RENESAS M37702M2LXXXHP

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DESCRIPTION
APPLICATION
The M37702M2LXXXGP is a single-chip 16-bit microcomputer
designed with high-performance CMOS silicon gate technology.
This is housed in a small 80-pin plastic molded QFP. This singlechip microcomputer has a large 16 M bytes address space, three
instruction queue buffers, and two data buffers for high-speed instruction execution. The CPU is a 16-bit parallel processor that
can also be switched to perform 8-bit parallel processing. This
microcomputer is suitable for communication, office, business and
industrial equipment controller that require high-speed processing
of large data.
The strong points of the M37702M2LXXXGP, M37702S1LGP,
M37702M2LXXXHP and M37702S1LHP are the low supply voltage
and small package.
The differences between M37702M2LXXXGP, M37702S1LGP,
M37702M2LXXXHP and M37702S1LHP are the ROM size and
the package as shown below. Therefore, the following descriptions
will be for the M37702M2LXXXGP unless otherwise noted.
Control devices for communication equipment such as cellular radio telephones, cordless telephones, and radio communications
Control devices for office equipment such as copiers, printers,
typewriters, facsimiles, word processors, and personal computers
Control devices for industrial equipments such as ME, NC, and
measuring instruments
Type name
ROM size
Package
M37702M2LXXXGP 16 K bytes 80-pin plastic molded QFP (80P6S-A)
M37702S1LGP
External 80-pin plastic molded QFP (80P6S-A)
M37702M2LXXXHP 16 K bytes 80-pin plastic molded fine-pitch QFP (80P6D-A)
M37702S1LHP
External
80-pin plastic molded fine-pitch QFP (80P6D-A)
FEATURES
• Number of basic instructions ..................................................103
• Memory size
ROM ................................................ 16 K bytes
RAM ................................................. 512 bytes
• Instruction execution time
The fastest instruction at 8 MHz frequency ....................... 500 ns
• Single low supply voltage ........................................... 2.7 – 5.5 V
• Low power dissipation
(At 3 V supply voltage, 8 MHz frequency) .............. 12 mW (Typ.)
(At 5 V supply voltage, 8 MHz frequency) .............. 30 mW (Typ.)
• Wide operating temperature range ............................. –40 – 80°C
• Interrupts ............................................................ 19 types 7 levels
• Multiple function 16-bit timer ................................................ 5 + 3
• UART (may also be synchronous) .............................................. 2
• 8-bit A-D converter ............................................. 8-channel inputs
• 12-bit watchdog timer
• Programmable input/output
(ports P0, P1, P2, P3, P4, P5, P6, P7, P8) .............................. 68
• Small package
M37702M2LXXXGP, M37702S1LGP
.................................................. 80-pin QFP (0.65 mm lead pitch)
M37702M2LXXXHP, M37702S1LHP
.................................... 80-pin fine-pitch QFP (0.5 mm lead pitch)
NOTE
Refer to “Chapter 5 PRECAUTIONS” when using this microcomputer.
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
41
43
42
44
45
46
47
49
48
50
51
53
52
55
54
56
58
57
60
30
P22/A18/D2
P23/A19/D3
P24/A20/D4
P25/A21/D5
P26/A22/D6
P27/A23/D7
P30/R/W
P31/BHE
P32/ALE
P33/HLDA
Vss
29
E
28
27
XOUT
XIN
75
26
RESET
76
25
77
24
78
23
79
22
80
21
CNVSS
BYTE
P40/HOLD
P41/RDY
P42/φ1
61
40
62
39
63
38
64
37
65
36
35
66
67
34
32
20
19
18
17
31
16
15
14
13
5
3
4
33
P66/TB1IN
P65/TB0IN
P64/INT2
P63/INT1
P62/INT0
P61/TA4IN
P60/TA4OUT
P57/TA3IN
P56/TA3OUT
P55/TA2IN
P54/TA2OUT
P53/TA1IN
P52/TA1OUT
P51/TA0IN
P50/TA0OUT
P47/DBC✽
P46/VPA✽
P45/VDA✽
P44/QCL✽
P43/MX✽
1
74
12
73
11
72
10
71
8
70
9
69
7
68
6
M37702M2LXXXGP
or
M37702S1LGP
or
M37702M2LXXXHP
or
M37702S1LHP
2
P85/CLK1
P84/CTS1/RTS1
P83/TXD0
P82/RXD0
P81/CLK0
P80/CTS0/RTS0
VCC
AVCC
VREF
AVSS
VSS
P77/AN7/ADTRG
P76/AN6
P75/AN5
P74/AN4
P73/AN3
P72/AN2
P71/AN1
P70/AN0
P67/TB2IN
59
P86/RXD1
P87/TXD1
P00/A0
P01/A1
P02/A2
P03/A3
P04/A4
P05/A5
P06/A6
P07/A7
P10/A8/D8
P11/A9/D9
P12/A10/D10
P13/A11/D11
P14/A12/D12
P15/A13/D13
P16/A14/D14
P17/A15/D15
P20/A16/D0
P21/A17/D1
PIN CONFIGURATION (TOP VIEW)
Outline
M37702M2LXXXGP, M37702S1LGP••••••80P6S-A
M37702M2LXXXHP, M37702S1LHP••••••80P6D-A
✽ : Used in the evaluation chip mode only
2
Clock Generating Circuit
28
29
E
Enable output
Index Register Y(16)
Index Register X(16)
Accumulator B(16)
Stack Pointer S(16)
80 1 2 3 4 5 6 7
