MIC921 Micrel, Inc. MIC921 45MHz Low-Power SC-70 Op Amp General Description Features The MIC921 is a high-speed operational amplifier with a gain-bandwidth product of 45MHz. The part is unity gain stable. It has a very low 300µA supply current, and features the IttyBitty™ SC-70 and SOT-23-5 package. Supply voltage range is from ±2.5V to ±9V, allowing the MIC921 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC921 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC921 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables. • • • • • • • • 45MHz gain bandwidth product 61MHz –3dB bandwidth 300µA supply current SC-70 or SOT-23-5 packages 3200V/µs slew rate Drives any capacitive load 112dB CMRR Unity gain stable Applications • • • • • Video Imaging Ultrasound Portable equipment Line drivers Ordering Information Part Number Standard Marking MIC921BM5 A38 MIC921BC5 A38 Pb-Free MIC921YC5 Marking Ambient Temperature Package –40ºC to +85ºC SOT-23-5* –40ºC to +85ºC SC-70-5 A38 * Contact factory for availability of SOT-23-5 package. Note: Underbar marking may not be to scale. Pin Configuration IN– V– IN+ 3 2 1 A38 4 5 OUT V+ Functional Pinout IN– Part Identification 3 SOT-23-5 or SC-70 V– IN+ 2 1 4 5 OUT V+ SOT-23-5 or SC-70 Pin Description Pin Number Pin Name Pin Function 1 IN+ Noninverting Input 2 V– Negative Supply (Input) 3 IN– Inverting Input 4 OUT Output: Amplifier Output 5 V+ Positive Supply (Input) IttyBitty is a trademark or Micrel, Inc. Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com April 2006 1 MIC921 MIC921 Micrel, Inc. Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – VV–) ........................................... 20V Differentail Input Voltage (VIN+ – VIN–) ........... 4V, Note 3 Input Common-Mode Range (VIN+, VIN–) ............VV+ to VV– Lead Temperature (soldering, 5 sec.) ........................ 260°C Storage Temperature (TS) ......................................... 150°C ESD Rating, Note 4 ................................................... 1.5kV Supply Voltage (VS) .........................................±2.5V to ±9V Junction Temperature (TJ) .......................... –40°C to +85°C Package Thermal Resistance SC70-5 .............................................................. 450°C/W SOT23-5 ............................................................ 260°C/W Electrical Characteristics (±5V) V+ = +5V, V– = –5V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted. Symbol Parameter VOS Input Offset Voltage IB Input Bias Current VOS VOS Temperature Coefficient IOS Input Offset Current VCM Input Common-Mode Range CMRR Common-Mode Rejection Ratio PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain VOUT Maximum Output Voltage Swing Condition Min Unity Gain-Bandwidth Product PM Phase Margin Max Units 5 mV 1 0.13 0.06 CMRR > 72dB –3.25 µV/°C 0.6 µA 0.3 µA +3.25 V –2.5V < VCM < +2.5V 75 87 dB 95 105 dB RL = 2k, VOUT = ±2V 70 84 dB 85 dB ±3.5V < VS < ±9V RL = 100Ω, VOUT = ±1V positive, RL = 2kΩ +3.0 positive, RL = 200Ω +1.5 negative, RL = 2kΩ GBW Typ 0.43 3.7 –3.7 negative, RL = 200Ω, Note 5 3.0 –2.5 AV = 1, CL = 1.7pF AV = 1, RL = 1kΩ, CL = 1.7pF V –3.0 V V –1.0 V 37 MHz 46 ° 53 MHz 1500 V/µs 57 mA BW –3dB Bandwidth SR Slew Rate C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 1300V/µs ISC Short-Circuit Output Current source 45 sink 20 IS Supply Current No Load 0.30 Input Voltage