LTC1544 Software-Selectable Multiprotocol Transceiver U FEATURES ■ ■ ■ ■ ■ ■ DESCRIPTIO The LTC®1544 is a 4-driver/4-receiver multiprotocol transceiver. The LTC1544 and LTC1543 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. Cable termination for the LTC1543 may be implemented using the LTC1344A software-selectable cable termination chip or by using existing discrete designs. The LTC1546 includes software-selectable cable termination onchip. The LTC1544 runs from a 5V supply and the charge pump on the LTC1543 or LTC1546. The part is available in a 28-lead SSOP surface mount package. Software-Selectable Transceiver Supports: RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21 TUV/Detecon Inc. Certified NET1 and NET2 Compliant (Test Report No. NET2/102201/97) TBR2 Compliant (Test Report No. CTR2/022701/98) Software-Selectable Cable Termination Using the LTC1344A Complete DTE or DCE Port with LTC1543, LTC1344A or LTC1546 with Integrated Termination Operates from Single 5V Supply with LTC1543 U APPLICATIO S ■ ■ Data Networking CSU and DSU Data Routers , LTC and LT are registered trademarks of Linear Technology Corporation. U ■ TYPICAL APPLICATIO DTE or DCE Multiprotocol Serial Interface with DB-25 Connector LL CTS DSR DCD DTR RTS RXD TXC RXC D3 R4 R3 R2 TXD D2 D1 LTC1543 LTC1544 D4 SCTE D2 D3 D1 R3 R1 R1 R2 LTC1344A 18 13 5 10 8 22 6 23 20 19 4 1 7 16 3 17 12 15 11 24 14 2 TXD A (103) TXD B SCTE A (113) TXC A (114) SCTE B TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (107) DCD B DSR A (109) CTS A (106) DSR B CTS B LL A (141) DB-25 CONNECTOR 9 1544 TA01 1 LTC1544 W W W AXI U U ABSOLUTE RATI GS U U W PACKAGE/ORDER I FOR ATIO (Note 1) Supply Voltage, VCC ................................................ 6.5V Input Voltage Transmitters ........................... – 0.3V to (VCC + 0.3V) Receivers ............................................... – 18V to 18V Logic Pins .............................. – 0.3V to (VCC + 0.3V) Output Voltage Transmitters .................. (VEE – 0.3V) to (VDD + 0.3V) Receivers ................................ – 0.3V to (VCC + 0.3V) VEE ........................................................ – 10V to 0.3V VDD ....................................................... – 0.3V to 10V Short-Circuit Duration Transmitter Output ..................................... Indefinite Receiver Output .......................................... Indefinite VEE .................................................................. 30 sec Operating Temperature Range LTC1544CG ............................................. 0°C to 70°C LTC1544IG ........................................ – 40°C to 85°C Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................. 300°C TOP VIEW ORDER PART NUMBER VCC 1 28 VEE VDD 2 27 GND D1 3 D2 4 D3 5 R1 6 R2 7 R3 8 D4 9 26 D1 A LTC1544CG LTC1544IG D1 25 D1 B D2 24 D2 A 23 D2 B D3 22 D3/R1 A R1 21 D3/R1 B 20 R2 A R2 R4 10 19 R2 B R3 M0 11 18 R3 A D4 M1 12 17 R3 B R4 M2 13 16 D4/R4 A DCE/DTE 14 15 INVERT G PACKAGE 28-LEAD PLASTIC SSOP TJMAX = 150°C, θJA = 65°C/ W Consult factory for Military grade parts. ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS VCC Supply Current (DCE Mode, All Digital Pins = GND or VCC) RS530, RS530-A, X.21 Modes, No Load RS530, RS530-A, X.21 Modes, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode 2.7 95 1 1 10 120 2 2 200 mA mA mA mA µA IEE VEE Supply Current (DCE Mode, All Digital Pins = GND or VCC) VEE = – 5.6V (RS530, RS530-A Modes) VEE = – 8.46V (V.28 Mode) RS530, RS530-A, X.21 Modes, No Load RS530, X.21 Modes, Full Load RS530-A, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode 2.1 14 25 1 12 10 mA mA mA mA mA µA IDD VDD Supply Current (DCE Mode, All Digital Pins = GND or VCC) VDD = 8.73V RS530, RS530-A, X.21 Modes, NoLoad RS530, RS530-A, X.21 Modes, Full Load V.28 Mode, No Load V.28 Mode, Full Load No-Cable Mode 0.2 0.2 1 12 10 mA mA mA mA µA PD Internal Power Dissipation (DCE Mode, (All Digital Pins = GND or VCC) RS530, RS530-A, X.21 Modes, Full Load V.28 Mode, Full Load 300 54 mW mW Supplies ICC 2 ● ● ● ● LTC1544 