Input/Output
port P6
72 73 74 75 76 77 78 79
Input/Output
port P7
59 60 61 62 63 64 65 66
Input/Output
port P8
70
(0V)
AVSS
Program Bank Register PG(8)
Input/Output
port P3
Input/Output
port P4
69
Reference
voltage input
VREF
Incrementer(24)
Input/Output
port P1
43 44 45 46 47 48 49 50
P1(8)
Input/Output
port P0
24
Bus width
selection input
BYTE
51 52 53 54 55 56 57 58
P0(8)
Instruction Register(8)
Instruction Queue Buffer Q2(8)
Input/Output
port P2
35 36 37 38 39 40 41 42
31 32 33 34
16 17 18 19 20 21 22 23
Data Bank Register DT(8)
P2(8)
Program Address Register PA(24)
P3(4)
Data Address Register DA(24)
P4(8)
68
(5V)
AVCC
Instruction Queue Buffer Q0(8)
Input/Output
port P5
Program Counter PC(16)
A-D Converter(8)
Incrementer/Decrementer(24)
UART0(9)
25
(0V)
CNVss
Data Buffer DBH(8)
8 9 10 11 12 13 14 15
Input Buffer Register IB(16)
UART1(9)
30 71
(0V)
VSS
Address Bus
P5(8)
67
(5V)
VCC
Data Buffer DBL(8)
P6(8)
P7(8)
Timer TB0(16)
Timer TA0(16)
P8(8)
Timer TB2(16)
Timer TB1(16)
Timer TA1(16)
512 Bytes
Arithmetic Logic
Unit(16)
16K Bytes
Accumulator A(16)
RAM
Timer TA2(16)
Watchdog Timer
Direct Page Register DPR(16)
Timer TA3(16)
Timer TA4(16)
26
RESET
Reset input
Processor Status Register PS(11)
ROM
27
Clock input Clock output
XOUT
XIN
M37702M2LXXXGP BLOCK DIAGRAM
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Data Bus(Even)
Data Bus(Odd)
Instruction Queue Buffer Q1(8)
3
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
FUNCTIONS OF M37702M2LXXXGP
Parameter
Number of basic instructions
Instruction execution time
Memory size
Input/Output ports
Multi-function timers
ROM
RAM
P0 – P2, P4 – P8
16 K bytes
512 bytes
8-bit ✕ 8
P3
TA0, TA1, TA2, TA3, TA4
TB0, TB1, TB2
4-bit ✕ 1
16-bit ✕ 5
16-bit ✕ 3
(UART or clock synchronous serial I/O) ✕ 2
Serial I/O
A-D converter
Watchdog timer
8-bit ✕ 1 (8 channels)
12-bit ✕ 1
3 external types, 16 internal types
(Each interrupt can be set the priority levels to 0 – 7.)
Built-in (externally connected to a ceramic resonator or quartz
crystal resonator)
2.7 – 5.5 V
12 mW (at 3 V supply voltage, external clock 8 MHz frequency)
Interrupts
Clock generating circuit
Supply voltage
Power dissipation
Input/Output characteristic
30 mW (at 5 V supply voltage, external clock 8 MHz frequency)
Input/Output voltage
Output current
Memory expansion
Operating temperature range
4
5V
5 mA
Maximum 16 M bytes
–40 – 85°C
CMOS high-performance silicon gate process
Device structure
Package
Functions
103
500 ns (the fastest instruction at external clock 8 MHz frequency)
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
80-pin plastic molded QFP (80P6S-A: 0.65 mm lead pitch)
80-pin plastic molded fine-pitch QFP (80P6D-A: 0.5 mm lead pitch)
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION
Pin
Name
Input/Output
Functions
VCC, VSS
Power supply
Supply 2.7 – 5.5 V to VCC and 0 V to VSS.
CNVSS
CNVSS input
Input
This pin controls the processor mode. Connect to VSS for single-chip mode, and
to VCC for external ROM types.
RESET
Reset input
Input
To enter the reset state, this pin must be kept at a “L” condition which should be
maintained for the required time.
XIN
Clock input
Input
XOUT
Clock output
Output
These are I/O pins of internal clock generating circuit. Connect a ceramic or quartz
crystal resonator between XIN and XOUT. When an external clock is used, the clock
source should be connected to the XIN pin and the XOUT pin should be left open.
E
Enable output
Output
Data or instruction read and data write are performed when output from this pin
is “L”.
BYTE
Bus width selection
input
Input
In memory expansion mode or microprocessor mode, this pin determines
whether the external data bus is 8-bit width or 16-bit width. The width is 16 bits
when “L” signal inputs and 8 bits when “H” signal inputs.
AVCC,
AVSS
Analog supply input
VREF
Reference voltage
input
P00 – P07
I/O port P0
I/O
In single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register
is available so that each pin can be programmed for input or output. These ports
are in input mode when reset.
Address (A7 – A0) is output in memory expansion mode or microprocessor mode.
P10 – P17
I/O port P1
I/O
In single-chip mode, these pins have the same functions as port P0. When the
BYTE pin is set to “L” in memory expansion mode or microprocessor mode and
external
_ data bus is 16-bit width, high-order data (D15 – D 8 ) is
_ input or output
when E output is “L” and an address (A15 – A8) is output when E output is “H”.
