter distribution Lead Free Package VCES = 600V IC = 12A, TC = 100°C tSC ≥ 5µs, TJ(max) = 150°C G VCE(on) typ. = 1.34V E n-channel Benefits C • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI E C G TO-220 Full-Pak G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 22 IC @ TC = 100°C Continuous Collector Current 12 ICM 44 ILM Pulse Collector Current Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 c 44 A 22 12 d 44 PD @ TC = 25°C Maximum Power Dissipation 48 PD @ TC = 100°C Maximum Power Dissipation 19 TJ Operating Junction and TSTG Storage Temperature Range V W -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 2.6 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 4.2 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 65 1 www.irf.com 10/14/08 IRGI4062DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.80 — — 1.34 1.58 — 1.49 — VCE(on) Collector-to-Emitter Saturation Voltage Max. Units — 1.54 — VGE(th) Gate Threshold Voltage 4.0 — 6.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -14 — gfe ICES Forward Transconductance — 13 — Collector-to-Emitter Leakage Current — — 25 — — 250 — 1.70 2.05 — 1.22 — — — ±100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 100µA Ref.Fig e CT6 V/°C VGE = 0V, IC = 1mA (-55°C-150°C) IC = 12A, VGE = 15V, TJ = 25°C V CT6 5,6,7 IC = 12A, VGE = 15V, TJ = 125°C 9,10,11 IC = 12A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 700µA 9, 10, mV/°C VCE = VGE, IC = 1.0mA (-55°C - 150°C) S VCE = 50V, IC = 12A, PW = 80µs µA 11, 12 VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C V IF = 12A 8 IF = 12A, TJ = 150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 48 Max. Units 72 Qge Gate-to-Emitter Charge (turn-on) — 13 20 Conditions Ref.Fig IC = 12A nC 24 VGE = 15V CT1 VCC = 400V Qgc Gate-to-Collector Charge (turn-on) — 18 27 Eon Turn-On Switching Loss — 31 131 Eoff Turn-Off Switching Loss — 183 283 Etotal Total Switching Loss — 214 414 td(on) Turn-On delay time — 41 53 tr Rise time — 18 25 td(off) Turn-Off delay time — 100 110 tf Fall time — 27 35 Eon Turn-On Switching Loss — 130 — Eoff Turn-Off Switching Loss — 275 — Etotal Total Switching Loss — 405 — td(on) Turn-On delay time — 39 — tr Rise time — 16 — td(off) Turn-Off delay time — 119 — tf Fall time — 39 — Cies Input Capacitance — 1528 — Coes Output Capacitance — 126 — VCC = 30V Cres Reverse Transfer Capacitance — 39 — f = 1.0Mhz TJ = 150°C, IC = 44A RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 IC = 12A, VCC = 400V, VGE = 15V µJ CT4 RG = 10Ω, L = 0.13mH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 12A, VCC = 400V, VGE = 15V ns IC = 12A, VCC = 400V, VGE=15V µJ CT4 RG = 10Ω, L = 0.13mH, TJ = 25°C RG=10Ω, L= 0.13mH, TJ = 150°C 13, 15 e CT4 Energy losses include tail & diode reverse recovery IC = 12A, VCC = 400V, VGE = 15V ns WF1, WF2 14, 16 RG = 10Ω, L = 0.13mH CT4 TJ = 150°C WF1 WF2 pF VGE = 0V VCC = 480V, Vp =600V 23 4 CT2 Rg = 100Ω, VGE = +15V to 0V — — µs VCC = 400V, Vp =600V Rg = 100Ω, VGE = +15V to 0V Erec trr Irr Reverse Recovery Energy of the Diode — 362 — µJ TJ = 150°C Diode Reverse Recovery Time — 56 — ns VCC = 400V, IF = 12A A VGE = 15V, Rg = 10Ω, L = 0.13mH Peak Reverse Recovery Current — 30 — 22, CT3 WF4 17, 18, 19 20, 21 WF3 Notes: VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com 25 50 20 40 15 30 Ptot (W) IC (A) IRGI4062DPbF 10 20 10 5 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10µsec IC (A) IC (A) 100µsec 10 1msec 10 DC 1 Tc = 25°C Tj = 150°C Single Pulse 1 0.1 1 10 100 10 1000 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 120 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 80 60 60 40 40 20 20 0 0 0 1 2 3 4 5 6 VCE (V) 7 8 9 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 ICE (A) ICE (A) 80 10 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs www.irf.com 1000 0 1 2 3 4 5 6 7 8 9 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 3 IRGI4062DPbF 140 120 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 80 80 IF (A) ICE (A) 100 100 60 -40°c 25°C 150°C 60 40 40 20 20 0 0 0 2 4 6 8 10 12 14 0.0 1.0 2.0 4.0 VF (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 20 20 18 18 16 16 ICE = 6.0A 14 14 ICE = 12A 12 ICE = 24A 10 VCE (V) VCE (V) 3.0 ICE = 48A 8 10 ICE = 24A ICE = 48A 8 6 6 4 4 2 2 0 ICE = 6.0A ICE = 12A 12 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 120 18 100 16 ICE = 6.0A ICE = 12A 12 80 ICE = 24A ICE = 48A 10 ICE (A) VCE (V) 14 T J = 25°C T J = 150°C 8 60 40 6 4 20 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 4 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs www.irf.com IRGI4062DPbF 600 1000 Swiching Time (ns) 500 Energy (µJ) 400 EOFF 300 200 EON td OFF 100 tdON tF 100 0 tR 10 0 5 10 15 20 25 0 5 10 15 20 25 IC (A) IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 0.13mH; VCE = 400V, RG = 10Ω; VGE = 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 0.13mH; VCE = 400V, RG = 10Ω; VGE = 15V 600 1000 Swiching Time (ns) Energy (µJ) 500 400 EOFF 300 tdOFF tdON 100 200 tF EON tR 100 10 0 25 50 75 100 125 0 25 75 100 125 RG (Ω) Rg (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 0.13mH; VCE = 400V, ICE = 12A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 0.13mH; VCE = 400V, ICE = 12A; VGE = 15V 30 35 RG = 10Ω 30 25 25 RG = 22Ω IRR (A) IRR (A) 50 20 RG = 47Ω 20 15 15 RG = 100Ω 10 10 5 5 5 10 15 20 IF (A) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C www.irf.com 25 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C 5 IRGI4062DPbF 30 3500 3000 25 24A 20 QRR (µC) IRR (A) 2500 15 10Ω 47Ω 2000 22Ω 100Ω 1500 12A 1000 10 500 6.0A 0 5 0 200 400 600 800 0 1000 200 400 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 150°C Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 12A; TJ = 150°C 400 280 16 RG = 10Ω 350 14 Time (µs) 200 RG = 47Ω 150 12 200 10 160 8 120 6 80 Current (A) RG = 22Ω 250 240 Isc Tsc 300 Energy (µJ) 600 100 RG = 100Ω 50 0 40 4 5 10 15 20 25 8 10 IF (A) 16 18 Fig. 22 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 10000 16 VGE, Gate-to-Emitter Voltage (V) Cies 1000 Capacitance (pF) 14 VGE (V) Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C 100 Coes 10 Cres 1 V CES = 300V V CES = 480V 14 12 10 8 6 4 2 0 0 100 200 300 400 VCE (V) Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 12 500 0 5 10 15 20 25 30 35 40 45 50 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 12A; L = 1700µH www.irf.com IRGI4062DPbF Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 τJ R1 R1 τJ τ1 1E-005 0.0001 R3 R3 R4 R4 Ri (°C/W) τC τ τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R2 R2 τi (sec) 0.167978 0.000080 0.242228 0.000772 0.922659 0.059650 1.268352 1.063 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 τJ R1 R1 τJ τ1 1E-005 0.0001 R3 R3 R4 R4 Ri (°C/W) τC τ τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R2 R2 0.231912 τi (sec) 0.000145 0.956436 0.001589 1.348286 0.05534 1.663366 1.0859 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGI4062DPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit d io d e clamp / DU T 4x DC L - 5V 360V DU T / D RIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM C force 400µH D1 10K C sense DUT VCC G force DUT 0.0075µ Rg E sense E force Fig.C.T.5 - Resistive Load Circuit 8 Fig.C.T.6 - BVCES Filter Circuit www.irf.com IRGI4062DPbF tf 500 450 200 6 250 5% ICE 4 5% VCE 2 VCE (V) 300 I CE (A) VCE (V) 400 8 20 200 15 150 10 5% VCE 50 5 0 100 -2 Eoff Loss 0.1 -100 -0.1 -4 0.2 Eon Loss 0.3 0.1 QRR 500 250 400 200 20 tRR 15 -75 10 -225 0 -5 -300 VCE 300 -10 -375 -15 10% Peak IRR -450 -525 Peak IRR 0.00 0.10 -20 VCE (V) 5 I F (A) -150 -600 0.2 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 25 75 VF (V) 0 time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 -675 -0.10 -5 150 ICE 200 100 100 50 -25 -30 0 0 -35 -40 0.20 -100 -5.00 0.00 5.00 -50 10.00 time (µS) time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF4 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com ICE (A) 0 0 -50 time(µs) 0 25 10% test current 100 0 0 -0.1 30 90% test current 350 90% ICE 300 tr 400 10 35 TEST CURRENT I CE (A) 12 600 9 IRGI4062DPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information (;$03/( 7+,6,6$1,5),* :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(. 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5),* . $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(. TO-220 Full-Pak package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/08 10 www.irf.com