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Logic Inputs and Outputs VIH Logic Input High Voltage VIL Logic Input Low Voltage IIN Logic Input Current ● 2 V ● 0.8 V D1, D2, D3, D4 M0, M1, M2, DCE, INVERT = GND (LTC1544C) M0, M1, M2, DCE, INVERT = GND (LTC1544I) M0, M1, M2, DCE, INVERT = VCC ● ● ● ● – 100 – 120 – 50 – 50 ±10 – 30 – 30 ±10 µA µA µA µA 3 4.5 VOH Output High Voltage IO = – 4mA ● VOL Output Low Voltage IO = 4mA ● IOSR Output Short-Circuit Current 0V ≤ VO ≤ VCC ● IOZR Three-State Output Current M0 = M1 = M2 = VCC, 0V ≤ VO ≤ VCC – 50 V 0.3 0.8 V 40 50 mA ±1 µA V.11 Driver VODO Open Circuit Differential Output Voltage RL = 1.95k (Figure 1) VODL Loaded Differential Output Voltage RL = 50Ω (Figure 1) RL = 50Ω (Figure 1) ● ● 0.5VODO ±2 ±5 V 0.67VODO V V ∆VOD Change in Magnitude of Differential Output Voltage RL = 50Ω (Figure 1) ● 0.2 V VOC Common Mode Output Voltage RL = 50Ω (Figure 1) ● 3 V ∆VOC Change in Magnitude of Common Mode Output Voltage RL = 50Ω (Figure 1) ● 0.2 V ISS Short-Circuit Current VOUT = GND IOZ Output Leakage Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ● t r, t f Rise or Fall Time LTC1544C (Figures 2, 5) LTC1544I (Figures 2, 5) ● ● t PLH Input to Output LTC1544C (Figures 2, 5) LTC1544I (Figures 2, 5) t PHL Input to Output ∆t t SKEW ±150 mA ±1 ±100 µA 2 2 15 15 25 35 ns ns ● ● 20 20 40 40 65 75 ns ns LTC1544C (Figures 2, 5) LTC1544I (Figures 2, 5) ● ● 20 20 40 40 65 75 ns ns Input to Output Difference, tPLH – tPHL LTC1544C (Figures 2, 5) LTC1544I (Figures 2, 5) ● ● 0 0 3 3 12 17 ns ns Output to Output Skew (Figures 2, 5) 3 ns V.11 Receiver VTH Input Threshold Voltage – 7V ≤ VCM ≤ 7V ● ∆VTH Input Hysteresis – 7V ≤ VCM ≤ 7V ● IIN Input Current (A, B) – 10V ≤ VA,B ≤ 10V ● RIN Input Impedance – 10V ≤ VA,B ≤ 10V ● t r, t f Rise or Fall Time (Figures 2, 6) t PLH Input to Output LTC1544C (Figures 2, 6) LTC1544I (Figures 2, 6) ● ● 50 50 80 90 ns ns t PHL Input to Output LTC1544C (Figures 2, 6) LTC1544I (Figures 2, 6) ● ● 50 50 80 90 ns ns ∆t Input to Output Difference, tPLH – tPHL LTC1544C (Figures 2, 6) LTC1544I (Figures 2, 6) ● ● 4 4 16 21 ns ns – 0.2 15 15 0 0 0.2 V 40 mV ±0.66 mA 30 kΩ 15 ns 3 LTC1544 ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 (Notes 2, 3) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS VO Output Voltage Open Circuit, RL = 3.9k ● VT Output Voltage RL = 450Ω (Figure 3) RL = 450Ω (Figure 3) ● ISS Short-Circuit Current VO = GND IOZ Output Leakage Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled t r, t f Rise or Fall Time RL = 450Ω, CL = 100pF (Figures 3, 7) 2 µs t PLH Input to Output RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs t PHL Input to Output RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs V.10 Driver ±4 ±6 V ±3.6 0.9VO V ±0.1 ● ±150 mA ±100 µA V.10 Receiver VTH Receiver Input Threshold Voltage ∆VTH Receiver Input Hysteresis IIN Receiver Input Current – 10V ≤ VA ≤ 10V ● RIN Receiver Input Impedance – 10V ≤ VA ≤ 10V ● t r , tf Rise or Fall Time tPLH Input to Output tPHL ∆t ● – 0.25 0.25 25 ● 15 V 50 mV ±0.66 mA 30 kΩ (Figures 4, 8) 15 ns (Figures 4, 8) 55 ns Input to Output (Figures 4, 8) 109 ns Input to Output Difference, tPLH – tPHL (Figures 4, 8) 60 ns VO Output Voltage Open Circuit RL = 3k (Figure 3) ● ● ISS Short-Circuit Current VO = GND ● IOZ Output Leakage Current – 0.25V ≤ VO ≤ 0.25V, Power Off or No-Cable Mode or Driver Disabled ● SR Slew Rate RL = 3k, CL = 2500pF (Figures 3, 7) ● t PLH Input to Output RL = 3k, CL = 2500pF (Figures 3, 7) ● t PHL Input to Output RL = 3k, CL = 2500pF (Figures 3, 7) V.28 Driver ±5 ±8.5 ±1 4 ±10 V V ±150 mA ±100 µA 30 V/µs 1.3 2.5 µs ● 1.3 2.5 µs 1.5 0.8 V V.28 Receiver VTHL Input Low Threshold Voltage ● VTLH Input High Threshold Voltage ● 2 1.6 ∆VTH Receiver Input Hysterisis ● 0 0.1 0.3 RIN Receiver Input Impedance – 15V ≤ VA ≤ 15V ● 3 5 7 t r , tf Rise or Fall Time (Figures 4, 8) tPLH Input to Output (Figures 4, 8) ● 60 100 ns tPHL Input to Output (Figures 4, 8) ● 150 450 ns Note 1: Absolute Maximum Ratings are those beyond which the safety of a device may be impaired. Note 2: All currents into device pins are positive; all currents out of device are negative. All voltages are referenced to device ground unless otherwise specified. 