STMICROELECTRONICS M68AW256DL55ZB6T

M68AW256DL
4 Mbit (256K x16) 3.0V Asynchronous SRAM
FEATURES SUMMARY
■ SUPPLY VOLTAGE: 2.7 to 3.6V
■
256K x 16 bits SRAM with OUTPUT ENABLE
■
EQUAL CYCLE and ACCESS TIME: 55ns
■
SINGLE BYTE READ/WRITE
■
LOW STANDBY CURRENT
■
LOW VCC DATA RETENTION: 1.5V
■
TRI-STATE COMMON I/O
■
AUTOMATIC POWER DOWN
■
DUAL CHIP ENABLE for EASY DEPTH
EXPANSION
Figure 1. Packages
44
1
TSOP44 Type II (ND)
BGA
TFBGA48 (ZB)
7 x 8 mm
June 2002
1/20
M68AW256DL
TABLE OF CONTENTS
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 8. Address Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . 10
Figure 10. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . 10
Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Chip Enable Controlled, Write AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. E1 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. E2 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Low VCC Data Retention Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
TSOP44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Outline . . . . . . . . . . . . . . . 16
TSOP 44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Mechanical Data . . . . . . . 16
TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline. . . . . . . . . . . . . 17
TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . . . . . . . . . 17
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2/20
M68AW256DL
SUMMARY DESCRIPTION
The M68AW256DL is a 4 Mbit (4,194,304 bit)
CMOS SRAM, organized as 262,144 words by 16
bits. The device features fully static operation requiring no external clocks or timing strobes, with
equal address access and cycle times. It requires
a single 2.7 to 3.6V supply. This device has an au-
tomatic power-down feature, reducing the power
consumption by over 99% when deselected.
The M68AW256DL is available in TFBGA48
(0.75 mm pitch) and in TSOP44 Type II packages.
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A17
Address Inputs
DQ0-DQ15
Data Input/Output
E1, E2
Chip Enables
G
Output Enable
W
Write Enable
UB
Upper Byte Enable Input
LB
Lower Byte Enable Input
VCC
Supply Voltage
VSS
Ground
UB
NC
Not Connected Internally
LB
DU
Don’t Use as Internally Connected
VCC
18
16
A0-A17
DQ0-DQ15
W
E1
E2
M68AW256DL
G
VSS
AI05492
3/20
M68AW256DL
Figure 3. TSOP Connections
A4
A3
A2
A1
A0
E1
DQ0
DQ1
DQ2
DQ3
VCC
VSS
DQ4
DQ5
DQ6
DQ7
W
A16
A15
A14
A13
A12
1
44
2
43
3
42
4
41
5
40
6
39
7
38
8
37
9
36
10
35
11
34
M68AW256DL
12
33
13
32
14
31
15
30
16
29
17
28
18
27
19
26
20
25
21
24
22
23
AI05493
4/20
A5
A6
A7
G
UB
LB
DQ15
DQ14
DQ13
DQ12
VSS
VCC
DQ11
DQ10
DQ9
DQ8
E2
A8
A9
A10
A11
A17
M68AW256DL
Figure 4. TFBGA Connections (Top view through package)
1
2
3
4
5
6
A
LB
G
A0
A1
A2
E2
B
DQ8
UB
A3
A4
E1
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VCC
E
VCC
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
NC
A12
A13
W
DQ7
H
NC
A8
A9
A10
A11
DU
AI05494
5/20
M68AW256DL
Figure 5. Block Diagram
A17
ROW
DECODER
MEMORY
ARRAY
A7
DQ15
(8)
I/O CIRCUITS
UB
COLUMN
DECODER
DQ0
E1
Ex
E2
(8)
LB
UB
LB
A0
A6
(8)
UB
W
(8)
LB
G
AI05495
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 2. Absolute Maximum Ratings
Symbol
Value
Unit
20
mA
Ambient Operating Temperature
–55 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
V CC
Supply Voltage
–0.5 to 4.6
V
–0.5 to VCC +0.5
V
1
W
IO (1)
TA
VIO (2)
PD
Parameter
Output Current
Input or Output Voltage
Power Dissipation
Note: 1. One output at a time, not to exceed 1 second duration.
