To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MIN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f ot a its are is n m This etric li m ice: Not e para m So LI PRE PROM VERSION OF M37736MHLXXXHP DESCRIPTION The M37736EHLXXXHP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the PROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on. Its strong points are the low power dissipation, the low supply voltage, and the small package. In the M37736MHLXXXHP, as the multiplex method of the external bus, either of 2 types can be selected. The M37736EHLXXXHP has the same function as the M37736MHLXXXHP except that the built-in ROM is PROM. (Refer to the basic function blocks description.) ●Instruction execution time The fastest instruction at 12 MHz frequency ...................... 333 ns ●Single power supply ...................................................... 2.7–5.5 V ●Low power dissipation (At 3 V supply voltage, 12 MHz frequency) ............................................ 9 mW (Typ.) ●Interrupts ............................................................ 19 types, 7 levels ●Multiple-function 16-bit timer ................................................. 5 + 3 ●Serial I/O (UART or clock synchronous) ..................................... 3 ●10-bit A-D converter .............................................. 8-channel inputs ●12-bit watchdog timer ●Programmable input/output, output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10) ............... 84 ●Clock generating circuit ........................................ 2 circuits built-in ●Small package ..................... 100-pin plastic molded fine-pitch QFP (100P6Q-A;0.5 mm lead pitch) APPLICATION FEATURES ●Number of basic instructions .................................................. 103 ●Memory size PROM ................................................. 124 Kbytes RAM ................................................ 3968 bytes Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and others. Control devices for general industrial equipment such as communication equipment, and others. 75 ↔ P92/RXD2 74 → P93/TXD2 73 → P94 72 → P95 71 → P96 70 → P97 69 ↔ P00/A0/CS0 68 ↔ P01/A1/CS1 67 ↔ P02/A2/CS2 66 ↔ P03/A3/CS3 65 ↔ P04/A4/CS4 64 ↔ P05/A5/RSMP 63 ↔ P06/A6/A16 62 ↔ P07/A7/A17 61 ↔ P10/A8/D8 60 ↔ P11/A9/D9 59 ↔ P12/A10/D10 58 ↔ P13/A11/D11 57 ↔ P14/A12/D12 56 ↔ P15/A13/D13 55 ↔ P16/A14/D14 54 ↔ P17/A15/D15 53 ↔ P20/A16/A0/D0 52 ↔ P21/A17/A1/D1 51 ↔ P22/A18/A2/D2 PIN CONFIGURATION (TOP VIEW) M37736EHLXXXHP P65/TB0IN ↔ 1 P64/INT2 ↔ 2 P63/INT1 ↔ 3 P62/INT0 ↔ 4 P61/TA4IN ↔ 5 P60/TA4OUT ↔ 6 P57/TA3IN ↔ 7 P56/TA3OUT ↔ 8 P55/TA2IN ↔ 9 P54/TA2OUT ↔ 10 P53/TA1IN ↔ 11 P52/TA1OUT ↔ 12 P51/TA0IN ↔ 13 P50/TA0OUT ↔ 14 P107/KI3 ↔ 15 P106/KI2 ↔ 16 P105/KI1 ↔ 17 P104/KI0 ↔ 18 P103 ↔ 19 P102 ↔ 20 P101 ↔ 21 P100 ↔ 22 P47 ↔ 23 P46 ↔ 24 P45 ↔ 25 P91/CLK2 ↔ 76 P90/CTS2 ↔ 77 P87/TXD1 ↔ 78 P86/RXD1 ↔ 79 P85/CLK1 ↔ 80 P84/CTS1/RTS1 ↔ 81 P83/TXD0 ↔ 82 P82/RXD0/CLKS0 ↔ 83 P81/CLK0 ↔ 84 P80/CTS0/RTS0/CLKS1 ↔ 85 86 VCC 87 AVCC VREF → 88 89 AVSS 90 VSS P77/AN7/XCIN ↔ 91 P76/AN6/XCOUT ↔ 92 P75/AN5/ADTRG ↔ 93 P74/AN4 ↔ 94 P73/AN3 ↔ 95 P72/AN2 ↔ 96 P71/AN1 ↔ 97 P70/AN0 ↔ 98 P67/TB2IN/f SUB ↔ 99 P66/TB1IN ↔ 100 Outline 100P6Q-A 50 ↔ P23/A19/A3/D3 49 ↔ P24/A20/A4/D4 48 ↔ P25/A21/A5/D5 47 ↔ P26/A22/A6/D6 46 ↔ P27/A23/A7/D7 45 ↔ P30/R/W/WEL 44 ↔ P31/BHE/WEH 43 ↔ P32/ALE 42 ↔ P33/HLDA 41 → EVL0 40 → EVL1 39 VCC 38 VSS 37 → E/RDE 36 → XOUT 35 ← XIN 34 ← RESET 33 ← BSEL 32 ← CNVSS 31 ← BYTE 30 ↔ P40/HOLD 29 ↔ P41/RDY 28 ↔ P42/f1 27 ↔ P43 26 ↔ P44 M37736EHLXXXHP P0(8) Input/Output port P0 P1(8) Input/Output port P1 P2(8) Input/Output port P2 P3(4) Input/Output port P3 P4(8) Input/Output port P4 P5(8) Input/Output port P5 Input/Output port P6 Input/Output port P7 Input/Output port P8 AVCC Address Bus A-D Converter(10) UART0(9) UART2(9) CNVSS UART1(9) Data Address Register DA(24) (0V) AVSS P6(8) Instruction Queue Buffer Q2(8) Incrementer(24) (0V) VSS XCIN Stack Pointer S(16) Timer TB1(16) Timer TB2(16) Timer TB0(16) Timer TA0(16) XCOUT Direct Page Register DPR(16) Timer TA1(16) Processor Status Register PS(11) Timer TA4(16) Input Buffer Register IB(16) Timer TA2(16) Data Bank Register DT((8) Timer TA3(16) Watchdog Timer Program Bank Register PG(8) VCC Accumulator B(16) XCIN XCOUT Index Register X(16) RAM 3968 bytes Index Register Y(16) Accumulator A(16) Arithmetic Logic Unit(16) PROM 124 Kbytes Clock Generating Circuit Bus method Reset input selection input RESET BSEL Enable output E Clock output XOUT P7(8) Data Bus(Odd) Instruction Queue Buffer Q1(8) Program Counter PC(16) Clock input XIN P8(8) Instruction Register(8) Instruction Queue Buffer Q0(8) Incrementer/Decrementer(24) M37736EHLXXXHP BLOCK DIAGRAM Data Bus(Even) Program Address Register PA(24) 2 Data Buffer DBL(8) P9(8) P10(8) Data Buffer DBH(8) Output port P9 Input/Output port P10 Reference External data bus width selection input voltage input BYTE VREF PROM VERSION OF M37736MHLXXXHP P IN . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som IM REL MITSUBISHI MICROCOMPUTERS Y AR IM REL R INA Y e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P MITSUBISHI MICROCOMPUTERS M37736EHLXXXHP PROM VERSION OF M37736MHLXXXHP FUNCTIONS OF M37736EHLXXXHP Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Output port Multi-function timers PROM RAM P0 – P2, P4 – P8, P10 P3 P9 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Memory expansion Operating temperature range Device structure Package Input/Output voltage Output current Functions 103 333 ns (the fastest instruction at external clock 12 MHz frequency) 124 Kbytes 3968 bytes 8-bit ✕ 9 4-bit ✕ 1 8-bit ✕ 1 16-bit ✕ 5 16-bit ✕ 3 (UART or clock synchronous serial I/O) ✕ 3 10-bit ✕ 1 (8 channels) 12-bit ✕ 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 2.7 – 5.5 V 9 mW (at 3 V supply voltage, external clock 12 MHz frequency) 22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency) 5V 5 mA External bus mode A; maximum 16 Mbytes, External bus mode B; maximum 1 Mbytes –40 to 85 °C CMOS high-performance silicon gate process 100-pin plastic molded fine-pitch QFP (100P6Q-A;0.5 mm lead pitch) 3 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP e. n. atio chang cific spe bject to l a a fin are su not s limit is is : Th metric e ic Not e para Som P PROM VERSION OF M37736MHLXXXHP PIN DESCRIPTION Pin Vcc, Vss CNVss Name Input/Output Power source Apply 2.7 – 5.5 V to Vcc and 0 V to Vss. CNVss input Input RESET Reset input Input XIN Clock input XOUT Clock output Output E Enable output Output BYTE External data bus width selection input Bus method select input Input ________ Input _ BSEL AVcc, AVss VREF P00 – P07 Analog power source input Reference voltage input I/O port P0 Input Input I/O P10 – P17 I/O port P1 I/O P20 – P27 I/O port P2 I/O P30 – P33 I/O port P3 I/O P40 – P47 I/O port P4 I/O P50 – P57 I/O port P5 I/O P60 – P67 I/O port P6 I/O P70 – P77 I/O port P7 I/O P80 – P87 I/O port P8 I/O P90 – P97 Output port P9 Output P100 – P107 I/O port P10 I/O EVL0, EVL1 4 Output Functions This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. This pin functions as the enable signal output pin which indicates the access status in the internal bus. In the external bus mode B and the memory expansion mode or the microprocessor mode, ___ this pin output signal RDE. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. In the memory expansion mode or the microprocessor mode, this pin determines the external bus mode. The bus mode becomes the external bus mode A when “H” signal is input, and the external bus mode B when “L” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. In the memory expansion mode or the microprocessor mode, ____ address (A0 – A7) ___these ___pins output at the external bus mode A, and these pins output signals CS0 – CS4 and RSMP, and addresses (A16, A17) at the external bus mode B. In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address is output. When using the external bus mode A, the address is A16 – A23. When using the external bus mode B, the address is A0 – A7. In the single-chip mode, these pins have as _ _ _ _ _ _ the _ _ _ _ _ _ _ _ _ _ _ _ _ _same function _ _ _ _ _ _ _ _ _ _ _ _ _ _ port P0. In the memory expansion mode or the microprocessor mode, R/W___,____BHE , ALE, and HLDA signals are output at the external ________ ____________ __________ bus mode A, and WEL, WEH, ALE, and HLDA signals are output at the external bus mode B. In the single-chip mode, these pins have the same functions as____ port P0. In___ the memory expansion mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and a clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 can be selected as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for timers A0 to A3. In addition to having the same functions as port P0 in the single-chip mode, ___ these ___ pins also function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1. Port P9 is an 8-bit I/O port. These ports are floating when reset. When writing to the port latch, these ports become the output mode. P90 – P93 also function as I/O port for UART 2. In addition to having the same functions as port P0_____in the __single-chip mode. P104 – P107 also __ function as input pins for key input interrupt input (Kl0 – Kl3). These pins should be left open. IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP BASIC FUNCTION BLOCKS The M37736EHLXXXHP has the same functions as the M37736MHBXXXGP except for the following : (1) The built-in ROM is PROM. (2) The package is different. (3) The reset circuit is different. Refer to the section on the M37736MHBXXXGP. RESET CIRCUIT _____ The microcomputer is released from the reset state when the RESET pin is returned to “H” level after holding it at “L” level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A23 – A16 to 0016, A15 – A8 to the contents of address FFFF16, and A7 – A0 to the contents of address FFFE16. Figure 1 shows an example of a reset circuit. When the stabilized clock is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. When a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from “L” to “H” after the main-clock oscillation is fully stabilized. The status of the internal registers during reset is the same as the M37736MHBXXXGP’s. Power on 2.7V VCC RESET VCC 0V RESET 0V 0.55V Note. In this case, stabilized clock is input from the external to the main-clock oscillation circuit. Perform careful evalvation at the system design level before using. Fig. 1 Example of a reset circuit 5 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP PIN DESCRIPTION (EPROM MODE) Pin VCC, VSS CNVSS BYTE ____ RESET XIN XOUT _ E AVCC, AVSS VREF P00 – P07 Name Power supply VPP input VPP input Reset input Clock input Clock output Enable output Analog supply input Reference voltage input Input/Output Input Input Input Input Output Output Input Input Functions Supply 5V±10% to VCC and 0V to VSS. Connect to VPP when programming or verifing. Connect to VPP when programming or verifing. Connect to VSS. Connect a ceramic resonator between XIN and XOUT. Keep open. Connect AVCC to VCC and AVSS to VSS. Connect to VSS. P10 – P17 P20 – P27 Address input (A0 – A7) Address input (A8 – A15) Data I/O (D0 – D7) P30 P31 – P33 P40 – P47 Input port P3 Input port P4 Input I/O Input Input Input P50 – P57 Control signal input Input P60 – P67 Input port P6 P70 – P77 P80 – P87 Input port P7 Input port P8 Input Input Input P90 – P97 Input port P9 Input Connect to VSS. P100 – P107 Input port P10 ____ Input Connect to VSS. Input Connect to Vcc. BSEL EVL0,EVL1 6 Address input (A16) ____ Output Port P0 functions as the lower 8 bits address input (A0 – A7). Port P1 functions as the higher 8 bits address input (A8 – A15). Port P2 functions as the 8 bits data bus(D0 – D7). P30 functions as the most significant bit address input (A16). Connect to VSS. Connect to VSS. ___ __ __ P50, P51 and P52 function as PGM, OE and CE input pins respectively. Connect P53, P54, P55 and P56 to VCC. Connect P57 to VSS. Connect to VSS. Connect to VSS. Connect to VSS. Keep open. IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP ge. ion. icat o chan t ecif l sp ubject a in f s are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP EPROM MODE M5M27C101K). When in this mode, the built-in PROM can be programmed or read from using these pins in the same way as with the M5M27C101K. This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify address 0100016 – 1FFFF16. Connect the clock which is either ceramic resonator or external clock to XIN pin and XOUT pin. 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 ↔ P92 → P93 → P94 → P95 → P96 → P97 ↔ P00 ↔ P01 ↔ P02 ↔ P03 ↔ P04 ↔ P05 ↔ P06 ↔ P07 ↔ P10 ↔ P11 ↔ P12 ↔ P13 ↔ P14 ↔ P15 ↔ P16 ↔ P17 ↔ P20 ↔ P21 ↔ P22 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 D0 D1 D2 The M37736EHLXXXHP features an EPROM mode in addition to its _____ normal modes. When the RESET signal level is “L”, the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 2 shows the pin connections in the EPROM mode. The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K. When in the EPROM mode, ports P0, P1, P2, P30, P50, P51, P52, CNV SS and BYTE are used for the EPROM (equivalent to the ↔ P23 ↔ P24 ↔ P25 ↔ P26 ↔ P27 ↔ P30 ↔ P31 ↔ P32 ↔ P33 → EVL0 → EVL1 VCC VSS →E → XOUT ← XIN ← RESET ← BSEL ← CNVSS ← BYTE ↔ P40 ↔ P41 ↔ P42 ↔ P43 ↔ P44 D3 D4 D5 D6 D7 A16 VSS ∗ VPP CE OE PGM P65 ↔ 1 P64 ↔ 2 P63 ↔ 3 P62 ↔ 4 P61 ↔ 5 P60 ↔ 6 P57 ↔ 7 P56 ↔ 8 P55 ↔ 9 P54 ↔ 10 P53 ↔ 11 P52 ↔ 12 P51 ↔ 13 P50 ↔ 14 P107 ↔ 15 P106 ↔ 16 P105 ↔ 17 P104 ↔ 18 P103 ↔ 19 P102 ↔ 20 P101 ↔ 21 P100 ↔ 22 P47 ↔ 23 P46 ↔ 24 P45 ↔ 25 M37736EHLHP 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 VCC P91 ↔ 76 P90 ↔ 77 P87 ↔ 78 P86 ↔ 79 P85 ↔ 80 P84 ↔ 81 P83 ↔ 82 P82 ↔ 83 P81 ↔ 84 P80 ↔ 85 86 VCC 87 AVCC VREF → 88 89 AVSS 90 VSS P77 ↔ 91 P76 ↔ 92 P75 ↔ 93 P74 ↔ 94 P73 ↔ 95 P72 ↔ 96 P71 ↔ 97 P70 ↔ 98 P67 ↔ 99 P66 ↔ 100 ∗ : Connect to ceramic oscillation circuit. Outline 100P6Q-A : It is used in the EPROM mode. Fig. 2 Pin connection in EPROM mode 7 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP Table 1 Pin function in EPROM mode VCC VPP VSS Address input Data I/O __ CE __ OE ___ PGM 8 M37736EHLXXXHP VCC M5M27C101K VCC CNVSS, BYTE VSS Ports P0, P1, P30 VPP VSS A0 – A16 Port P2 P52 D0 – D7 P51 P50 OE __ CE __ ___ PGM IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP ge. ion. icat o chan t ecif l sp ubject a in f s are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K) Reading __ __ To read the EPROM, set the CE and OE pins to a “L” level. Input the address of the data (A0 – A16) to be read, and the data will be output to the I/O pins D0 – D7. The data I/O pins will be floating when either __ __ the CE or OE pins are in the “H” state. Programming Programming must be performed in 8 bits by a byte program. To __ __ program to the EPROM, set the CE pin to a “L” level and the OE pin to a “H” level. The CPU will enter the programming mode when 12.5 V is applied to the VPP pin. The address to be programmed to is selected with pins A0 – A16, and the data to be programmed is input to pins D0 ___ – D7. Set the PGM pin to a “L” level to being programming. Programming operation To program the M37736EHLXXXHP, first set VCC = 6 V, VPP = 12.5 V, and set the address to 0100016. Apply a 0.2 ms programming pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2 ms programming pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2 ✕ X ms). When this series of programming operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached. Finally, when all addresses have been programmed, read with VCC = VPP = 5 V (or VCC = VPP = 5.5 V). Table 2. I/O signal in each mode Pin Mode Read-out Output Disable Programming Programming Verify Program Disable __ __ ___ CE OE PGM VPP VCC Data I/O VIL VIL VIL VIH X X 5V 5V 5V 5V