If the BYTE pin is “H” that is an external data bus is 8-bit width, only address
(A15 – A8) is output.
P20 – P27
I/O port P2
I/O
In single-chip mode, these pins have the same functions as port P0. In memory
expansion mode
or microprocessor mode low-order data (D7 – D0) is _input or
_
output when E output is “L” and an address (A23 – A16) is output when E output
is “H”.
P30 – P33
I/O port P3
I/O
In single-chip mode, these pins have the same__functions
as port P0.
In memory
____
_____
expansion mode or microprocessor mode, R/W, BHE, ALE and HLDA signals
are output.
P40 – P47
I/O port P4
I/O
In single-chip mode, these pins have the same functions as port_____
P0. In memory
____
expansion mode or microprocessor mode, P40 and P41 become HOLD and RDY
input pin respectively. Functions of other pins are the same as in single-chip
mode. In single-chip mode or memory expansion mode, port P4 2 can be programmed for φ 1 output pin divided the clock to XIN pin by 2. In microprocessor
mode. P42 always has the function as φ1 output pin.
P50 – P57
I/O port P5
I/O
In addition to having the same functions as port P0 in single-chip mode, these
pins also function as I/O pins for timer A0, timer A1, timer A2 and timer A3.
P60 – P67
I/O port P6
I/O
______
_
Power supply for the A-D converter. Connect AVCC to V CC and AV SS to V SS
externally.
Input
This is reference voltage input pin for the A-D converter.
In addition to having the same functions as port P0 in single-chip
mode,
these
____
____
pins also function as I/O pins for timer A4, external interrupt input INT0, INT1 and
INT2 pins, and input pins for timer B0, timer B1 and timer B2.
____
P70 – P77
I/O port P7
I/O
In addition to having the same functions as port P0 in single-chip mode, these
pins also function as analog input AN0 – AN7 input pins. P7 7 also has an A-D
conversion trigger input function.
P80 – P87
I/O port P8
I/O
In addition to having the same functions
as____
port P0 in single-chip mode, these
____
pins also function as RXD, TXD, CLK, CTS/RTS pins for UART 0 and UART 1.
5
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
BASIC FUNCTION BLOCKS
The M37702M2LXXXGP has the same functions as the
M37702M2BXXXFP except for the reset circuit.
Refer to the section on the M37702M2BXXXFP.
RESET CIRCUIT
Figure 1 shows the status of the internal registers when a reset
occurs.
Figure 2 shows an example of a reset circuit. The reset input voltage must be held 0.55 V or lower when the power voltage reaches
2.7 V.
______
Reset occurs when the RESET pin is returned to “H” level after
holding it at “L” level when the power voltage is at 2.7 – 5.5 V. Program execution starts at the address formed by setting the
address pins A23 – A16 to 0016, A15 – A8 to the contents of address
FFFF16, and A7 – A0 to the contents of address FFFE16.
Address
Address
(0416)•••
0016
(29) Processor mode register
(2) Port P1 data direction register
(0516)•••
0016
(30) Watchdog timer
(3) Port P2 data direction register
(0816)•••
0016
(31) Watchdog timer frequency selection
(6116)•••
flag
(32) A-D conversion interrupt control register (7016)•••
0 0 0 0
(4) Port P3 data direction register
(0916)•••
(5) Port P4 data direction register
(0C16)•••
0016
(6) Port P5 data direction register
(0D16)•••
0016
(7) Port P6 data direction register
(1016)•••
0016
(8) Port P7 data direction register
(1116)•••
(9) Port P8 data direction register
(1416)•••
(10) A-D control register
(11) A-D sweep pin selection register
(1F16)•••
(12) UART 0 transmit/receive mode
register
(13) UART 1 transmit/receive mode
register
(14) UART 0 transmit/receive
control register 0
(15) UART 1 transmit/receive
control register 0
(16) UART 0 transmit/receive
control register 1
(17) UART 1 transmit/receive
control register 1
(18) Count start flag
(3016)•••
0016
(3816)•••
0016
(6016)•••
0016
FFF16
0
0 0 0 0
(33) UART 0 transmission interrupt control (7116)•••
register
(34) UART 0 receive interrupt control register (7216)•••
0 0 0 0
(35) UART 1 transmission interrupt control (7316)•••
register
(36) UART 1 receive interrupt control register (7416)•••
0 0 0 0
0016
0016
(37) Timer A0 interrupt control register
(7516)•••
0 0 0 0
(1E16)••• 0 0 0 0 0 ? ? ?