2. Up to a maximum operating VCC of 3.6V only.
6/20
M68AW256DL
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M68AW256ML
VCC Supply Voltage
2.7 to 3.6V
Range 1
0 to 70°C
Range 6
–40 to 85°C
Ambient Operating Temperature
Load Capacitance (CL)
30pF
Output Circuit Protection Resistance (R1)
3.0kΩ
Load Resistance (R 2)
3.1kΩ
Input Rise and Fall Times
1ns/V
0 to VCC
Input Pulse Voltages
Input and Output Timing Ref. Voltages
VCC/2
Output Transition Timing Ref. Voltages
VRL = 0.3VCC; VRH = 0.7VCC
Figure 6. AC Measurement I/O Waveform
Figure 7. AC Measurement Load Circuit
VCC
I/O Timing Reference Voltage
R1
VCC
VCC/2
0V
DEVICE
UNDER
TEST
OUT
CL
I/O Transition Timing Reference Voltage
VCC
0V
R2
0.7VCC
0.3VCC
AI04831
CL includes probe and 1 TTLcapacitance
AI05832
7/20
M68AW256DL
Table 4. Capacitance
C IN
Test
Conditio n
Parameter (1,2)
Symbol
Max
Unit
VIN = 0V
8
pF
VOUT = 0V
10
pF
Input Capacitance on all pins (except DQ)
C OUT(3)
Output Capacitance
Min
Note: 1. Sampled only, not 100% tested.
2. At TA = 25°C, f = 1 MHz, VCC = 3.0V.
3. Outputs deselected.
Table 5. DC Characteristics
Symbol
Parameter
ICC1 (1,2)
Operating Supply Current
ICC2 (3)
Operating Supply Current
ISB
Standby Supply Current CMOS
ILI
Input Leakage Current
ILO (4)
Output Leakage Current
Test Condition
VCC = 3.6V, f = 1/tAVAV,
IOUT = 0mA
Min
Typ
Max
Unit
70ns
20
mA
55ns
26
mA
2
mA
10
µA
VCC = 3.6V, f = 1MHz,
I OUT = 0mA
V CC = 3.6V, f = 0,
E1 ≥ VCC –0.2V or E2 ≤ 0.2V or
LB=UB ≥ VCC –0.2V
5
0V ≤ VIN ≤ V CC
–1
1
µA
0V ≤ VOUT ≤ VCC
–1
1
µA
VIH
Input High Voltage
2.2
VCC + 0.3
V
V IL
Input Low Voltage
–0.3
0.6
V
VOH
Output High Voltage
IOH = –1.0mA
VOL
Output Low Voltage
IOL = 2.1mA
Note: 1.
2.
3.
4.
8/20
Average AC current, cycling at tAVAV minimum.
E1 = VIL, E2 = VIH, LB or/and UB = VIL, VIN = VIL or VIH.
E1 ≤ 0.2V or E2 ≥ VCC –0.2V, LB or/and UB ≤ 0.2V, VIN ≤ 0.2V or VIN ≥ VCC –0.2V.
Output disabled.
2.4
V
0.4
V
M68AW256DL
OPERATION
The M68AW256DL has a Chip Enable power
down feature which invokes an automatic standby
mode whenever Chip Enable is de-asserted (E1 =
High) or Chip Select is asserted (E2 = Low), or UB/
LB are de-asserted (UB/LB = High). An Output Enable (G) signal provides a high speed tri-state con-
trol, allowing fast read/write cycles to be achieved
with the common I/O data bus. Operational modes
are determined by device control inputs W, E1, LB
and UB as summarized in the Operating Modes table (see Table 6).