4 V 15 V kΩ ns Note 3: All typicals are given for VCC = 5V, VDD = 8V, VEE = – 7V for V.28, – 5.5V for V.10, V.11 and TA = 25°C. LTC1544 U U U PI FU CTIO S VCC (Pin 1): Positive Supply for the Transceivers. 4.75V ≤ VCC ≤ 5.25V. Connect a 1µF capacitor to ground. INVERT (Pin 15): TTL Level Mode Select Input with PullUp to VCC. VDD (Pin 2): Positive Supply Voltage for V.28. Connect to VDD Pin 3 on LTC1543 or 8V supply. Connect a 1µF capacitor to ground. D4/R4 A (Pin 16): Receiver 4 Inverting Input and Driver 4 Output. D1 (Pin 3): TTL Level Driver 1 Input. R3 B (Pin 17): Receiver 3 Noninverting Input. R3 A (Pin 18): Receiver 3 Inverting Input. D2 (Pin 4): TTL Level Driver 2 Input. R2 B (Pin 19): Receiver 2 Noninverting Input. D3 (Pin 5): TTL Level Driver 3 Input. R2 A (Pin 20): Receiver 2 Inverting Input. R1 (Pin 6): CMOS Level Receiver 1 Output. R2 (Pin 7): CMOS Level Receiver 2 Output. R3 (Pin 8): CMOS Level Receiver 3 Output. D3/R1 B (Pin 21): Receiver 1 Noninverting Input and Driver 3 Noninverting Output. D4 (Pin 9): TTL Level Driver 4 Input. D3/R1 A (Pin 22): Receiver 1 Inverting Input and Driver 3 Inverting Output. R4 (Pin 10): CMOS Level Receiver 4 Output. D2 B (Pin 23): Driver 2 Noninverting Output. M0 (Pin 11): TTL Level Mode Select Input 0 with Pull-Up to VCC. D2 A (Pin 24): Driver 2 Inverting Output. M1 (Pin 12): TTL Level Mode Select Input 1 with Pull-Up to VCC. D1 A (Pin 26): Driver 1 Inverting Output. M2 (Pin 13): TTL Level Mode Select Input 2 with Pull-Up to VCC. DCE/DTE (Pin 14): TTL Level Mode Select Input with Pull-Up to VCC. D1 B (Pin 25): Driver 1 Noninverting Output. GND (Pin 27): Ground. VEE (Pin 28): Negative Supply Voltage. Connect to VEE Pin 26 on LTC1543 or to – 8V supply. Connect a 1µF capacitor to ground. TEST CIRCUITS A RL 50Ω B VOD A RL 50Ω B VOC 1544 F01 Figure 1. V.11 Driver Test Circuit RL 100Ω CL 100pF B CL 100pF A R 15pF 1544 F02 Figure 2. V.11 Driver/Receiver AC Test Circuit 5 LTC1544 TEST CIRCUITS D D A A A R 15pF RL CL 1544 F04 1544 F03 Figure 4. V.10/V.28 Receiver Test Circuit Figure 3. V.10/V.28 Driver Test Circuit U W ODE SELECTIO LTC1544 MODE NAME M2 M1 M0 DCE/DTE INVERT D1 D2 D3 R1 R2 R3 D4 R4 Not Used (Default V.11) 0 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 RS530A 0 0 1 0 0 V.11 V.10 Z V.11 V.10 V.11 Z V.10 RS530 0 1 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 X.21 0 1 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.35 1 0 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 RS449/V.36 1 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.28/RS232 1 1 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 No Cable 1 1 1 0 0 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z RS530A 0 0 1 0 1 V.11 V.10 Z V.11 V.10 V.11 V.10 Z RS530 0 1 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z X.21 0 1 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.35 1 0 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z RS449/V.36 1 0 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.28/RS232 1 1 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z No Cable 1 1 1 0 1 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z RS530A 0 0 1 1 0 V.11 V.10 V.11 Z V.10 V.11 V.10 Z RS530 0 1 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z X.21 0 1 1 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z V.35 1 0 0 1 0 V.28 V.28 V.28 Z V.28 V.28 V.28 Z RS449/V.36 1 0 1 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z V.28/RS232 1 1 0 1 0 V.28 V.28 V.28 Z V.28 V.28 V.28 Z No Cable 1 1 1 1 0 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 RS530A 0 0 1 1 1 V.11 V.10 V.11 Z V.10 V.11 Z V.10 RS530 0 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 X.21 0 1 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.35 1 0 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 RS449/V.36 1 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.28/RS232 1 1 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 No Cable 1 1 1 1 1 Z Z Z Z Z Z Z Z 6 LTC1544 U W W