Output Floating VIH VIL X VIH X 5V 5V VIL 12.5 V 6 V Floating Input VIL VIL VIH 12.5 V 6 V Output VIH VIH VIH 12.5 V 6 V Floating Note 1 : An X indicates either VIL or VIH. Programming operation (equivalent to the M5M27C101K) AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted) Symbol Parameter tAS Address setup time tOES tDS tAH tDH tDFP tVCS OE setup time tVPS tPW tOPW tCES tOE __ Test conditions Min. 2 0.19 PGM over program pulse width 0.19 __ CE setup time __ Data valid from OE Max. Unit µs µs 2 2 Data setup time Address hold time Data hold time Output enable to output float delay VCC setup time VPP setup time ___ PGM pulse width ___ Limits Typ. 0 2 130 0 2 2 0.2 µs µs µs ns µs µs 0.21 5.25 ms ms 150 µs ns 2 9 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP AC waveforms PROGRAM VERIFY VIH ADDRESS VIL tAH tAS VIH/VOH DATA DATA OUTPUT VALID DATA SET VIL/VOL tDS tDH tDFP VPP VPP VCC VCC +1 VCC VCC tVPS tVCS VIH CE VIL tCES VIH PGM tOES VIL tOE tPW VIH tOPW OE VIL Test conditions for A.C. characteristics Input voltage : VIL = 0.45 V, VIH = 2.4 V Input rise and fall times (10 % – 90 %) : ≤ 20 ns Reference voltage at timing measurement : Input, Output “L” = 0.8 V, “H” = 2 V Programming algorithm flow chart START ADDR=FIRST LOCATION VCC=6.0 V VPP=12.5 V X=0 PROGRAM ONE PULSE OF 0.2 ms X=X+1 YES X=25? NO FAIL VERIFY BYTE FAIL VERIFY BYTE PASS PROGRAM PULSE OF 0.2X ms DURATION DEVICE FAILED PASS NO INCREMENT ADDR LAST ADDR? YES VCC=VPP=*5.0 V VERIFY ALL BYTE FAIL DEVICE FAILED PASS DEVICE PASSED 10 *4.5 V ≤ VCC = VPP ≤ 5.5 V IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP SAFETY INSTRUCTIONS ADDRESSING MODES (1) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on. (2) The programmable M37736EHLHP that is shipped in blank is also provided. For the M37736EHLHP, Mitsubishi Electric corp. does not perform PROM programming test and screening following the assembly processes. To improve reliability after programming, performing programming and test according to the flow below before use is recommended. The M37736EHLXXXHP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details. Programming with PROM programmer Screening MACHINE INSTRUCTION LIST The M37736EHLXXXHP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details. DATA REQUIRED FOR PROM ORDERING Please send the following data for writing to PROM. (1) M37736EHLXXXHP writing to PROM order confirmation form (2) 100P6Q mark specification form (100P6D mark specification form is substituted.) (3) ROM data (EPROM 3 sets) (Caution) (Leave at 150 °C for 40 hours) Verify test with PROM programmer Function check in target device Caution : Never expose to 150 °C exceeding 100 hours. 11 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP ABSOLUTE MAXIMUM RATINGS Symbol Vcc AVcc VI VI VO Pd Topr Tstg Parameter Conditions Power source voltage Analog power_____ source voltage Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, VREF, XIN, BSEL Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, 7, P60 – P67, P70 – P77, P80 – P8_ P90 – P97, P100 – P107, XOUT, E Power dissipation Ta = 25 °C Operating temperature Storage temperature Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12(Note) Unit V V V –0.3 to Vcc + 0.3 V –0.3 to Vcc + 0.3 V 200 –40 to +85 –65 to +150 mW °C °C Note. When the EPROM is programmed, input voltage of pins CNVss and BYTE is 13 V respectively. RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted) Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) IOH(avg) IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN) Parameter f(XIN) : Operating f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage , P60 – P67, High-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57_____ P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) P60 – P67, Low-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, _____ P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level peak output current P44 – P47, P100 – P103 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level average output current P44 – P47, P100 – P103 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 2.7 2.7 Power source voltage Max. 5.5 5.5 Vcc 0 0 Unit V V V V 0.8 Vcc Vcc V 0.8 Vcc Vcc V 0.5 Vcc Vcc V 0 0.2Vcc V 0 0.2Vcc V 0 0.16Vcc V –10 mA –5 mA 10 mA 16 mA 5 mA 12 12 50 mA MHz kHz Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, P7, and P10 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, P7, and P10 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”. 