Table 6. Operating Modes
Operation
E1
E2
W
G
LB
UB
DQ0-DQ7
DQ8-DQ15
Power
Deselected
VIH
X
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected
X
VIL
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected
X
X
X
X
VIH
VIH
Hi-Z
Hi-Z
Standby (ISB)
Lower Byte Read
V IL
VIH
VIH
VIL
VIL
VIH
Data Output
Hi-Z
Active (ICC)
Lower Byte Write
V IL
VIH
VIL
X
VIL
VIH
Data Input
Hi-Z
Active (ICC)
Output Disabled
V IL
VIH
VIH
VIH
X
X
Hi-Z
Hi-Z
Active (ICC)
Upper Byte Read
V IL
VIH
VIH
VIL
VIH
VIL
Hi-Z
Data Output
Active (ICC)
Upper Byte Write
V IL
VIH
VIL
X
VIH
VIL
Hi-Z
Data Input
Active (ICC)
Word Read
V IL
VIH
VIH
VIL
VIL
VIL
Data Output
Data Output
Active (ICC)
Word Write
V IL
VIH
VIL
X
VIL
VIL
Data Input
Data Input
Active (ICC)
Note: X = VIH or VIL.
Read Mode
The M68AW256DL, when Chip Select (E2) is
High, is in the read mode whenever Write Enable
(W) is High with Output Enable (G) Low, and Chip
Enable (E1) is asserted. This provides access to
data from eight or sixteen, depending on the status
of the signal UB and LB, of the 4,194,304 locations
in the static memory array, specified by the 18 address inputs. Valid data will be available at the
eight or sixteen output pins within tAVQV after the
last stable address, providing G is Low and E1 is
Low. If Chip Enable or Output Enable access
times are not met, data access will be measured
from the limiting parameter (tELQV, tGLQV or tBLQV)
rather than the address. Data out may be indeterminate at tELQX, tGLQX and tBLQX, but data lines
will always be valid at tAVQV.
Figure 8. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A17
VALID
tAVQV
DQ0-DQ7 and/or DQ8-DQ15
tAXQX
DATA VALID
AI03956
Note: E1 = Low, E2 = High, G = Low, W = High, UB = Low and/or LB = Low.
9/20
M68AW256DL
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.
tAVAV
A0-A17
VALID
tAVQV
tAXQX
tELQV
tEHQZ
E1
E2
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ15
VALID
tBLQV
tBHQZ
UB, LB
tBLQX
AI05496
Note: Writ e Enable (W) = High.
Figure 10. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms
E1, UB, LB
E2
ICC
ISB
tPU
tPD
50%
AI05497
10/20
M68AW256DL
Table 7. Read and Standby Mode AC Characteristics
M68AW256DL
Symbol
Parameter
Unit
55
70
tAVAV
Read Cycle Time
Min
55
70
ns
tAVQV
Address Valid to Output Valid
Max
55
70
ns
Data hold from address change
Min
5
5
ns
tBHQZ (2,3)
Upper/Lower Byte Enable High to Output Hi-Z
Max
20
25
ns
tBLQV
Upper/Lower Byte Enable Low to Output Valid
Max
55
70
ns
Upper/Lower Byte Enable Low to Output Transition
Min
5
5
ns
tEHQZ (2,3)
Chip Enable High to Output Hi-Z
Max
20
25
ns
tELQV
Chip Enable Low to Output Valid
Max
55
70
ns
Chip Enable Low to Output Transition
Min
5
5
ns
tGHQZ (2,3)
Output Enable High to Output Hi-Z
Max
20
25
ns
tGLQV
Output Enable Low to Output Valid
Max
25
35
ns
Output Enable Low to Output Transition
Min
5
5
ns
tPD (4)
Chip Enable or UB/LB High to Power Down
Max
0
0
ns
tPU (4)
Chip Enable or UB/LB Low to Power Up
Min
55
70
ns
tAXQX (1)
tBLQX (1)
tELQX (1)
tGLQX (2)
Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC.
2. At any given temperature and voltage condition, tGHQZ is less than tGLQX, tBHQZ is less than tBLQX and tEHQZ is less than tELQX for
any given device.
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
4. Tested initially and after any design or process changes that may affect these parameters.
11/20
M68AW256DL
Write Mode
The M68AW256DL, when Chip Select (E2) is
High, is in the Write Mode whenever the W and E1
are Low. Either the Chip Enable Input (E1) or the
Write Enable input (W) must be de-asserted during Address transitions for subsequent write cycles. When E1 or W is Low, and UB or LB is Low,
write cycle begins on the W or E1 falling edge.