SWITCHI G TI E WAVEFOR S 5V f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 1.5V D 0V 1.5V t PHL t PLH VO B–A –VO 90% 50% 10% tr 90% VDIFF = V(A) – V(B) 1/2 VO 50% 10% tf A VO B t SKEW t SKEW 1544 F05 Figure 5. V.11, V.35 Driver Propagation Delays VOD2 B–A –VOD2 f = 1MHz : t r ≤ 10ns : t f ≤ 10ns 0V INPUT t PLH 0V t PHL VOH R VOL OUTPUT 1.5V 1.5V 1544 F06 Figure 6. V.11, V.35 Receiver Propagation Delays 3V 1.5V 1.5V D 0V t PHL VO t PLH 3V 3V 0V A 0V –3V –VO 1544 F07 –3V tf tr Figure 7. V.10, V.28 Driver Propagation Delays VIH 1.7V 1.3V A VIL VOH R VOL t PHL t PLH 2.4V 0.8V 1544 F08 Figure 8. V.10, V.28 Receiver Propagation Delays 7 LTC1544 U U W U APPLICATIONS INFORMATION Overview A complete DCE-to-DTE interface operating in EIA530 mode is shown in Figure 9. The LTC1543 of each port is used to generate the clock and data signals. The LTC1544 is used to generate the control signals along with LL (Local Loop-back).The LTC1344A cable termination chip is used only for the clock and data signals because they must support V.35 cable termination. The control signals do not need any external resistors. The LTC1543/LTC1544 form the core of a complete software-selectable DTE or DCE interface port that supports the RS232, RS449, EIA530, EIA530-A, V.35, V.36 or X.21 protocols. Cable termination may be implemented using the LTC1344A software-selectable cable termination chip or by using existing discrete designs. DTE SERIAL CONTROLLER LTC1543 DCE LTC1344A LTC1344A LTC1543 SERIAL CONTROLLER TXD D1 TXD 103Ω R3 TXD SCTE D2 SCTE 103Ω R2 SCTE R1 D3 TXC R1 103Ω TXC D3 TXC RXC R2 103Ω RXC D2 RXC RXD R3 103Ω RXD D1 RXD LTC1544 LTC1544 RTS D1 RTS R3 RTS DTR D2 DTR R2 DTR D3 R1 DCD R1 DCD D3 DCD DSR R2 DSR D2 DSR CTS R3 CTS D1 CTS LL LL D4 R4 R4 LL D4 1544 F09 Figure 9. Complete Multiprotocol Interface in EIA530 Mode 8 LTC1544 U U W U APPLICATIONS INFORMATION Mode Selection The interface protocol is selected using the mode select pins M0, M1 and M2 (see the Mode Selection table). For example, if the port is configured as a V.35 interface, the mode selection pins should be M2 = 1, M1 = 0, M0 = 0. For the control signals, the drivers and receivers will operate in V.28 (RS232) electrical mode. For the clock and data signals, the drivers and receivers will operate in V.35 electrical mode. The DCE/DTE pin will configure the port for DCE mode when high, and DTE when low. The interface protocol may be selected simply by plugging the appropriate interface cable into the connector. The mode pins are routed to the connector and are left LATCH unconnected (1) or wired to ground (0) in the cable as shown in Figure 10. The internal pull-up current sources will ensure a binary 1 when a pin is left unconnected and that the LTC1543/ LTC1544 and the LTC1344A enter the no-cable mode when the cable is removed. In the no-cable mode the LTC1543/LTC1544 supply current drops to less than 200µA and all LTC1543/LTC1544 driver outputs and LTC1344A resistive terminations are forced into a high impedance state. The mode selection may also be accomplished by using jumpers to connect the mode pins to ground or VCC. 21 LTC1344A DCE/ DTE M2 22 23 M1 M0 (DATA) 24 1 CONNECTOR (DATA) M0 LTC1543 M1 M2 DCE/DTE 11 12 13 14 NC NC CABLE LTC1544 DCE/DTE M2 M1 M0 14 13 12 11 1544 F10 (DATA) Figure 10: Single Port DCE V.35 Mode Selection in the Cable 9 LTC1544 U U W U APPLICATIONS INFORMATION Cable Termination Traditional implementations have included switching resistors with expensive relays, or requiring the user to change termination modules every time the interface standard has changed. Custom cables have been used with the termination in the cable head or separate terminations are built on the board and a custom cable routes the signals to the appropriate termination. Switching the terminations with FETs is difficult because the FETs must remain off even though the signal voltage is beyond the supply voltage for the FET drivers or the power is off. The V.10 receiver configuration in the LTC1544 is shown in Figure 13. In V.10 mode switch S3 inside the LTC1544 is turned off.The noninverting input is disconnected inside the LTC1544 receiver and connected to ground. The cable termination is then the 30k input impedance to ground of the LTC1544 V.10 receiver. IZ Using the LTC1344A along with the LTC1543/LTC1544 solves the cable termination switching problem. Via software control, the LTC1344A provides termination for the V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35 electrical protocols. 