(38) Timer A1 interrupt control register
(7616)•••
0 0 0 0
1 1
(39) Timer A2 interrupt control register
(7716)•••
0 0 0 0
(40) Timer A3 interrupt control register
(7816)•••
0 0 0 0
(41) Timer A4 interrupt control register
(7916)•••
0 0 0 0
0 0 0 0
0 0 0 0
(3416)•••
1 0 0 0
(42) Timer B0 interrupt control register
(7A16)•••
0 0 0 0
(3C16)•••
1 0 0 0
(43) Timer B1 interrupt control register
(7B16)•••
0 0 0 0
(3516)••• 0 0 0 0 0 0 1 0
(44) Timer B2 interrupt control register
(7C16)•••
0 0 0 0
(3D16)••• 0 0 0 0 0 0 1 0
(45) INT0 interrupt control register
(7D16)•••
0 0 0 0 0 0
(4016)•••
0016
(46) INT1 interrupt control register
(7E16)•••
0 0 0 0 0 0
(19) One- shot start flag
(4216)•••
0 0 0 0 0
(47) INT2 interrupt control register
(7F16)•••
0 0 0 0 0 0
(20) Up-down flag
(4416)•••
0016
(48) Processor status register PS
(21) Timer A0 mode register
(5616)•••
0016
(49) Program bank register PG
(22) Timer A1 mode register
(5716)•••
0016
(50) Program counter PC H
Content of FFFF 16
(23) Timer A2 mode register
(5816)•••
0016
(51) Program counter PC L
Content of FFFE 16
(24) Timer A3 mode register
(5916)•••
0016
(52) Direct page register DPR
(25) Timer A4 mode register
(5A16)•••
0016
(53) Data bank register DT
(26) Timer B0 mode register
(5B16)••• 0 0 1
0 0 0 0
(27) Timer B1 mode register
(5C16)••• 0 0 1
0 0 0 0
(28) Timer B2 mode register
(5D16)••• 0 0 1
0 0 0 0
Fig. 1 Microcomputer internal status during reset
6
(5E16)•••
(1) Port P0 data direction register
0 0 0 ? ? 0 0 0 1 ? ?
0016
000016
0016
Contents of other registers and RAM are not initialized and should be initialized by software.
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ADDRESSING MODES
The M37702M2LXXXGP has 28 powerful addressing modes.
Refer to the 7700 Family addressing mode description for the details of each addressing mode.
Power on
M37702M2LXXXGP
VCC
VCC
RESET
26
2.7V
MACHINE INSTRUCTION LIST
0V
The M37702M2LXXXGP has 103 machine instructions. Refer to
the 7700 Family machine instruction list for details.
67
RESET
0V
0.55V
DATA REQUIRED FOR MASK ORDERING
Fig. 2 Example of a reset circuit (perform careful evaluation
at the system design level before using)
MEMORY
The memory map is shown in Figure 3.
00000016
Please send the following data for mask orders.
M37702M2LXXXGP;
(1) M37702M2LXXXGP mask ROM order confirmation form
(2) 80P6S mark specification form
(3) ROM data (EPROM 3 sets)
M37702M2LXXXHP;
(1) M37702M2LXXXHP mask ROM order confirmation form
(2) 80P6D mark specification form
(3) ROM data (EPROM 3 sets)
00000016
00007F 16
00008016
00000016
Peripheral devices
control registers
Bank 0 16
Internal RAM
512 bytes
00FFFF16
01000016
00007F 16
00027F 16
Bank 1 16
Interrupt vector table
00FFD6 16
A-D conversion
UART1 transmission
01FFFF16
UART1 receive
• • • • • • • • • •
UART0 transmission
UART0 receive
Timer B2
Timer B1
Timer B0
Timer A4
Timer A3
Timer A2
FE000016
00C00016
Timer A1
Timer A0
Bank FE 16
INT2
Internal ROM
16K bytes
INT1
INT0
FEFFFF 16
FF000016
Watchdog timer
DBC
00FFD616
Bank FF 16
BRK instruction
Zero divide
FFFFFF 16
00FFFF 16
00FFFE16
RESET
Fig. 3 Memory map
7
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Conditions
Ratings
Unit
VCC
Supply voltage
–0.3 to 7
V
AVCC
Analog supply voltage
–0.3 to 7
V
–0.3 to 12
V
______
VI
Input voltage
RESET, CNVSS, BYTE
VI
Input voltage
P00–P07, P10–P17, P20–P27, P30–P33,
P40–P47, P50–P57, P60–P67, P70–P77,
P80–P87, VREF, XIN
–0.3 to VCC+0.3
Output voltage P00–P07, P10–P17, P20–P27, P30–P33,
P40–P47, P50–P5
_ 7 , P60 –P67 , P70–P7 7,
P80–P87, XOUT, E
–0.3 to VCC+0.3
VO
V
V
Pd
Power dissipation
300 (Note 1)
mW
Topr
Operating temperature
Ta = 25 °C
–40 to 85
°C
Tstg
Storage temperature
–65 to 150
°C
Note 1. In the case of M37702M2LXXXHP and M37702S1LHP, the rating of power dissipation is 200 mW.
RECOMMENDED OPERATING CONDITIONS
Symbol
(VCC = 2.7 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)
Limits
Parameter
VCC
Supply voltage
AVCC
Analog supply voltage
VSS
Min.
Typ.
2.7
Max.
