IRF IRGI4062DPBF

PD - 97347
IRGI4062DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
•
C
Low VCE (ON) Trench IGBT Technology
Low switching losses
5 µS short circuit SOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
VCES = 600V
IC = 12A, TC = 100°C
tSC ≥ 5µs, TJ(max) = 150°C
G
VCE(on) typ. = 1.34V
E
n-channel
Benefits
C
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
E
C
G
TO-220
Full-Pak
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
22
IC @ TC = 100°C
Continuous Collector Current
12
ICM
44
ILM
Pulse Collector Current
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
c
44
A
22
12
d
44
PD @ TC = 25°C
Maximum Power Dissipation
48
PD @ TC = 100°C
Maximum Power Dissipation
19
TJ
Operating Junction and
TSTG
Storage Temperature Range
V
W
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
2.6
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
4.2
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
65
1
www.irf.com
10/14/08
IRGI4062DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.80
—
—
1.34
1.58
—
1.49
—
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
—
1.54
—
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-14
—
gfe
ICES
Forward Transconductance
—
13
—
Collector-to-Emitter Leakage Current
—
—
25
—
—
250
—
1.70
2.05
—
1.22
—
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100µA
Ref.Fig
e
CT6
V/°C VGE = 0V, IC = 1mA (-55°C-150°C)
IC = 12A, VGE = 15V, TJ = 25°C
V
CT6
5,6,7
IC = 12A, VGE = 15V, TJ = 125°C
9,10,11
IC = 12A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 700µA
9, 10,
mV/°C VCE = VGE, IC = 1.0mA (-55°C - 150°C)
S VCE = 50V, IC = 12A, PW = 80µs
µA
11, 12
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
V
IF = 12A
8
IF = 12A, TJ = 150°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
48
Max. Units
72
Qge
Gate-to-Emitter Charge (turn-on)
—
13
20
Conditions
Ref.Fig
IC = 12A
nC
24
VGE = 15V
CT1
VCC = 400V
Qgc
Gate-to-Collector Charge (turn-on)
—
18
27
Eon
Turn-On Switching Loss
—
31
131
Eoff
Turn-Off Switching Loss
—
183
283
Etotal
Total Switching Loss
—
214
414
td(on)
Turn-On delay time
—
41
53
tr
Rise time
—
18
25
td(off)
Turn-Off delay time
—
100
110
tf
Fall time
—
27
35
Eon
Turn-On Switching Loss
—
130
—
Eoff
Turn-Off Switching Loss
—
275
—
Etotal
Total Switching Loss
—
405
—
td(on)
Turn-On delay time
—
39
—
tr
Rise time
—
16
—
td(off)
Turn-Off delay time
—
119
—
tf
Fall time
—
39
—
Cies
Input Capacitance
—
1528
—
Coes
Output Capacitance
—
126
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
39
—
f = 1.0Mhz
TJ = 150°C, IC = 44A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
IC = 12A, VCC = 400V, VGE = 15V
µJ
CT4
RG = 10Ω, L = 0.13mH, TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 12A, VCC = 400V, VGE = 15V
ns
IC = 12A, VCC = 400V, VGE=15V
µJ
CT4
RG = 10Ω, L = 0.13mH, TJ = 25°C
RG=10Ω, L= 0.13mH, TJ = 150°C
13, 15
e
CT4
Energy losses include tail & diode reverse recovery
IC = 12A, VCC = 400V, VGE = 15V
ns
WF1, WF2
14, 16
RG = 10Ω, L = 0.13mH
CT4
TJ = 150°C
WF1
WF2
pF
VGE = 0V
VCC = 480V, Vp =600V
23
4
CT2
Rg = 100Ω, VGE = +15V to 0V
—
—
µs
VCC = 400V, Vp =600V
Rg = 100Ω, VGE = +15V to 0V
Erec
trr
Irr
Reverse Recovery Energy of the Diode
—
362
—
µJ
TJ = 150°C
Diode Reverse Recovery Time
—
56
—
ns
VCC = 400V, IF = 12A
A
VGE = 15V, Rg = 10Ω, L = 0.13mH
Peak Reverse Recovery Current
—
30
—
22, CT3
WF4
17, 18, 19
20, 21
WF3
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
25
50
20
40
15
30
Ptot (W)
IC (A)
IRGI4062DPbF
10
20
10
5
0
0
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100 120 140 160
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10µsec
IC (A)
IC (A)
100µsec
10
1msec
10
DC
1
Tc = 25°C
Tj = 150°C
Single Pulse
1
0.1
1
10
100
10
1000
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 150°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
120
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
VCE (V)
7
8
9
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
ICE (A)
ICE (A)
80
10
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
1000
0
1
2
3
4
5
6
7
8
9
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRGI4062DPbF
140
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
80
80
IF (A)
ICE (A)
100
100
60
-40°c
25°C
150°C
60
40
40
20
20
0
0
0
2
4
6
8
10
12
14
0.0
1.0
2.0
4.0