Noise f = 10kHz 12 nV√Hz Input Current Noise f = 10kHz 0.7 pA√Hz 40 mA 0.50 mA Electrical Characteristics V+ = +9V, V– = –9V, VCM = 0V, RL = 10MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter VOS Input Offset Voltage VOS Input Offset Voltage Temperature Coefficient IB Input Bias Current Condition Min Units 5 mV 0.13 Input Offset Current Input Common-Mode Range CMRR > 75dB CMRR Common-Mode Rejection Ratio –2.5V < VCM < +2.5V MIC921 Max 0.4 1 IOS VCM Typ 0.06 2 –7.25 75 87 µV/°C 0.6 µA 0.3 µA +7.25 V dB April 2006 MIC921 Micrel, Inc. Symbol Parameter Condition PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain ±3.5V < VS < ±9V VOUT Maximum Output Voltage Swing GBW Unity Gain-Bandwidth Product RL = 2k, VOUT = ±3V RL = 100Ω, VOUT = ±1V positive, RL = 2kΩ Min Typ 95 105 dB 75 86 dB 92 dB +6.5 7.6 V negative, RL = 2kΩ –7.6 Max –6.2 Units V AV = 1, CL = 1.7pF 45 MHz 40 ° AV = 1, RL = 1kΩ, CL = 1.7pF 61 MHz 3200 V/µs PM Phase Margin BW –3dB Bandwidth SR Slew Rate ISC Short-Circuit Output Current IS Supply Current No Load 0.36 Input Voltage Noise f = 10kHz 12 nV√Hz Input Current Noise f = 10kHz 0.7 pA√Hz C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 2500V/µs source 40 59 mA sink 25 45 mA 0.6 mA Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Note 5. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in “Typical Characteristics.” April 2006 3 MIC921 MIC921 Micrel, Inc. Test Circuits V+ 10µF Input BNC V+ 0.1µF 50Ω R2 5k 0.1µF 10k 10k 10k 2k 3 1 5 MIC921 BNC 4 Input Output Input R1 5k BNC 3 R7c 2k 2 1 R7b 200ΩΩ R7a 100 50Ω 5k 50Ω All resistors: 1% metal film R3 200k 0.1µF All resistors 1% 10µF 0.1µF 4 2 BNC Output 0.1µF R5 5k 10µF V– R4 250Ω R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7 V– PSRR vs. Frequency 100pF 5 MIC921 R6 0.1µF BNC 10µF CMRR vs. Frequency V+ V+ 10µF 10pF R1 20Ω R3 27k S1 S2 R5 20Ω R2 4k 3 3 1 R4 27k 10µF 5 0.1µF MIC921 2 10pF 4 BNC 0.1µF To Dynamic Analyzer VIN 0.1µF MIC921 2 300Ω 4 0.1µF 50Ω 1k VOUT FET Probe CL 10µF 10µF V– V– Closed Loop Frequency Response Measurement Noise Measurement MIC921 1 5 4 April 2006 MIC921 Micrel, Inc. Typical Characteristics Offset Voltage vs. Common-Mode Voltage 2.20 2.00 V± = ±2.5V 1.80 –40°C 1.60 1.40 +25°C 1.20 1.00 +85°C 0.80 0.60 0.40 0.20 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) Output Voltage vs. Output Current (Sinking) V± = ±5V –40°C 25°C 85°C -45.0 -40.5 -36.0 -31.5 -27.0 -22.5 -18.0 -13.5 -9.0 -4.5 0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 OUTPUT CURRENT (mA) Output Voltage vs. Output Current (Sourcing) 0.5 V± = ±9V 0 85°C -0.5 25°C -1.0 -1.5 –40°C -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 0 8 16 24 32 40 48 56 64 72 80 OUTPUT CURRENT (mA) April 2006 0.35 0.30 V± = ±9V V± = ±5V V± = ±2.5V 0.25 0.20 0.15 0.10 -40 -20 0 20 40 60 80 100 TEMPERATURE °C) ( 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 Offset Voltage vs. Common-Mode Voltage V± = ±5V –40°C +85°C +25°C COMMON-MODE VOLTAGE (V) Output Voltage vs. Output Current (Sinking) 0.9 V± = ±9V 0 -0.9 -1.8 -2.7 25°C -3.6 -4.5 85°C –40°C -5.4 -6.3 -7.2 -8.1 -9.0 -50-45-40-35-30-25-20-15-10 -5 0 OUTPUT CURRENT (mA) Short Circuit Current vs. Supply Voltage (Sinking) 7 0 –40°C -7 25°C -14 -21 -28 -35 85°C -42 -49 -56 -63 -70 2.0 3.4 4.8 6.2 7.6 9.0 SUPPLY VOLTAGE (V) 5 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22 0.20 2.5 Supply