When E1 and W are Low, and UB = LB = High,
write cycle begins on the first falling edge of UB or
LB. Therefore, address setup time is referenced to
Write Enable, Chip Enables and UB/LB as tAVWL,
tAVEL and tAVBL respectively, and is determined by
the latter occurring falling edge.
The Write cycle can be terminated by the earlier
rising edge of E1, W, UB and LB.
If the Output is enabled (E1 = Low, E2 = High, G =
Low, LB or UB = Low), then W will return the
outputs to high impedance within tWLQZ of its
falling edge. Care must be taken to avoid bus
contention in this type of operation. Data input
must be valid for tDVWH before the rising edge of
Write Enable, or for tDVEH before the rising edge of
E1 or for tDVBH before the rising edge of UB/LB,
whichever occurs first, and remain valid for tWHDX,
tEHDX and tBHDX respectively.
Figure 11. Write Enable Controlled, Write AC Waveforms
tAVAV
A0-A17
VALID
tAVWH
tAVEL
tELWH
tWHAX
E1
E2
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DQ0-DQ15
DATA INPUT
tDVWH
tBLBH
UB, LB
AI05498
12/20
M68AW256DL
Figure 12. Chip Enable Controlled, Write AC Waveforms
tAVAV
A0-A17
VALID
tAVEH
tAVEL
tELEH
tEHAX
E1
E2
tAVWL
tWLEH
W
tEHDX
DQ0-DQ15
DATA INPUT
tDVEH
tBLBH
UB, LB
AI05425
Figure 13. UB/LB Controlled, Write AC Waveforms
tAVAV
A0-A17
VALID
tAVBH
tBHAX
E1
E2
tAVWL
tWLBH
W
tWLQZ
DQ0-DQ15
tBHDX
DATA (1)
DATA INPUT
tDVBH
tAVBL
tBLBH
UB, LB
AI05426
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.
13/20
M68AW256DL
Table 8. Write Mode AC Characteristics
M68AW256DL
Symbol
Parameter
Unit
55
70
tAVAV
Write Cycle Time
Min
55
70
ns
tAVBH
Address Valid to LB, UB High
Min
45
60
ns
tAVBL
Addess Valid to LB, UB Low
Min
0
0
ns
tAVEH
Address Valid to Chip Enable High
Min
45
60
ns
tAVEL
Address valid to Chip Enable Low
Min
0
0
ns
tAVWH
Address Valid to Write Enable High
Min
45
60
ns
t AVWL
Address Valid to Write Enable Low
Min
0
0
ns
tBHAX
LB, UB High to Address Transition
Min
0
0
ns
tBHDX
LB, UB High to Input Transition
Min
0
0
ns
tBLBH
LB, UB Low to LB, UB High
Min
45
60
ns
tBLEH
LB, UB Low to Chip Enable High
Min
45
60
ns
tBLWH
LB, UB Low to Write Enable High
Min
45
60
ns
tDVBH
Input Valid to LB, UB High
Min
25
30
ns
tDVEH
Input Valid to Chip Enable High
Min
25
30
ns
tDVWH
Input Valid to Write Enable High
Min
25
30
ns
tEHAX
Chip Enable High to Address Transition
Min
0
0
ns
tEHDX
Chip enable High to Input Transition
Min
0
0
ns
tELBH
Chip Enable Low to LB, UB High
Min
45
60
ns
tELEH
Chip Enable Low to Chip Enable High
Min
45
60
ns
tELWH
Chip Enable Low to Write Enable High
Min
45
60
ns
tWHAX
Write Enable High to Address Transition
Min
0
0
ns
tWHDX
Write Enable High to Input Transition
Min
0
0
ns
Write Enable High to Output Transition
Min
5
5
ns
tWLBH
Write Enable Low to LB, UB High
Min
45
60
ns
tWLEH
Write Enable Low to Chip Enable High
Min
45
60
ns
Write Enable Low to Output Hi-Z
Max
20
20
ns
Write Enable Low to Write Enable High
Min
45
60
ns
tWHQX (1)
tWLQZ (1,2)
tWLWH
Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device.