VF (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
20
20
18
18
16
16
ICE = 6.0A
14
14
ICE = 12A
12
ICE = 24A
10
VCE (V)
VCE (V)
3.0
ICE = 48A
8
10
ICE = 24A
ICE = 48A
8
6
6
4
4
2
2
0
ICE = 6.0A
ICE = 12A
12
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
120
18
100
16
ICE = 6.0A
ICE = 12A
12
80
ICE = 24A
ICE = 48A
10
ICE (A)
VCE (V)
14
T J = 25°C
T J = 150°C
8
60
40
6
4
20
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
4
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGI4062DPbF
600
1000
Swiching Time (ns)
500
Energy (µJ)
400
EOFF
300
200
EON
td OFF
100
tdON
tF
100
0
tR
10
0
5
10
15
20
25
0
5
10
15
20
25
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 0.13mH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 0.13mH; VCE = 400V, RG = 10Ω; VGE = 15V
600
1000
Swiching Time (ns)
Energy (µJ)
500
400
EOFF
300
tdOFF
tdON
100
200
tF
EON
tR
100
10
0
25
50
75
100
125
0
25
75
100
125
RG (Ω)
Rg (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 0.13mH; VCE = 400V, ICE = 12A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 0.13mH; VCE = 400V, ICE = 12A; VGE = 15V
30
35
RG = 10Ω
30
25
25
RG = 22Ω
IRR (A)
IRR (A)
50
20
RG = 47Ω
20
15
15
RG = 100Ω
10
10
5
5
5
10
15
20
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 150°C
www.irf.com
25
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 150°C
5
IRGI4062DPbF
30
3500
3000
25
24A
20
QRR (µC)
IRR (A)
2500
15
10Ω
47Ω
2000
22Ω
100Ω
1500
12A
1000
10
500
6.0A
0
5
0
200
400
600
800
0
1000
200
400
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 150°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 12A; TJ = 150°C
400
280
16
RG = 10Ω
350
14
Time (µs)
200
RG = 47Ω
150
12
200
10
160
8
120
6
80
Current (A)
RG = 22Ω
250
240
Isc
Tsc
300
Energy (µJ)
600
100
RG = 100Ω
50
0
40
4
5
10
15
20
25
8
10
IF (A)
16
18
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
10000
16
VGE, Gate-to-Emitter Voltage (V)
Cies
1000
Capacitance (pF)
14
VGE (V)
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 150°C
100
Coes
10
Cres
1
V CES = 300V
V CES = 480V
14
12
10
8
6
4
2
0
0
100
200
300
400
VCE (V)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
12
500
0
5
10 15 20 25 30 35 40 45 50
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 12A; L = 1700µH
www.irf.com
IRGI4062DPbF
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
1E-005
0.0001
R3
R3
R4
R4
Ri (°C/W)
τC
τ
τ2
τ1
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R2
R2
τi (sec)
0.167978
0.000080
0.242228
0.000772
0.922659
0.059650
1.268352
1.063
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
1E-005
0.0001
R3
R3
R4
R4
Ri (°C/W)
τC
τ
τ1
τ2
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R2
R2
0.231912
τi (sec)
0.000145
0.956436
0.001589
1.348286
0.05534
1.663366
1.0859
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGI4062DPbF
L
L
VC C
D UT
0
80 V
DU T
4 80V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp /
DU T
4x
DC
L
- 5V
360V
DU T /
D RIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC
ICM
C force
400µH
D1
10K
C sense
DUT
VCC
G force
DUT
0.0075µ
Rg
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
8
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
IRGI4062DPbF
tf
500
450
200
6
250
5% ICE
4
5% VCE
2
VCE (V)
300
I CE (A)
VCE (V)
400
8
20
200
15
150
10
5% VCE
50
5
0
100
-2
Eoff Loss
0.1
-100
-0.1
-4
0.2
Eon Loss
0.3
0.1
QRR
500
250
400
200
20
tRR
15
-75
10
-225
0
-5
-300
VCE
300
-10
-375
-15
10%
Peak
IRR
-450
-525
Peak
IRR
0.00
0.10
-20
VCE (V)
5
I F (A)
-150
-600
0.2
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
25
75
VF (V)
0
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
-675
-0.10
-5
150
ICE
200
100
100
50
-25
-30
0
0
-35
-40
0.20
-100
-5.00
0.00
5.00
-50
10.00
time (µS)
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
www.irf.com
ICE (A)
0
0
-50
time(µs)
0
25
10% test current
100
0
0
-0.1
30
90% test current
350
90% ICE
300
tr
400
10
35
TEST CURRENT
I CE (A)
12
600
9
IRGI4062DPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
(;$03/( 7+,6,6$1,5),*
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(.
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5),*
.
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(.
TO-220 Full-Pak package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/08
10
www.irf.com