5.5
Unit
V
VCC
V
Supply voltage
0
V
AVSS
Analog supply voltage
0
VIH
High-level input voltage
7,
P00–P07, P30–P33, P40–P47, P50–P5
______
P60–P67, P70–P77, P80–P87, XIN, RESET,
CNVSS, BYTE
0.8VCC
V
VCC
V
VIH
High-level input voltage
P10–P17, P20–P27
(in single-chip mode)
0.8VCC
VCC
VIH
High-level input voltage
P10–P17, P20–P27
(in memory expansion mode and microprocessor mode)
0.5VCC
VCC
VIL
Low-level input voltage
V
7,
P00–P07, P30–P33, P40–P47, P50–P5
______
P60–P67, P70–P77, P80–P87, XIN, RESET,
CNVSS, BYTE
0
0.2VCC
V
VIL
Low-level input voltage
P10–P17, P20–P27
(in single-chip mode)
0
0.2VCC
VIL
Low-level input voltage
P10–P17, P20–P27
(in memory expansion mode and microprocessor mode)
0
0.16VCC
IOH(peak)
IOH(avg)
IOL(peak)
IOL(avg)
f(XIN)
–10
High-level average output current P00–P07, P10–P17, P20–P27, P30–P33,
P40–P47, P50–P57, P60–P67, P70–P77,
P80–P87
–5
Low-level peak output current
P00–P07, P10–P17, P20–P27, P30–P33,
P40–P47, P50–P57, P60–P67, P70–P77,
P80–P87
10
P00–P07, P10–P17, P20–P27, P30–P33,
P40–P47, P50–P57, P60–P67, P70–P77,
P80–P87
5
Low-level average output current
External clock frequency input
V
V
P00–P07, P10–P17, P20–P27, P30–P33,
P40–P47, P50–P57, P60–P67, P70–P77,
P80–P87
High-level peak output current
V
mA
mA
mA
mA
8
MHz
Note 2. Average output current is the average value of a 100 ms interval.
3. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, and P8
must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 80 mA or less, and the sum of IOH(peak) for ports
P4, P5, P6, and P7 must be 80 mA or less.
8
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (VCC = 5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted)
Symbol
VOH
Parameter
Limits
Test conditions
Min.
High-level output voltage P00–P07, P10–P17, P20–P27, VCC = 5 V, IOH = –10 mA
P30, P31, P33, P40–P47, P50–P57,
VCC = 3 V, IOH = –1 mA
P60–P67, P70–P77, P80–P87
VOH
High-level output voltage P00–P07, P10–P17, P20–P27,
VCC
P30, P31, P33
VCC
High-level output voltage P32
VCC
VCC
_
High-level output voltage E
VCC
VCC
VCC
VOH
VOH
Typ.
Max.
3
V
2.5
= 5 V, IOH = –400 µA
4.7
= 5 V, IOH = –10 mA
= 5 V, IOH = –400 µA
3.1
4.8
2.6
3.4
= 3 V, IOH = –1 mA
= 5 V, IOH = –10 mA
= 5 V, IOH = –400 µA
V
V
4.8
2.6
= 3 V, IOH = –1 mA
V
Low-level output voltage P00–P07, P10–P17, P20–P27, VCC = 5 V, IOL = 10 mA
P30, P31, P33, P40–P47, P50–P57,
VCC = 3 V, IOL = 1 mA
P60–P67, P70–P77, P80–P87
VOL
VOL
Low-level output voltage P00–P07, P10–P17, P20–P27,
VCC = 5 V, IOL = 2 mA
P30, P31, P33
VOL
Low-level output voltage P32
_
VOL
Low-level output voltage E
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIL
VRAM
ICC
VCC =
VCC =
VCC =
VCC =
Unit
2
0.5
0.45
1.9
0.43
0.4
1.6
5 V, IOL = 10 mA
5 V, IOL = 2 mA
3 V, IOL = 1 mA
5 V, IOL = 10 mA
VCC = 5 V, IOL = 2 mA
VCC = 3 V, IOL = 1 mA
_____ ____
Hysteresis ____
VCC = 5 V
HOLD,
RDY,_____
TA0IN–TA4
, TB0IN____
–TB2____
IN,
____
____IN____
INT0–INT2, ADTRG, CTS0, CTS1, CLK0, CLK1 VCC = 3 V
______
VCC = 5 V
Hysteresis RESET
VCC = 3 V
VCC = 5 V
Hysteresis XIN
VCC = 3 V
High-level input current P00–P07, P10–P17, P20–P27, VCC = 5 V, VI = 5 V
P30–P33, P40–P47, P50–P57,
P60–P6
7, P70–P77, P80–P87,
______
VCC = 3 V, VI = 3 V
XIN, RESET, CNVSS, BYTE
Low-level input current P00–P07, P10–P17, P20–P27, VCC = 5 V, VI = 0 V
P30–P33, P40–P47, P50–P57,
7, P70–P77, P80–P87,
P60–P6
______
VCC = 3 V, VI = 0 V
XIN, RESET, CNVSS, BYTE
RAM hold voltage
When clock is stopped.
In singleVCC = 5 V
Power supply current
f(XIN) = 8 MHz,
chip mode
square waveform VCC = 3 V
output only
Ta = 25 °C when clock
pin is open
is stopped.
and other
pins are VSS Ta = 85 °C when clock
during reset. is stopped.
0.4
0.4
1
0.7
0.4
0.1
0.5
0.2
0.1
0.4
0.3
0.2
0.1
0.06
5
V
V
V
V
V
V
V
µA
4
–5
µA
–4
V
2
6
12
4
8
1
mA
µA
20
A-D CONVERTER CHARACTERISTICS (VCC = 5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted)
Symbol
Parameter
Test conditions
Limits
Min.
Typ.
Max.
Unit
—
Resolution
VREF = VCC
8
Bits
—
Absolute accuracy
VREF = VCC
±3
LSB
RLADDER
Ladder resistance
VREF = VCC
10
kΩ
tCONV
Conversion time
VREF
Reference voltage
VIA
Analog input voltage
2
µs
28.5
2.7
VCC
V
0
VREF
V
9
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted)
External clock input
Symbol
Parameter
Limits
Min.