Current vs. Supply Voltage +85°C +25°C –40°C 3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V) 9 Offset Voltage vs. Common-Mode Voltage 2.2 2 1.8 1.6 1.4 1.2 +25°C 1 0.8 0.6 0.4 0.2 0 V± = ±9V –40°C +85°C -7.40 -5.92 -4.44 -2.96 -1.48 0 1.48 2.96 4.44 5.92 7.40 1 0.95 0.9 0.85 V± = ±2.5V 0.8 0.75 0.7 V± = ±5V 0.65 V± = ±9V 0.6 0.55 0.5 -40 -20 0 20 40 60 80 100 TEMPERATURE °C) ( Supply Current vs. Temperature -3.4 -2.7 -2.0 -1.4 -0.7 0.0 0.7 1.4 2.0 2.7 3 Offset Voltage vs. Temperature COMMON-MODE VOLTAGE (V) Output Voltage vs. Output Current (Sourcing) 5.5 V± = ±5V 5.0 4.5 4.0 85°C 25°C 3.5 3.0 2.5 –40°C 2.0 1.5 1.0 0.5 0 0 8 16 24 32 40 48 56 64 72 80 OUTPUT CURRENT (mA) 110 100 90 80 70 60 50 40 30 20 10 0 Short-Circuit Current vs. Supply Voltage (Sourcing) –40°C 25°C 85°C 2 3.4 4.8 6.2 7.6 SUPPLY VOLTAGE ±V) ( 9 MIC921 MIC921 Micrel, Inc. 0.12 V± = ±5V 0.10 0.08 V± = ±9V 0.06 0.04 0.02 0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE °C) ( 50 40 30 20 10 0 -10 -20 -30 -40 -50 100k Open-Loop Gain vs. Frequency 50 40 30 20 10 0 -10 -20 -30 -40 -50 100k V± = ±5V 50pF 100pF 1.7pF 200pF 400pF 600pF 1000pF 100M 10M 1M FREQUENCY (Hz) Open-Loop Frequency Response 225 180 135 90 45 0 -45 -90 -135 -180 -225 PHASE (°) 100 80 V± = ±9V Phase (100Ω) 60 40 (no load) 20 0 (100Ω) -20 Gain -40 -60 -80 -100 FREQUENCY (Hz) Gain Bandwidth and Phase Margin vs. Load 40 V± = ±9V 35 30 25 Phase Margin 10 5 Gain Bandwidth 10 0 0 100 200 300 400 500 600 700 800 900 1000 0 CAPACITIVE LOAD (pF) MIC921 200pF 400pF 600pF 800pF 1000pF 100M 10M 1M FREQUENCY (Hz) V± = ±9V 50pF 100pF 1.7pF 200pF 400pF 600pF 1000pF 100M 10M 1M FREQUENCY (Hz) Phase Margin 40 35 100pF 200pF 400pF 600pF 800pF 1000pF 100M 10M 1M FREQUENCY (Hz) V± = ±5V Gain Bandwidth 5 2 4 6 8 10 SUPPLY VOLTAGE (V) Voltage Noise Density vs. Frequency 60 40 Phase Margin 30 15 10 25 225 180 135 90 45 0 -45 -90 -135 -180 -225 50 30 20 20 Gain Bandwidth 10 0 0 CAPACITIVE LOAD (pF) 2.5 Current Noise Density vs. Frequency 2.0 50 40 1.5 30 1.0 20 0.5 10 0 10 1.7pF Gain Bandwidth and Phase Margin vs. Load 35 20 0 50pF 100 80 V± = ±5V Phase (100Ω) 60 40 (no load) 20 0 (100Ω) -20 Gain -40 -60 -80 -100 1M 10M 100M 100k FREQUENCY (Hz) 25 30 V± = ±9V Open-Loop Frequency Response Open-Loop Gain vs. Frequency 40 60 20 15 100pF 45 50 30 20 50 70 40 1.7pF Gain Bandwidth and Phase Margin vs. Supply Voltage 60 PHASE MARGIN (°) 45 50pF 50 40 30 20 10 0 -10 -20 -30 -40 -50 100k PHASE (°) 0.14 V± = ±5V Closed-Loop Gain vs. Frequency PHASE MARGIN (°) 50 40 30 20 10 0 -10 -20 -30 -40 -50 100k 0.16 Closed-Loop Gain vs. Frequency 0 100 200 300 400 500 600 700 800 900 1000 0.18 Bias Current vs. Temperature 100 1000 10000 100000 FREQUENCY (Hz) 6 0 10 100 1000 10000 100000 FREQUENCY (Hz) April 2006 MIC921 Micrel, Inc. Positive Slew Rate vs. Supply Voltage 800 Negative Slew Rate vs. Supply Voltage 1600 1400 700 1400 600 1200 500 1000 400 800 300 600 600 200 400 400 100 200 200 0 0 1600 1400 3 4 5 6 7 8 POSITIVE VOLTAGE ±V) ( 9 Positive Slew Rate 1000 800 0 3500 V± = ±5V 1 2 3 4 5 6 7 8 POSITIVE VOLTAGE±V) ( 9 3000 V± = ±9V 1500 1500 600 1000 1000 400 V± = ±9V 2000 2000 800 Negative Slew Rate 2500 2500 1000 0 LOAD CAPACITANCE (pF) Positive Slew Rate 3000 1200 V± = ±5V 0 100 200 300 400 500 600 700 800 900 1000 2 1200 Negative Slew Rate 0 0 0 0 100 200 300 400 500 600 700 800 900 1000 500 0 100 200 300 400 500 600 