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
14/20
M68AW256DL
Figure 14. E1 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.6V
VCC
2.7V
VDR > 1.5V
tCDR
tR
E1 ≥ VDR –0.2V or UB=LB > VDR –0.2V
E1, UB/LB
AI05456
Figure 15. E2 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.6V
VCC
2.7V
VDR > 1.5V
tCDR
tR
E2
E2 ≤ 0.2V
AI05457
Table 9. Low VCC Data Retention Characteristics
Symbol
Parameter
ICCDR (1) Supply Current (Data Retention)
Test Condition
Min
VCC = 1.5V, E1 ≥ VCC –0.2V or
E2 ≤ 0.2V or UB = LB ≥ V CC –0.2V,
Typ
Max
Unit
4.5
9
µA
f =0
t CDR (1,2)
Chip Deselected to Data
Retention Time
0
ns
tR (2)
Operation Recovery Time
tAVAV
ns
1.5
V
VDR (1)
Supply Voltage (Data Retention)
E1 ≥ VCC –0.2V or E2 ≤ 0.2V or
UB = LB ≥ V CC –0.2V, f = 0
Note: 1. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤ 0.2V.
2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time.
3. No input may exceed VCC +0.2V.
15/20
M68AW256DL
PACKAGE MECHANICAL
Figure 16. TSOP44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Outline
D
N
E1
E
N/2
1
ZD
b
e
A2
A
C
A1
CP
α
L
TSOP-d
Note: Drawing is not to scale.
Table 10. TSOP 44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Mechanical Data
Symbol
millimeters
Typ
Min
A
Max
Typ
Min
1.200
Max
0.0472
A1
0.050
0.150
0.0020
0.0059
A2
0.950
1.050
0.0374
0.0413
0.0047
0.0083
b
0.350
c
0.0138
0.120
0.210
D
18.410
–
–
0.7248
–
–
E
11.760
–
–
0.4630
–
–
E1
10.160
–
–
0.4000
–
–
e
0.800
–
–
0.0315
–
–
L
0.500
0.400
0.600
0.0197
0.0157
0.0236
ZD
0.805
–
–
0.0317
–
–
0
5
0
5
alfa
CP
N
16/20
inches
0.100
44
0.0039
44
M68AW256DL
Figure 17. TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
FD
FE
SD
SE
E
E1
BALL ”A1”
ddd
e
e
b
A
A2
A1
BGA-Z22
Note: Drawing is not to scale.
Table 11. TFBGA48 7x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
Max
A
1.010
1.200
A1
0.260
A2
Typ
Min
Max
0.0398
0.0472
0.0102
0.950
0.0374
b
0.400
0.300
0.500
0.0157
0.0118
0.0197
D
7.000
6.900
7.100
0.2756
0.2717
0.2795
D1
3.750
–
–
0.1476
–
–
ddd
0.100
0.0039
E
8.000
7.900
8.100
0.3150
0.3110
0.3189
E1
5.250
–
–
0.2067
–
–
e
0.750
–
–
0.0295
–
–
FD
1.625
–
–
0.0640
–
–
FE
1.375
–
–
0.0541
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
17/20
M68AW256DL
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M68AW256 D
L
55 ZB
6
T
Device Type
M68
Mode
A = Asynchronous
Operating Voltage
W = 2.7 to 3.6V
Array Organization
256 = 4 Mbit (256K x16)
Optio n 1
D = 2 Chip Enable; Write and Standby from UB and LB
Optio n 2
L = Low Leakage
Speed Class
55 = 55 ns
70 = 70 ns
Package
ND = TSOP 44 Type II
ZB = TFBGA48: 0.75 mm pitch
Operative Temperature
1 = 0 to 70 °C
6 = –40 to 85 °C
Shipping
T = Tape & Reel Packing
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
18/20
M68AW256DL
REVISION HISTORY
Table 13. Document Revision History
Date
Version
Revision Details
February 2002
-01
First Issue
14-Mar-2002
-02
Tables 3, 5, 7 and 9 clarified
Figures 3, 8, 9, 11, 12, 13 and 14 clarified
07-Jun-2002
-03
ICCDR clarified (Table 9)
ISB clarified (Table 5)
19/20
M68AW256DL
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express writt en approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
20/20