Max.
Unit
tC
External clock input cycle time
125
ns
tW(H)
External clock input high-level pulse width
50
ns
tW(L)
External clock input low-level pulse width
50
tr
External clock rise time
20
ns
tf
External clock fall time
20
ns
ns
Single-chip mode
Symbol
Parameter
Limits
Min.
Max.
Unit
tsu(P0D–E)
Port P0 input setup time
300
ns
tsu(P1D–E)
Port P1 input setup time
300
ns
tsu(P2D–E)
Port P2 input setup time
300
ns
tsu(P3D–E)
Port P3 input setup time
300
ns
tsu(P4D–E)
Port P4 input setup time
300
ns
tsu(P5D–E)
Port P5 input setup time
300
ns
tsu(P6D–E)
Port P6 input setup time
300
ns
tsu(P7D–E)
Port P7 input setup time
300
ns
tsu(P8D–E)
Port P8 input setup time
300
ns
th(E–P0D)
Port P0 input hold time
0
ns
th(E–P1D)
Port P1 input hold time
0
ns
th(E–P2D)
Port P2 input hold time
0
ns
th(E–P3D)
Port P3 input hold time
0
ns
th(E–P4D)
Port P4 input hold time
0
ns
th(E–P5D)
Port P5 input hold time
0
ns
th(E–P6D)
Port P6 input hold time
0
ns
th(E–P7D)
Port P7 input hold time
0
ns
th(E–P8D)
Port P8 input hold time
0
ns
Memory expansion mode and microprocessor mode
Symbol
Parameter
Limits
Min.
Max.
Unit
tsu(P1D–E)
Port P1 input setup time
80
ns
tsu(P2D–E)
Port P2 input setup time
80
ns
90
ns
____
tsu(RDY–φ1)
RDY input setup time
tsu(HOLD–φ1)
HOLD input setup time
90
ns
th(E–P1D)
Port P1 input hold time
0
ns
th(E–P2D)
Port P2 input hold time
0
ns
0
ns
0
ns
_____
____
th(φ1–RDY)
RDY input hold time
th(φ1–HOLD)
HOLD input hold time
_____
10
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A input (Count input in event counter mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(TA)
TAiIN input cycle time
250
ns
tW(TAH)
TAiIN input high-level pulse width
125
ns
tW(TAL)
TAiIN input low-level pulse width
125
ns
Timer A input (Gating input in timer mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(TA)
TAiIN input cycle time
1000
ns
tW(TAH)
TAiIN input high-level pulse width
500
ns
tW(TAL)
TAiIN input low-level pulse width
500
ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(TA)
TAiIN input cycle time
500
ns
tW(TAH)
TAiIN input high-level pulse width
250
ns
tW(TAL)
TAiIN input low-level pulse width
250
ns
Timer A input (External trigger input in pulse width modulation mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tW(TAH)
TAiIN input high-level pulse width
250
ns
tW(TAL)
TAiIN input low-level pulse width
250
ns
Timer A input (Up-down input in event counter mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(UP)
TAiOUT input cycle time
5000
ns
tW(UPH)
TAiOUT input high-level pulse width
2500
ns
tW(UPL)
TAiOUT input low-level pulse width
2500
ns
tsu(UP-TIN)
TAiOUT input setup time
1000
ns
th(TIN-UP)
TAiOUT input hold time
1000
ns
11
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B input (Count input in event counter mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(TB)
TBiIN input cycle time (one edge count)
250
ns
tW(TBH)
TBiIN input high-level pulse width (one edge count)
125
ns
tW(TBL)
TBiIN input low-level pulse width (one edge count)
125
ns
tC(TB)
TBiIN input cycle time (both edges count)
500
ns
tW(TBH)
TBiIN input high-level pulse width (both edges count)
250
ns
tW(TBL)
TBiIN input low-level pulse width (both edges count)
250
ns
Timer B input (Pulse period measurement mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(TB)
TBiIN input cycle time
1000
ns
tW(TBH)
TBiIN input high-level pulse width
500
ns
tW(TBL)
TBiIN input low-level pulse width
500
ns
Timer B input (Pulse width measurement mode)
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(TB)
TBiIN input cycle time
1000
ns
tW(TBH)
TBiIN input high-level pulse width
500
ns
tW(TBL)
TBiIN input low-level pulse width
500
ns
A-D trigger input
Symbol
Parameter
Limits
Min.
Max.
Unit
______
tC(AD)
ADTRG input cycle time (minimum allowable trigger)
tW(ADL)
ADTRG input low-level pulse width
2000
ns
250
ns
_____
Serial I/O
Symbol
Parameter
Limits
Min.
Max.
Unit
tC(CK)
CLKi input cycle time
500
ns
tW(CKH)
CLKi input high-level pulse width
250
ns
tW(CKL)
CLKi input low-level pulse width
250
td(C–Q)
TxDi output delay time
th(C–Q)
TxDi hold time
tsu(D–C)
th(C–D)
ns
170
ns
0
ns
RxDi input setup time
80
ns
RxDi input hold time
100
ns
_____
External interrupt INTi input
Symbol
Parameter
Limits
Min.
Unit
Max.