700 800 900 1000 500 0 100 200 300 400 500 600 700 800 900 1000 200 Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio Positive Power Supply Rejection Ratio LOAD CAPACITANCE (pF) 120 LOAD CAPACITANCE (pF) 120 V± = ±5V V± = ±5V LOAD CAPACITANCE (pF) 120 100 100 100 80 80 80 60 60 60 40 40 40 20 20 20 0 100 120 10k 100k 1k FREQUENCY (Hz) 1M Negative Power Supply Rejection Ratio V± = ±9V 100 80 60 40 20 0 100 April 2006 10k 100k 1k FREQUENCY (Hz) 1M 0 100 10k 100k 1k FREQUENCY (Hz) 1M Common-Mode Rejection Ratio 100 90 80 70 60 50 40 30 20 10 0 100 V± = ±5V 1k 10k 100k 1M FREQUENCY (Hz) 7 10M 0 100 V± = ±9V 10k 100k 1k FREQUENCY (Hz) 1M Common-Mode Rejection Ratio 100 90 80 70 60 50 40 30 20 10 0 100 V± = ±9V 1k 10k 100k 1M FREQUENCY (Hz) 10M MIC921 MIC921 Micrel, Inc. Functional Characteristics Small Signal Reponse Small Signal Reponse V = ±5V Av = 1 CL = 1.7pF OUTPUT (50mV/div) OUTPUT (50mV/div) INPUT (50mV/div) INPUT (50mV/div) V = ±9V Av = 1 CL = 1.7pF TIME (100ns/div) TIME (100ns/div) Small Signal Reponse Small Signal Reponse V = ±5V Av = 1 CL = 100pF OUTPUT (50mV/div) OUTPUT (50mV/div) INPUT (50mV/div) INPUT (50mV/div) V = ±9V Av = 1 CL = 100pF TIME (500ns/div) TIME (500ns/div) Small Signal Reponse Small Signal Reponse V = ±9V Av = 1 CL = 1000pF OUTPUT (50mV/div) OUTPUT (50mV/div) INPUT (50mV/div) INPUT (50mV/div) V = ±5V Av = 1 CL = 1000pF TIME (1s/div) TIME (1s/div) MIC921 8 April 2006 MIC921 Micrel, Inc. Large Signal Response Large Signal Response V = ±5V Av = 1 CL = 1.7pF OUTPUT (2V/div) OUTPUT (2V/div) V = ±9V Av = 1 CL = 1.7pF Positive Slew Rate = 3230V/µs Negative Slew Rate = 2950Vµ/s Positive Slew Rate = 1520V/µs Negative Slew Rate = 1312V/µs TIME (25ns/div) TIME (25ns/div) Large Signal Response Large Signal Response V = ±5V Av = 1 CL = 100pF OUTPUT (2V/div) OUTPUT (2V/div) V = ±9V Av = 1 CL = 100pF Positive Slew Rate = 349V/µs Negative Slew Rate = 181V/µs Positive Slew Rate = 615V/µs Negative Slew Rate = 447V/µs TIME (50ns/div) TIME (25ns/div) Large Signal Response Large Signal Response V = ±9V Av = 1 CL = 1000pF OUTPUT (2V/div) OUTPUT (2V/div) V = ±5V Av = 1 CL = 1000pF Positive Slew Rate = 63V/µs Negative Slew Rate = 44V/µs Positive Slew Rate = 85V/µs Negative Slew Rate = 57V/µs TIME (250ns/div) TIME (250ns/div) April 2006 9 MIC921 MIC921 Micrel, Inc. Applications Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in particular CMRR will reduce. An MIC921 with no load, dissipates power equal to the quiescent supply current * supply voltage The MIC921 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC921 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100Ω) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC921 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470Ω is ideal. To use the part as a follower, the output should be connected to input via a short wire. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device. MIC921 ( ) PD(no load) = VV+ – VV- IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. ( ) PD(output stage) = VV+ – VOUT IOUT Total Power Dissipation = PD(no load) + PD(output stage) Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450°C/W. TJ(max) – TA(max) Max. Allowable Power Dissipation = 450°C/W 10 April 2006 MIC921 Micrel, Inc. Package Information SOT-23-5 (M5) SC-70 (C5) MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2001 Micrel, Inc. April 2006 11 MIC921