3.25mA –3V –10V VZ 3V 10V V.10 (RS423) Interface 1544 F12 A typical V.10 unbalanced interface is shown in Figure 11. A V.10 single-ended generator output A with ground C is connected to a differential receiver with inputs A' connected to A, and input C' connected to the signal return ground C. Usually, no cable termination is required for V.10 interfaces, but the receiver inputs must be compliant with the impedance curve shown in Figure 12. –3.25mA Figure 12. V.10 Receiver Input Impedance A' BALANCED INTERCONNECTING CABLE GENERATOR R6 10k RECEIVER RECEIVER A' C' Figure 11. Typical V.10 Interface 10 R5 20k S3 B' C LTC1544 R8 6k LOAD CABLE TERMINATION A A 1544 F11 C' R4 20k B GND R7 10k 1544 F13 Figure 13. V.10 Receiver Configuration LTC1544 U U W U APPLICATIONS INFORMATION V.11 (RS422) Interface V.28 (RS232) Interface A typical V.11 balanced interface is shown in Figure 14. A V.11 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.11 interface has a differential termination at the receiver end that has a minimum value of 100Ω. The termination resistor is optional in the V.11 specification, but for the high speed clock and data lines, the termination is required to prevent reflections from corrupting the data. The receiver inputs must also be compliant with the impedance curve shown in Figure 12. A typical V.28 unbalanced interface is shown in Figure 16. A V.28 single-ended generator output A with ground C is connected to a single-ended receiver with input A' connected to A, ground C' connected via the signal return ground C. In V.11 mode, all switches are off except S1 inside the LTC1344A which connects a 103Ω differential termination impedance to the cable as shown in Figure 15. BALANCED INTERCONNECTING CABLE GENERATOR In V.28 mode all switches are off except S3 inside the LTC1543/LTC1544 which connects a 6k (R8) impedance to ground in parallel with 20k (R5) plus 10k (R6) for a combined impedance of 5k as shown in Figure 17. The noninverting input is disconnected inside the LTC1543/ LTC1544 receiver and connected to a TTL level reference voltage for a 1.4V receiver trip point. LOAD CABLE TERMINATION GENERATOR B B' C C' RECEIVER A A' C C' RECEIVER 100Ω MIN 1544 F16 1544 F14 Figure 14. Typical V.11 Interface Figure 16. Typical V.28 Interface A' A' A R1 51.5Ω LTC1344A R8 6k S1 S2 R2 51.5Ω A LTC1543 LTC1544 R5 20k R1 51.5Ω R6 10k S1 S3 R3 124Ω S2 R4 20k B LTC1344A R8 6k R6 10k R7 10k R2 51.5Ω S3 R3 124Ω R4 20k B LTC1543 LTC1544 R5 20k RECEIVER B' C' LOAD CABLE TERMINATION A' A BALANCED INTERCONNECTING CABLE RECEIVER R7 10k B' GND C' GND 1544 F17 1544 F15 Figure 15. V.11 Receiver Configuration Figure 17. V.28 Receiver Configuration 11 LTC1544 U U W U APPLICATIONS INFORMATION V.35 Interface A typical V.35 balanced interface is shown in Figure 18. A V.35 differential generator with outputs A and B with ground C is connected to a differential receiver with ground C', inputs A' connected to A, B' connected to B. The V.35 interface requires a T or delta network termination at the receiver end and the generator end. The receiver differential impedance measured at the connector must be 100Ω␣ ±10Ω, and the impedance between shorted terminals (A' and B') and ground C' must be 150Ω ±15Ω. In V.35 mode, both switches S1 and S2 inside the LTC1344A are on, connecting the T network impedance as shown in Figure 19. The switch in the LTC1543 is off. The 30k input impedance of the receiver is placed in parallel with the T network termination, but does not affect the overall input impedance significantly. BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION A' A 50Ω RECEIVER 125Ω 125Ω 50Ω 50Ω 50Ω B B' C C' 1544 F18 Figure 18. Typical V.35 Interface