____
tW(INH)
INTi input high-level pulse width
250
ns
250
ns
____
tW(INL)
12
INTi input low-level pulse width
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SWITCHING CHARACTERISTICS
Single-chip mode
Symbol
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = 25 °C, f(XIN) = 8 MHz, unless otherwise noted)
Parameter
Test conditions
Limits
Min.
Max.
Unit
td(E–P0Q)
Port P0 data output delay time
300
ns
td(E–P1Q)
Port P1 data output delay time
300
ns
td(E–P2Q)
Port P2 data output delay time
300
ns
td(E–P3Q)
Port P3 data output delay time
300
ns
td(E–P4Q)
Port P4 data output delay time
300
ns
td(E–P5Q)
Port P5 data output delay time
300
ns
td(E–P6Q)
Port P6 data output delay time
300
ns
td(E–P7Q)
Port P7 data output delay time
300
ns
td(E–P8Q)
Port P8 data output delay time
300
ns
Fig. 4
Memory expansion mode and microprocessor mode (when wait bit = “0”, and external memory area is accessed)
Symbol
Parameter
Test conditions
Limits
Min.
Max.
Unit
ns
td(P0A–E)
Port P0 address output delay time
td(E–P1Q)
Port P1 data output delay time (BYTE = “L”)
130
ns
tPXZ(E–P1Z)
Port P1 floating start delay time (BYTE = “L”)
10
ns
td(P1A–E)
Port P1 address output delay time
50
td(P1A–ALE)
Port P1 address output delay time
40
td(E–P2Q)
Port P2 data output delay time
130
ns
tPXZ(E–P2Z)
Port P2 floating start delay time
10
ns
td(P2A–E)
Port P2 address output delay time
50
Port P2 address output delay time
40
td(P2A–ALE)
50
ns
ns
ns
ns
_____
td(φ1–HLDA)
HLDA output delay time
td(ALE–E)
ALE output delay time
tW(ALE)
ALE pulse width
____
td(BHE–E)
BHE output delay time
td(R/W–E)
R/W output delay time
td(E–φ1)
φ1 output delay time
th(E–P0A)
Port P0 address hold time
th(ALE–P1A)
Port P1 address hold time (BYTE = “L”)
th(E–P1Q)
120
Fig. 4
ns
4
ns
60
ns
50
ns
__
50
0
ns
40
ns
50
ns
9
ns
Port P1 data hold time (BYTE = “L”)
50
ns
tPZX(E–P1Z)
Port P1 floating release delay time (BYTE = “L”)
95
ns
th(E–P1A)
Port P1 address hold time (BYTE = “H”)
50
ns
th(ALE–P2A)
Port P2 address hold time
9
ns
th(E–P2Q)
Port P2 data hold time
50
ns
tPZX(E–P2Z)
Port P2 floating release delay time
95
ns
18
ns
18
ns
460
ns
____
th(E–BHE)
BHE hold time
th(E–R/W)
R/W hold time
tW(EL)
E pulse width
__
_
13
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode (when wait bit = “1”)
Symbol
Parameter
Test conditions
Limits
Min.
Max.
Unit
ns
td(P0A–E)
Port P0 address output delay time
td(E–P1Q)
Port P1 data output delay time (BYTE = “L”)
tPXZ(E–P1Z)
Port P1 floating start delay time (BYTE = “L”)
td(P1A–E)
Port P1 address output delay time
50
td(P1A–ALE)
Port P1 address output delay time
40
td(E–P2Q)
Port P2 data output delay time
130
ns
tPXZ(E–P2Z)
Port P2 floating start delay time
10
ns
td(P2A–E)
Port P2 address output delay time
50
td(P2A–ALE)
Port P2 address output delay time
40
50
130
ns
10
ns
ns
ns
ns
ns
_____
td(φ1–HLDA)
HLDA output delay time
td(ALE–E)
ALE output delay time
tW(ALE)
ALE pulse width
120
Fig. 4
____
td(BHE–E)
BHE output delay time
td(R/W–E)
R/W output delay time
td(E–φ1)
φ1 output delay time
th(E–P0A)
Port P0 address hold time
th(ALE–P1A)
Port P1 address hold time (BYTE = “L”)
th(E–P1Q)
ns
4
ns
60
ns
50
ns
__
50
0
ns
40
ns
50
ns
9
ns
Port P1 data hold time (BYTE = “L”)
50
ns
tPZX(E–P1Z)
Port P1 floating release delay time (BYTE = “L”)
95
ns
th(E–P1A)
Port P1 address hold time (BYTE = “H”)
50
ns
th(ALE–P2A)
Port P2 address hold time
9
ns
th(E–P2Q)
Port P2 data hold time
50
ns
tPZX(E–P2Z)
Port P2 floating release delay time
95
ns
18
ns
18
ns
210
ns
____
th(E–BHE)
BHE hold time
th(E–R/W)
R/W hold time
tW(EL)
E pulse width
__
_
P0
P1
P2
P3
P4
P5
P6
P7
P8
φ1
E
Fig. 4 Testing circuit for ports P0–P8, φ1
14
100 pF
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