12 Limits Typ. 32.768 IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted) Symbol Parameter VOH High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 VOH High-level output voltage P30 – P32 VOH High-level output voltage E VOL Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 VOH _ VOL Low-level output voltage P44 – P47, P100 – P103 VOL Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 VOL Low-level output voltage P30 – P32 VOL Low-level output voltage E VT+ – VT– Hysteresis HOLD , _______ RDY, TA0IN – TA4IN, TB0IN – TB2IN, _______ __________ ________ ________ ________ INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, _____ _____ CLK1, CLK2, KI0 – KI3 _ ____ ___ _____ VT+ – VT– Hysteresis RESET VT+ – VT– Hysteresis XIN VT+ – VT– Hysteresis XCIN (When external clock is input) IIH IIL High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P7 7, _____ P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P53, P60, P61, P65 – P67, P70 _____ – P77, P80 – P87, P90 – P92, P100 – P103, XIN, RESET, CNVss, BYTE, BSEL Low-level input current P62 – P64, P104 – P107 Test conditions VCC = 5 V, IOH = –10 mA Limits Typ. Min. Unit Max. 3 VCC = 3 V, IOH = –1 mA 2.5 VCC = 5 V, IOH = –400 µA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA 4.7 3.1 4.8 2.6 3.4 4.8 2.6 V V V V 2 VCC = 5 V, IOL = 10 mA V VCC = 3 V, IOL = 1 mA 0.5 VCC = 5 V, IOL = 16 mA VCC = 3 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA 1.8 1.5 0.45 1.9 0.43 0.4 1.6 0.4 0.4 VCC = 5 V 0.4 1 VCC = 3 V 0.1 0.7 VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V 0.2 0.1 0.1 0.06 0.1 0.06 0.5 0.4 0.4 0.26 0.4 0.26 VCC = 5 V, VI = 5 V 5 VCC = 3 V, VI = 3 V 4 VCC = 5 V, VI = 0 V –5 VCC = 3 V, VI = 0 V –4 VI = 0 V, VCC = 5 V –5 transistor VCC = 3 V –4 VI = 0 V, VCC = 5 V –0.25 –0.5 –1.0 VCC = 3 V –0.08 –0.18 –0.35 with a pull-up transistor VRAM RAM hold voltage V V V V V V V µA µA without a pull-up IIL V When clock is stopped. 2 µA mA V 13 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted) Symbol Parameter Power source current ICC Limits Typ. Max. Unit VCC = 5 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) 4.5 9 mA VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) 3 6 mA VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 0.75 MHz), f(XCIN) : Stopped, in operating 0.4 0.8 mA 6 12 µA 30 60 µA 3 6 µA 1 µA 20 µA Test conditions Min. When single-chip mode, output pins are open, and other pins are VSS. VCC = 3 V, f(XIN) = 12 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, in operating (Note 3) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, when clock is stopped Ta = 85 °C, when clock is stopped Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. 2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. 3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. 4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”. A–D CONVERTER CHARACTERISTICS (VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Symbol — — RLADDER tCONV VREF VIA Parameter Resolution Absolute accuracy Ladder resistance Conversion time Reference voltage Analog input voltage Test conditions VREF = VCC VREF = VCC VREF = VCC Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 14 Min. 10 19.6 2.7 0 Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP TIMING REQUIREMENTS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted. External clock input Symbol tc tw(H) tw(L) tr tf Parameter External clock input cycle time (Note 3) External clock input high-level pulse width (Note 4) External clock input low-level pulse width (Note 4) External clock rise time External clock fall time Limits Min. 83 33 33 Max. 15 15 Unit ns ns ns ns ns Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns. 4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55. Single-chip mode Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D–E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) tsu(P10D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) th(E–P10D) Parameter Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P10 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Port P10 input hold time Limits Min. 200 200 200 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Memory expansion mode and microprocessor mode Symbol tsu(D–E) tsu(D–RDE) tsu(RDY–φ1) tsu(HOLD–φ1) th(E–D) th(RDE–D) th(φ1–RDY) th(φ1–HOLD) Parameter Data input setup time (external bus mode A) Data input setup time (external bus mode B) ___ RDY input setup time ____ HOLD input setup time Data input hold time (external bus mode A) Data input hold time (external bus mode B) ___ RDY input hold time ____ HOLD input hold time Limits Min. 50 50 80 80 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns 15 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P Timer A input (Count input in event counter mode) Symbol tc(TA) tw(TAH) tw(TAL) PROM VERSION OF M37736MHLXXXHP Parameter TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 250 125 125 Max. Unit ns ns ns Timer A input (Gating input in timer mode) Symbol tc(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) Limits Min. 666 333 333 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. Timer A input (External trigger input in one-shot pulse mode) Symbol t c(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 666 166 166 Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. Timer A input (External trigger input in pulse width modulation mode) Symbol tw(TAH) tw(TAL) Parameter TAiIN input high-level pulse width TAiIN input low-level pulse width Limits Min. 166 166 Max. Unit ns ns Timer A input (Up-down input in event counter mode) Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) Parameter TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time Limits Min. 3333 1666 1666 666 666 Max. Unit ns ns ns ns ns Timer A input (Two-phase pulse input in event counter mode) Symbol tc(TA) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) 16 Parameter TAjIN input cycle time TAjIN input setup time TAjOUT input setup time Limits Min. 2000 500 500 Max. Unit ns ns ns IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP Timer B input (Count input in event counter mode) Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 250 125 125 500 250 250 TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Max. Unit ns ns ns ns ns ns Timer B input (Pulse period measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 666 333 333 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. Timer B input (Pulse width measurement mode) Symbol tc(TB) tw(TBH) tw(TBL) Limits Parameter Min. 666 333 333 TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Max. Unit ns ns ns Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”. A-D trigger input Symbol Limits Parameter Min. 1333 166 __________ tc(AD) tw(ADL) AD TRG input cycle time (minimum allowable trigger) __________ ADTRG input low-level pulse width Max. Unit ns ns Serial I/O Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) Limits Parameter Min. 333 166 166 CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time Max. 100 0 65 75 _________ Unit ns ns ns ns ns ns ns ___ External interrupt INTi input, key input interrupt KIi input Symbol Parameter ___ tw(INH) tw(INL) tw(KIL) INTi input high-level pulse width ___ INTi input low-level pulse width __ KIi input low-level pulse width Limits Min. 250 250 250 Max. Unit ns ns ns 17 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP DATA FORMULAS Timer A input (Gating input in timer mode) Symbol Parameter tc(TA) TAiIN input cycle time tw(TAH) TAiIN input high-level pulse width tw(TAL) TAiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Max. Unit ns ns ns Timer A input (External trigger input in one-shot pulse mode) Symbol tc(TA) Parameter TAiIN input cycle time Limits Min. 8 ✕ 109 2 · f(f2) Max. Unit ns Timer B input (In pulse period measurement mode or pulse width measurement mode) Symbol Parameter tc(TB) TBiIN input cycle time tw(TBH) TBiIN input high-level pulse width tw(TBL) TBiIN input low-level pulse width Limits Min. 8 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”. 18 Max. Unit ns ns ns IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP SWITCHING CHARACTERISTICS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Single-chip mode Symbol Parameter Limits Test conditions Min. td(E–P0Q) Port P0 data output delay time td(E–P1Q) Port P1 data output delay time td(E–P2Q) Port P2 data output delay time td(E–P3Q) Port P3 data output delay time td(E–P4Q) Port P4 data output delay time Fig. 3 td(E–P5Q) Port P5 data output delay time td(E–P6Q) Port P6 data output delay time td(E–P7Q) Port P7 data output delay time td(E–P8Q) Port P8 data output delay time td(E–P9Q) Port P9 data output delay time Port P10 data output delay time td(E–P10Q) Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. Max. 300 300 300 300 300 300 300 300 300 300 300 Unit ns ns ns ns ns ns ns ns ns ns ns P0 P1 P2 50 pF P3 P4 P5 P6 P7 P8 P9 P 10 φ1 E Fig. 3 Measuring circuit for ports P0 – P10 and φ1 19 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP [External bus mode A] Memory expansion mode and microprocessor mode (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz (Note 1), unless otherwise noted) Symbol td(An–E) td(A–E) Parameter Address output delay time Address output delay time th(E–An) Address hold time tw(ALE) ALE pulse width tsu(A–ALE) th(ALE–A) Address output setup time Address hold time td(ALE–E) ALE output delay time td(E–DQ) th(E–DQ) Data output delay time Data hold time tw(EL) tpxz(E–DZ) tpzx(E–DZ) td(BHE–E) td(R/W–E) th(E–BHE) th(E–R/W) td(E–φ1) td(φ1–HLDA) _ E pulse width Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Fig. 3 BHE output delay time _ R/ W output delay time ___ No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 BHE hold time _ R/ W hold time φ1 output delay time ____ HLDA output delay time Unit 20 ns 182 ns 20 ns 162 ns 40 ns 40 ns 123 ns 10 ns 93 ns 9 ns 40 ns 4 ns 40 131 ns ns ns ns 298 ns 40 53 ns ns 20 ns 182 ns 20 ns 182 33 33 0 ns ns ns ns ns 10 Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”. 20 Max. 90 Floating start delay time Floating release delay time ___ Limits Min. 30 120 IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP [External bus mode A] Memory expansion mode and microprocessor mode Bus timing data formulas (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, Symbol td(An–E) Parameter Address output delay time f(XIN) = 12 MHz (Max., Note), unless otherwise noted) Wait mode No wait Wait 1 Wait 0 td(A–E) Address output delay time No wait Wait 1 Wait 0 th(E–An) Address hold time tw(ALE) ALE pulse width No wait Wait 1 Wait 0 tsu(A–ALE) Address output setup time No wait Wait 1 Wait 0 th(ALE–A) Address hold time No wait Wait 1 Wait 0 td(ALE–E) td(E–DQ) th(E–DQ) ALE output delay time tpxz(E–DZ) tpzx(E–DZ) 1✕ 2 · f(f2) No wait 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) Wait 1 Wait 0 _ R/W output delay time No wait Wait 1 No wait Wait 1 Wait 0 ___ th(E–BHE) BHE hold time _ th(E–R/W) R/W hold time td(E–φ1) φ1 output delay time ns ns ns ns ns ns – 43 ns ns – 43 ns 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) ns – 43 ns – 35 ns – 35 ns 10 Wait 0 td(R/W–E) ns 90 Floating release delay time BHE output delay time ns ns Floating start delay time ___ td(BHE–E) 109 Unit ns 4 Wait 0 Data hold time E pulse width Max. 9 1 ✕ 109 2 · f(f2) Data output delay time _ tw(EL) No wait Wait 1 Limits Min. 1 ✕ 109 – 63 2 · f(f2) 9 3 ✕ 10 – 68 2 · f(f2) 9 1 ✕ 10 – 63 2 · f(f2) 9 3 ✕ 10 – 88 2 · f(f2) 9 1 ✕ 10 – 43 2 · f(f2) 9 1 ✕ 10 – 43 2 · f(f2) 9 2 ✕ 10 – 43 2 · f(f2) 1 ✕ 109 – 73 2 · f(f2) 2 ✕ 109 – 73 2 · f(f2) ns – 30 ns – 63 ns – 68 ns – 63 ns – 68 ns – 50 ns – 50 ns 0 30 ns Notes 1. This applies when the main-clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”. 