A' A R1 51.5Ω LTC1344A LTC1543 R8 6k R5 20k R6 10k S1 S2 R2 51.5Ω RECEIVER S3 R3 124Ω R4 20k B R7 10k B' C' GND Figure 19. V.35 Receiver Configuration 12 1544 F19 LTC1544 U W U U APPLICATIONS INFORMATION The generator differential impedance must be 50Ω to 150Ω and the impedance between shorted terminals (A and B) and ground C must be 150Ω ±15Ω. For the generator termination, switches S1 and S2 are both on and the top side of the center resistor is brought out to a pin so it can be bypassed with an external capacitor to reduce common mode noise as shown in Figure 20. A LTC1344A V.35 DRIVER 124Ω Charge Pump The LTC1543 uses an internal capacitive charge pump to generate VDD and VEE as shown in Figure 21. A voltage doubler generates about 8V on VDD and a voltage inverter generates about – 7.5V for VEE. Four 1µF surface mounted tantalum or ceramic capacitors are required for C1, C2, C3 and C4. The VEE capacitor C5 should be a minimum of 3.3µF. All capacitors are 16V and should be placed as close as possible to the LTC1543 to reduce EMI. 51.5Ω S2 ON 3 S1 ON C3 1µF 2 C1 1µF 1 51.5Ω B C1 100pF C 1544 F20 4 5V VDD C2 + 28 C1+ C2 – 27 C2 1µF LTC1543 C1– VCC VEE GND 26 25 + C5 3.3µF C4 1µF 1544 F21 Figure 20. V.35 Driver Using the LTC1344A Any mismatch in the driver rise and fall times or skew in the driver propagation delays will force current through the center termination resistor to ground, causing a high frequency common mode spike on the A and B terminals. The common mode spike can cause EMI problems that are reduced by capacitor C1 which shunts much of the common mode energy to ground rather than down the cable. No-Cable Mode The no-cable mode (M0 = M1 = M2 = 1) is intended for the case when the cable is disconnected from the connector. The charge pump, bias circuitry, drivers and receivers are turned off, the driver outputs are forced into a high impedance state, and the supply current drops to less than 200µA. Figure 21. Charge Pump Receiver Fail-Safe All LTC1543/LTC1544 receivers feature fail-safe operation in all modes. If the receiver inputs are left floating or shorted together by a termination resistor, the receiver output will always be forced to a logic high. DTE vs DCE Operation The DCE/DTE pin acts as an enable for Driver 3/Receiver 1 in the LTC1543, and Driver 3/Receiver 1 and Driver 4/ Receiver 4 in the LTC1544. The INVERT pin in the LTC1544 allows the Driver 4/Receiver 4 enable to be high or low true polarity. 13 LTC1544 U W U U APPLICATIONS INFORMATION The LTC1543/LTC1544 can be configured for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with a connector of appropriate gender or a port with one connector that can be configured for DTE or DCE operation by rerouting the signals to the LTC1543/LTC1544 using a dedicated DTE cable or dedicated DCE cable. A dedicated DTE port using a DB-25 male connector is shown in Figure 22. The interface mode is selected by logic outputs from the controller or from jumpers to either VCC or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 23. A port with one DB-25 connector, but can be configured for either DTE or DCE operation is shown in Figure 24. The configuration requires separate cables for proper signal routing in DTE or DCE operation. For example, in DTE mode, the TXD signal is routed to Pins 2 and 14 via Driver 1 in the LTC1543. In DCE mode, Driver 1 now routes the RXD signal to Pins 2 and 14. Cable-Selectable Multiprotocol Interface A cable-selectable multiprotocol DTE/DCE interface is shown in Figure 26. The select lines M0, M1 and DCE/DTE are brought out to the connector. The mode is selected by the cable by wiring M0 (connector Pin 18) and M1 (connector Pin 21) and DCE/DTE (connector Pin 25) to ground (connector Pin 7) or letting them float. If M0, M1 or DCE/ DTE is floating, internal pull-up current sources will pull the signals to VCC. The select bit M2 is hard wired to VCC. When the cable is pulled out, the interface will go into the no-cable mode. Compliance Testing A European standard EN 45001 test report is available for the LTC1543/LTC1544/LTC1344A chipset. A copy