TIMING DIAGRAM
tr
tf
tc
tw(H)
Single-chip mode
tw(L)
f(XIN)
E
td(E–P0Q)
Port P0 output
tsu(P0D–E)
th(E–P0D)
Port P0 input
td(E–P1Q)
Port P1 output
tsu(P1D–E)
th(E–P1D)
Port P1 input
td(E–P2Q)
Port P2 output
tsu(P2D–E)
th(E–P2D)
Port P2 input
td(E–P3Q)
Port P3 output
tsu(P3D–E)
th(E–P3D)
Port P3 input
td(E–P4Q)
Port P4 output
tsu(P4D–E)
th(E–P4D)
Port P4 input
td(E–P5Q)
Port P5 output
tsu(P5D–E)
th(E–P5D)
Port P5 input
td(E–P6Q)
Port P6 output
tsu(P6D–E)
th(E–P6D)
Port P6 input
td(E–P7Q)
Port P7 output
tsu(P7D–E)
th(E–P7D)
Port P7 input
td(E–P8Q)
Port P8 output
tsu(P8D–E)
th(E–P8D)
Port P8 input
15
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
In Event counter mode TAiOUT input
(Up-down input)
TAiIN input
(when count by falling)
TAiIN input
(when count by rising)
th(TIN –UP)
tsu(UP–TIN)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TxDi
td(C–Q)
tsu(D–C)
RxDi
tw(INL)
INTi input
tw(INH)
16
th(C–D)
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode
(When wait bit = “1”)
φ1
E
RDY input
tsu(RDY–φ1) th(φ1–RDY)
( When wait bit = “0”)
φ1
E
RDY input
tsu(RDY–φ1) th(φ1–RDY)
(When wait bit = “1” or “0” in common)
φ1
tsu(HOLD–φ1)
th(φ1–HOLD)
HOLD input
td(φ1–HLDA)
td(φ1–HLDA)
HLDA output
Test conditions
• VCC = 2.7 to 5.5 V
• Input timing voltage : V IL = 0.2 VCC, VIH = 0.8 V CC
• Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
17
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode (When wait bit = “1”)
tw(L)
tr
tf
tw(H)
tc
f(XIN)
φ1
td(E- φ1)
td(E- φ1)
tw(EL)
E
td(P0A-E)
th(E-P0A)
Port P0 output
(A0 to A7)
Address
th(ALE-P1A)
Port P1 output
(A8 to A15/D8 to D15)
(BYTE = “L”)
Address
th(E-P1Q)
Address
tpxz(E-P1Z)
Data
Address
Address
td(E-P1Q)
td(P1A-ALE)
td(P1A-E)
th(E-P1A)
Port P1 output
(A8 to A15)
(BYTE = “H”)
tpzx(E-P1Z)
Address
Address
tsu(P1D-E)
th(E-P1D)
Port P1 input
th(E-P2Q)
th(ALE-P2A)
Port P2 output
(A16 to A23/D0 to D7)
Address
td(P2A-ALE)
Data
tpxz(E-P2Z)
Address
td(E-P2Q)
td(P2A-E)
Address
tsu(P2D-E)
th(E-P2D)
Port P2 input
tw(ALE)
td(ALE-E)
Port P32 output
(ALE)
td(BHE-E)
th(E-BHE)
td(R/W-E)
th(E-R/W)
Port P31 output
(BHE)
Port P30 output
(R/W)
Test conditions
• VCC = 2.7 to 5.5 V
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
• Ports P1, P2 input
18
: VIL = 0.16 VCC, VIH = 0.5 VCC
tpzx(E-P2Z)
MITSUBISHI MICROCOMPUTERS
M37702M2LXXXGP, M37702S1LGP
M37702M2LXXXHP, M37702S1LHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode (When wait bit = “0”, and external memory area is accessed)
tc
f(XIN)
φ1
td(E- φ1)
td(E- φ1)
tw(EL)
E
th(E-P0A)
Port P0 output
(A0 to A7)
td(P0A-E)
Address
th(ALE-P1A)
Port P1 output
(A8 to A15/D8 to D15)
(BYTE = “L”)
Address
th(E-P1Q)
Address
Data
tpxz(E-P1Z)
tpzx(E-P1Z)
Address
Address
td(E-P1Q)
td(P1A-ALE)
th(E-P1A)
Port P1 output
(A8 to A15)
(BYTE = “H”)
td(P1A-E)
Address
Address
tsu(P1D-E)
th(E-P1D)
Port P1 input
th(ALE-P2A)
Port P2 output
(A16 to A23/D0 to D7)
Address
th(E-P2Q)
Data
tpxz(E-P2Z)
tpzx(E-P2Z)
Address
Address
tsu(P2D-E)
td(E-P2Q)
td(P2A-E)
th(E-P2D)
td(P2A-ALE)
Port P2 input
tw(ALE)
td(ALE-E)
Port P32 output
(ALE)
td(BHE-E)
th(E-BHE)
Port P31 output
(BHE)
td(R/W-E)
th(E-R/W)
Port P30 output
(R/W)
Test conditions
• VCC = 2.7 to 5.5 V
• Output timing voltage : VOL = 0.8 V, VOH = 2.0 V
• Ports P1, P2 input
: VIL = 0.16 VCC, VIH = 0.5 VCC
19
MITSUBISHI DATA BOOK
SINGLE-CHIP 16-BIT MICROCOMPUTERS Vol.1
Mar. First Edition 1996
Editioned by
Committee of editing of Mitsubishi Semiconductor Data Book
Published by
Mitsubishi Electric Corp., Semiconductor Division
This book, or parts thereof, may not be reproduced in any form without permission of
Mitsubishi Electric Corporation.
© 1996 MITSUBISHI ELECTRIC CORPORATION Printed in Japan