21 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP [External bus mode B] Memory expansion mode and microprocessor mode (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Symbol Parameter td(CS–WE) td(CS–RDE) Chip-select output delay time th(WE–CS) th(RDE–CS) Chip-select hold time td(An–WE) td(An–RDE) Address output delay time td(A–WE) td(A–RDE) Address output delay time th(WE–An) th(RDE–An) Address hold time tw(ALE) ALE pulse width tsu(A–ALE) th(ALE–A) Address output setup time Address hold time td(ALE–WE) td(ALE–RDE) ALE output delay time td(WE–DQ) th(WE–DQ) Data output delay time Data hold time ___ ___ tw(WE) WEL/WEH pulse width tpxz(RDE–DZ) tpzx(RDE–DZ) Floating start delay time Floating release delay time tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1) td(φ1–HLDA) Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Fig.3 Max. No wait Wait 1 Wait 0 Unit 20 ns 182 ns 4 ns 20 ns 182 ns 20 ns 162 ns 40 ns 40 ns 123 ns 10 ns 93 ns 9 ns 40 ns 4 ns 40 131 ns ns ns ns 298 ns 40 90 53 128 ns ns ns 295 ns 25 ns RSMP hold time 0 ns φ1 output delay time 0 ___ RDE pulse width 10 No wait Wait 1 Wait 0 ____ RSMP output delay time ____ 30 ns 120 ns ____ HLDA output delay time Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”. 22 Limits Min. IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP [External bus mode B] Bus timing data formulas (VCC = 2.7 – 5.5V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max.), unless otherwise noted (Note1)) Symbol Parameter td(CS–WE) td(CS–RDE) Chip-select output delay time th(WE–CS) th(RDE–CS) Chip-select hold time td(An–WE) td(An–RDE) Wait 0 Address output delay time Address output delay time th(WE–An) th(RDE–An) Address hold time No wait Wait 1 No wait Wait 1 Wait 0 ALE pulse width No wait Wait 1 Wait 0 tsu(A–ALE) Address output setup time No wait Wait 1 Wait 0 th(ALE–A) Address hold time No wait Wait 1 ALE output delay time td(WE–DQ) Data output delay time th(WE–DQ) Data hold time tw(WE) WEL/WEH pulse width ___ ___ tpxz(RDE–DZ) tpzx(RDE–DZ) 1 ✕ 10 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 3 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) No wait Wait 1 ns ns ns – 63 ns – 68 ns – 63 ns – 88 ns – 43 ns – 43 ns – 43 ns – 73 ns – 73 ns 9 1 ✕ 10 2 · f(f2) ns – 43 ns ns 4 Wait 0 1 ✕ 10 2 · f(f2) No wait 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 9 – 43 ns 90 Wait 1 Wait 0 No wait Wait 1 Wait 0 1 ✕ 109 2 · f(f2) 2 ✕ 109 2 · f(f2) 4 ✕ 109 2 · f(f2) 1 ✕ 109 2 · f(f2) 0 ns – 43 ns – 35 ns – 35 ns 10 Floating release delay time RDE pulse width Unit 9 Floating start delay time ___ tw(RDE) Max. 9 Wait 0 td(ALE–WE) td(ALE–RDE) Limits Min. 1 ✕ 109 – 63 2 · f(f2) 9 3 ✕ 10 – 68 2 · f(f2) 4 Wait 0 td(A–WE) td(A–RDE) tw(ALE) Wait mode No wait Wait 1 ns – 30 ns – 38 ns – 38 ns td(RSMP–WE) ____ – 58 RSMP output delay time td(RSMP–RDE) ____ th(φ1–RSMP) RSMP hold time td(WE–φ1) φ1 output delay time 0 td(RDE–φ1) Notes 1. This applies when the main clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”. ns ns 30 ns 23 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P TIMING DIAGRAM PROM VERSION OF M37736MHLXXXHP tr tf tc tw(H) XIN E td(E–PiQ) Port Pi output (i = 0 – 10) tsu(PiD–E) Port Pi input (i = 0 – 8, 10) 24 th(E–PiD) tw(L) IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) In event count mode TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising) th(TIN–UP) tsu(UP–TIN) In event counter mode (When two-phase pulse input is selected) tc(TA) TAjIN input tsu(TAjIN–TAjOUT) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) TAjOUT input tsu(TAjOUT–TAjIN) tc(TB) tw(TBH) TBiIN input tw(TBL) 25 IM REL IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP tc(AD) tw(ADL) ADTRG input tc(CK) tw(CKH) CLKi tw(CKL) th(C–Q) TxDi td(C–Q) tSU(D–C) RxDi tw(INL) INTi input Kli input 26 tw(INH) tw(KNL) th(C–D) IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP Memory expansion mode and microprocessor mode (When wait bit = “1”) φ1 E or RDE, WEL, WEH RDY input tsu(RDY–φ1) th(φ1–RDY) ( When wait bit = “0”) φ1 E or RDE, WEL, WEH RDY input tsu(RDY–φ1) th(φ1–RDY) (When wait bit = “1” or “0” in common) φ1 tsu(HOLD–φ1) th(φ1–HOLD) HOLD input td(φ1–HLDA) td(φ1–HLDA) HLDA output Test conditions • VCC = 2.7 – 5.5 V • Input timing voltage : V IL = 0.2 VCC, VIH = 0.8 V CC • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V 27 MIN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f ot a its are is n m This etric li m ice: Not e para m So LI PRE PROM VERSION OF M37736MHLXXXHP [External bus mode A] Memory expansion mode and microprocessor mode (No wait : When wait bit = “1”) tw(L) tw(H) tf tr tc XIN φ1 td(E-φ1) td(E-φ1) tw(EL) E td(An-E) An th(E-An) Address Address tw(ALE) Address td(ALE-E) ALE th(ALE-A) th(E-DQ) tsu(A-ALE) Am/Dm Address Data tpxz(E-DZ) tpzx(E-DZ) Address Address