of the test report is available from LTC or TUV Telecom Services Inc. (formerly Detecon Inc.) The title of the report is: Multiprotocol Interface with RL, LL, TM and a DB-25 Connector Test Report No. NET2/102201/97. If the RL, LL and TM signals are implemented, there are not enough drivers and receivers available in the LTC1543/ LTC1544. In Figure 25, the required control signals are handled by the LTC1544 but the clock/data signals use the LTC1343. The LTC1343 has an additional single-ended driver/receiver pair that can handle two more optional control signals such as TM and LL. TUV Telecom Services Inc. Type Approval Division 1775 Old Highway 8, Ste 107 St. Paul, MN 55112 USA Tel. +1 (612) 639-0775 Fax. +1 (612) 639-0873 14 The address of TUV Telecom Services Inc. is: LTC1544 U TYPICAL APPLICATIO S C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A VCC 5V 14 4 25 C5 1µF LTC1543 5 TXD D1 6 SCTE D2 7 11 12 13 14 C9 1µF RTS DTR R2 10 RXD C10 1µF R1 9 RXC R3 CTS LL 24 2 23 14 22 24 21 11 20 15 19 12 18 17 17 9 16 3 15 16 1 VEE GND D1 D2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG SHIELD DB-25 MALE CONNECTOR 28 C11 1µF 27 26 4 25 19 24 20 23 23 RTS A (105) RTS B DTR A (108) DTR B D3 6 R1 7 R2 8 R3 10 R4 9 14 16 15 18 17 19 20 22 23 24 1 DCE/DTE 4 13 9 10 M2 3 12 5 4 6 7 M1 VCC 1 VCC 2 VDD 11 VEE C12 1µF 7 LTC1544 DSR 2 C4 3.3µF M0 5 DCD C2 1µF D3 8 TXC 21 M0 CHARGE PUMP 2 LATCH M1 27 26 VCC M2 1 C13 1µF DCE/DTE C1 1µF 28 + C3 1µF 3 22 8 21 10 20 6 19 22 18 5 17 13 16 18 DCD A (109) DCD B DSR A (107) DSR B CTS A (106) CTS B LL A (141) D4 M0 INVERT 15 NC M1 M2 DCE/DTE M2 M1 M0 1544 F22 Figure 22. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector 15 LTC1544 U TYPICAL APPLICATIO S C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A VCC 5V 14 4 25 C5 1µF LTC1543 5 RXD RXC D2 7 R2 10 TXD 11 12 13 NC C10 1µF R1 9 SCTE C9 1µF 14 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC 16 22 17 21 9 R3 20 15 19 12 18 24 17 11 16 2 15 14 M0 7 M1 M2 1 DCE/DTE 1 VCC 2 VDD 3 VEE GND D1 4 DSR D2 5 LTC1544 R1 7 DTR R2 8 RTS R3 10 LL R4 9 11 12 13 NC 14 RXD B RXC A (115) RXC B TXC A (114) TXC B SCTE A (113) SCTE B TXD A (103) TXD B SGND (102) SHIELD (101) 28 C11 1µF 27 26 5 25 13 24 6 23 22 CTS A (106) CTS B DSR A (107) DSR B D3 6 DCD RXD A (104) DB-25 FEMALE CONNECTOR VCC CTS 22 8 21 10 20 20 19 23 18 4 17 19 16 18 D4 M0 INVERT 15 NC M1 M2 DCE/DTE M2 M1 M0 1544 F23 Figure 23. Controller-Selectable DCE Port with DB-25 Connector 16 3 23 D3 8 TXC VEE C12 1µF 24 D1 6 2 C4 3.3µF M0 CHARGE PUMP 2 21 C2 1µF M1 27 26 LATCH VCC M2 1 C13 1µF DCE/DTE C1 1µF 28 + C3 1µF 3 DCD A (109) DCD B DTR A (108) DTR B RTS A (105) RTS B LL A (141) LTC1544 U TYPICAL APPLICATIO S C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A VCC 5V 14 LTC1543 5 DTE_TXD/DCE_RXD D1 6 DTE_SCTE/DCE_RXC D2 7 R1 9 DTE_RXC/DCE_SCTE R2 10 DTE_RXD/DCE_TXD 11 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 24 2 23 14 22 24 21 11 R3 20 15 19 12 18 17 17 9 16 3 15 16 M0 7 12 M1 13 M2 14 DCE/DTE C10 1µF DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR C9 1µF 1 VCC 1 VCC 2 VDD 3 VEE GND D1 4 D2 5 DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS DTE_LL/DCE_LL 6 R1 7 R2 8 R3 10 R4 9 11 12 13 14 DCE RXD A TXD B RXD B SCTE A RXC A SCTE B RXC B TXC A TXC A TXC B TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG SHIELD DB-25 CONNECTOR 28 C11 1µF 27 26 4 25 19 24 20 23 23 RTS A CTS A RTS B CTS B DTR A DSR A DTR B DSR B DCD A DCD A D3 LTC1544 DTE_DCD/DCE_DCD DTE TXD A D3 8 DTE_TXC/DCE_TXC VEE C12 1µF M0 25 C4 3.3µF M1 4 C5 1µF 2 26 CHARGE PUMP 2 21 C2 1µF M2 27 LATCH VCC DCE/DTE C1 1µF 28 1 C13 1µF + C3 1µF 3 22 8 21 10 20 6 19 22 18 5 17 13 16 18 DCD B DCD B DSR A DTR A DSR B DTR B CTS A RTS A CTS B RTS B LL A LL A D4 M0 INVERT 15 NC M1 M2 DCE/DTE DCE/DTE M2 M1 M0 1544 F24 Figure 24. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector 17 LTC1544 U C6 C7 C8 100pF 100pF 100pF TYPICAL APPLICATIO S 3 8 11 12 13 LTC1344A VCC 5V 14 44 C5 1µF 41 D1 D2 7 DTE_SCTE/DCE_RXC 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 LTC1343 6 DTE_TXD/DCE_RXD VEE C12 1µF 8 5 DTE_LL/DCE_TM 2 C4 3.3µF M0 CHARGE PUMP 4 3 21 C2 1µF 43 42 M1 C1 1µF LATCH VCC M2 2 + C3 1µF C13 1µF DCE/DTE 1 D3 39 18 38 2 37 14 36 24 35 11 DTE DCE LL A TM A TXD A RXD A TXD B RXD B SCTE A RXC A SCTE B RXC B TXC A TXC A 34 9 DTE_TXC/DCE_TXC R1 14 DTE_RXC/DCE_SCTE R2 15 DTE_RXD/DCE_TXD R3 16 DTE_TM/DCE_LL 20 22 11 25 R1 100k 33 D4 10 12 13 R4 CTRL DCE LATCH M2 INVERT M1 423SET M0 GND EC DTE_DTR/DCE_DSR VCC LB 1 VCC 2 VDD 3 VEE GND 4 D2 DTE_CTS/DCE_RTS DTE_RL/DCE_RL 17 29 9 28 3 27 16 26 25 21 7 19 1 18 6 R1 7 R2 8 R3 10 R4 9 11 12 13 14 SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B TM A LL A SG SHIELD 17 24 28 C11 1µF 27 26 4 25 19 24 20 23 23 22 8 21 10 20 6 19 22 18 5 17 13 16 21 RTS A CTS A RTS B CTS B DTR A DSR A DTR B DSR B DCD A DCD A DCD B DCD B DSR A DTR A DSR B DTR B CTS A RTS A CTS B RTS B RL A RL A D4 M0 INVERT 15 NC M1 M2 DCE/DTE DCE/DTE M2 M1 M0 Figure 25. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector 18 TXC B RXC A D3 LTC1544 DTE_DSR/DCE_DTR 30 TXC B DB-25 CONNECTOR D1 5 DTE_DCD/DCE_DCD 12 23 C9 1µF DTE_RTS/DCE_CTS 15 31 VCC 40 LB C10 1µF 32 1544 F25 LTC1544 U TYPICAL APPLICATIO S C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 LTC1344A VCC 5V 14 4 25 C5 1µF LTC1543 5 DTE_TXD/DCE_RXD D2 7 R1 9 DTE_RXC/DCE_SCTE R2 10 DTE_RXD/DCE_TXD 11 12 NC 13 14 VEE C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC 2 23 14 22 24 21 11 DTE DCE TXD A RXD A TXD B RXD B SCTE A RXC A SCTE B RXC B TXC A TXC A TXC B TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B D3 8 DTE_TXC/DCE_TXC 2 C4 3.3µF 24 D1 6 DTE_SCTE/DCE_RXC C2 1µF 26 CHARGE PUMP 2 21 M0 27 M1 1 M2 28 LATCH VCC DCE/DTE C1 1µF 3 + C3 1µF C13 1µF R3 20 15 19 12 18 17 17 9 16 3 15 16 M0 7 M1 M2 1 DCE/DTE SG SHIELD DB-25 CONNECTOR C10 1µF C9 1µF VCC 1 VCC 2 VDD VEE GND 25 DCE/DTE 21 M1 18 M0 4 RTS A 19 RTS B 20 DTR A 23 DTR B 28 C11 1µF 27 26 3 DTE_RTS/DCE_CTS D1 24 4 DTE_DTR/DCE_DSR D2 5 6 R1 7 DTE_DSR/DCE_DTR R2 8 DTE_CTS/DCE_RTS R3 10 R4 12 NC 13 14 22 8 21 10 20 6 19 22 18 5 17 13 CTS B DSR A DSR B D4 MODE V.35 RS449, V.36 RS232 M0 M1 M2 DCE/DTE INVERT DCD A DCD A DCD B DCD B DSR A DTR A DSR B DTR B CTS A RTS A CTS B RTS B 16 CABLE WIRING FOR MODE SELECTION 9 11 23 CTS A D3 LTC1544 DTE_DCD/DCE_DCD 25 15 PIN 18 PIN 7 NC PIN 7 PIN 21 PIN 7 PIN 7 NC CABLE WIRING FOR DTE/DCE SELECTION MODE PIN 25 DTE PIN 7 DCE NC NC 1544 F26 Figure 26. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LTC1544 U PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted. G Package 28-Lead Plastic SSOP (0.209) (LTC DWG # 05-08-1640) 10.07 – 10.33* (0.397 – 0.407) 28 27 26 25 24 23 22 21 20 19 18 17 16 15 7.65 – 7.90 (0.301 – 0.311) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5.20 – 5.38** (0.205 – 0.212) 1.73 – 1.99 (0.068 – 0.078) 0° – 8° 0.13 – 0.22 (0.005 – 0.009) 0.55 – 0.95 (0.022 – 0.037) NOTE: DIMENSIONS ARE IN MILLIMETERS *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.152mm (0.006") PER SIDE **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.254mm (0.010") PER SIDE 0.65 (0.0256) BSC 0.05 – 0.21 (0.002 – 0.008) 0.25 – 0.38 (0.010 – 0.015) G28 SSOP 1098 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1321 Dual RS232/RS485 Transceiver Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs LTC1334 Single 5V RS232/RS485 Multiprotocol Transceiver Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs LTC1343 Software-Selectable Multiprotocol Transceiver 4-Driver/4-Receiver for Data and Clock Signals LTC1344A Software-Selectable Cable Terminator Perfect for Terminating the LTC1543 LTC1345 Single Supply V.35 Transceiver 3-Driver/3-Receiver for Data and Clock Signals LTC1346A Dual Supply V.35 Transceiver 3-Driver/3-Receiver for Data and Clock Signals LTC1543 Software-Selectable Multiprotocol Transceiver Companion to LTC1544 for Data and Clock Signals LTC1546 Multiprotocol Transceiver with Termination Companion to LTC1544 for Data and Clock Signals 20 Linear Technology Corporation 1544fa LT/TP 0100 2K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900 ● FAX: (408) 434-0507 ● www.linear-tech.com LINEAR TECHNOLOGY CORPORATION 1998