th(E-D) td(E-DQ) td(A-E) tsu(D-E) DmIN Data td(BHE-E) th(E-BHE) BHE td(R/W-E) R/W Test conditions • VCC = 2.7 – 5.5 V • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Data input DmIN : VIL = 0.16 VCC, VIH = 0.5 VCC 28 th(E-R/W) IM L E R IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP [External bus mode A] Memory expansion mode and microprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.) tw(L) tw(H) tf tr tc XIN 1 td(E– 1) td(E– 1) tw(EL) E td(An–E) th(E–An) Address An tw(ALE) Address Address td(ALE–E) ALE th(ALE–A) tsu(A–ALE) Am/Dm th(E–DQ) Address td(A–E) Data tpzx(E–DZ) tpxz(E–DZ) Address Address td(E–DQ) th(E–D) tsu(D–E) DmIN Data td(BHE–E) th(E–BHE) td(R/W–E) th(E–R/W) BHE R/W Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 Vcc, V IH = 0.5 Vcc 29 IM L E R IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP [External bus mode A] Memory expansion mode and microprocessor mode (Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.) tw(L) tw(H) tf tr tc XIN 1 td(E– td(E– 1) 1) tw(EL) E td(An–E) th(E–An) Address An tw(ALE) td(ALE–E) tsu(A–ALE) th(ALE–A) Address Address ALE Am/Dm Address Data tpzx(E–DZ) tpxz(E–DZ) th(E–DQ) Address Address td(E–DQ) td(A–E) tsu(D–E) DmIN Data td(BHE–E) th(E–BHE) BHE td(R/W–E) R/W Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Data input DmIN : VIL = 0.16 Vcc, VIH = 0.5 Vcc 30 th(E–R/W) th(E–D) IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP [External bus mode B] Memory expansion and m icroprocessor mode (No wait : When wait bit = “1”) tw(L) tw(H) tf tr tc XIN 1 td(WE– td(WE– 1) td(RDE– 1) td(RDE– 1) 1) CS0 – CS4 t d(CS–WE) td(CS–RDE) th(WE –CS) An th(RDE– CS) Address Address td(An–WE) tw(ALE) Address td(An–RDE ) td(ALE –WE) th(RDE –An) th(WE –An) ALE td(ALE –RDE) th(ALE –A) tsu(A–ALE) th(WE –DQ) Am/Dm Address Data tpxz(RDE –DZ) tpzx(RDE –DZ) Address Address td(A–RDE) td(WE –DQ) t d(A–WE) tw(WE) th(RDE –D) WEL, WEH t su(D–RDE) DmIN Data tw(RDE) RDE th( 1–RSMP) td(RSMP –WE) td(RSMP –RDE) RSMP Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 31 IM L E R IN MITSUBISHI MICROCOMPUTERS Y AR M37736EHLXXXHP . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PROM VERSION OF M37736MHLXXXHP [External bus mode B] Memory expansion and microprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.) tw(L) tw(H) tf tr tc XIN 1 td(WE– td(WE– 1) 1) td(RDE– td(RDE- 1) 1) CS0 – CS4 th(WE–CS) th(RDE–CS) td(CS–RDE) td(CS–WE) An Address td(An–WE) tw(ALE) Address th(RDE–An) td(An–RDE) th(WE-An) td(ALE–WE) ALE th(ALE–A) tsu(A–ALE) Am/Dm td(ALE–RDE) tpxz(RDE–DZ) th(WE–DQ) Address td(A–WE) Data td(WE–DQ) Address tpzx(RDE–DZ) Address td(A–RDE) tw(WE) th(RDE–D) WEL, WEH tsu(D–RDE) DmIN Data tw(RDE) RDE th( RSMP 1–RSMP) td(RSMP–WE) Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 32 td(RSMP–RDE) IM REL R INA MITSUBISHI MICROCOMPUTERS Y M37736EHLXXXHP e. n. atio chang cific spe bject to l a fin re su a ot a is n limits his e: T ametric ic t No e par Som P PROM VERSION OF M37736MHLXXXHP [External bus mode B] Memory expansion and microprocessor mode (Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.) tw(L) tw(H) tf tr tc XIN 1 td(WE– td(WE– 1) td(RDE– 1) td(RDE– 1) 1) CS0 – CS4 th(WE–CS) td(CS–WE) td(CS–RDE) th(RDE–CS) Address An Address td(An–WE) tw(ALE) Address td(An–RDE) td(ALE–WE) th(RDE–An) th(WE–An) ALE td(ALE–RDE) tsu(A–ALE) Am/Dm th(ALE–A) Address Data th(WE–DQ) tpxz(RDE–DZ) tpzx(RDE–DZ) Address Address td(WE–DQ) td(A–WE) td(A–RDE) tw(WE) WEL, WEH tsu(D–RDE) DmIN th(RDE–D) Data tw(RDE) RDE td(RSMP–WE) th( 1–RSMP) td(RSMP–RDE) RSMP Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC 33 IM REL IN Y AR . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P PACKAGE OUTLINE 34 MITSUBISHI MICROCOMPUTERS M37736EHLXXXHP PROM VERSION OF M37736MHLXXXHP IM REL IN Y AR . . tion nge ifica to cha t pec al s subjec in f are ot a is n limits This ric ice: aramet t o N ep Som P MITSUBISHI MICROCOMPUTERS M37736EHLXXXHP PROM VERSION OF M37736MHLXXXHP Keep safety first in your circuit designs! ¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials ¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 1997 MITSUBISHI ELECTRIC CORP. H-LF487-A KI-9703 Printed in Japan (ROD) 2 New publication, effective Mar. 1997. 36 Specifications subject to change without notice. REVISION DESCRIPTION LIST Rev. No. M37736EHLXXXHP Datasheet Rev. date Revision Description 1.00 First Edition 970611 2.00 The following are revised: 980731 Page Previous Version Revised Version P11 Right column Line 2 The M37736EHLXXXHP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode. The M37736EHLXXXHP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details. MACHINE INSTRUCTION LIST The M37736EHLXXXHP has 103 machine instructions. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details. P15 Memory expansion mode and microprocessor mode MACHINE INSTRUCTION LIST The M37736EHLXXXHP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details. Previous Version Symbol Parameter Limits Min. Max. Unit tsu (D–E) Data input setup time (external bus mode A) 80 ns tsu (D–RDE) Data input setup time (external bus mode B) 80 ns Revised Version Symbol Parameter Limits Min. Max. Unit tsu (D–E) Data input setup time (external bus mode A) 50 ns tsu (D–RDE) Data input setup time (external bus mode B) 50 ns (1)