EXAR MP7611AP

MP7611
Octal 14-Bit DAC ArrayTM
D/A Converter with Output Amplifier
and Parallel Data/Address mP Control Logic
June 1998-3
FEATURES
· Rugged Construction -- Latch-Up Free
· Serial Version: MP7610
· Eight Independent Channel 14-Bit DACs with
Output Amplifiers
· Low Power 320 mW (typ.)
· Parallel Digital Data and Address Port
· Double Buffered Data Interface
· Readback of DAC Latches
· Zero Volt Output Preset (Data = 10 .. 00)
· 14-Bit Resolution, 12-Bit Accuracy
· Extremely Well Matched DACs
· Extremely Low Analog Ground Current (<60mA/Channel)
· +10 V Output Swing with +11.4 V Supplies
APPLICATIONS
·
·
·
·
·
·
·
Data Acquisition Systems
ATE
Process Control
Self-Diagnostic Systems
Logic Analyzers
Digital Storage Scopes
PC Based Controller/DAS
GENERAL DESCRIPTION
The MP7611 provides eight independent 14-bit resolution
Digital-to-Analog Converters with voltage output
amplifiers and a parallel digital address and data port.
Built using an advanced linear BiCMOS, these devices
offer rugged solutions that are latch-up free, and take
advantage of EXAR’s patented thin-film resistor process
which exhibits excellent long term stability and reliability.
A standard m-processor and TTL/CMOS compatible
14-bit input data port loads the data into the pre-selected
DACS.
This device can easily be interfaced to a data bus, and
digital readback of each channel is available.
Typical DAC matching for C grade versions is 1.5 LSB
across all codes. The output amplifier is capable of
sinking and sourcing 5mA, and the output voltage settles
to 12-bits in less than 30ms (typ.).
ORDERING INFORMATION
Package
Type
Temperature
Range
Part No.
Res.
(Bits)
INL
(LSB)
DNL
(LSB)
FSE
(LSB)
PQFP
0 to +70°C
MP7611CE
14
¦2
¦2
¦16
PQFP
--40 to +85°C
MP7611BE
14
¦4
¦3
¦24
PQFP
--40 to +85°C
MP7611AE
14
¦8
¦4
¦32
PLCC
0 to +70°C
MP7611CP
14
¦2
¦2
¦16
PLCC
--40 to +85°C
MP7611BP
14
¦4
¦3
¦24
PLCC
--40 to +85°C
MP7611AP
14
¦8
¦4
¦32
Rev. 3.01
E1998
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z (510) 668-7017
MP7611
SIMPLIFIED BLOCK DIAGRAM
RB0
Bus
I/O
14
D0 - D13
VRP
D
Q
LAT0B
XR XE
D
Q
LAT0A
XRXE
14
14
VRN
XE0
A0 - A2
LD1
RD
CS
R1
3
Control
Logic
+
--
VO0
+
--
VO7
RB7
8
XE0 - XE7
8
VRP
RB0 - RB7
D
Q
LAT7A
XR XE
D
Q
LAT7B
XR XE
14
LD2
VRP
VRP
VEE
VCC
VCC
AGND AGND VREF
DAC7
VRN
XE7
R2
VEE
DAC0
-+
VRN
DGND DVDD
PIN CONFIGURATIONS
33
23
1
34
22
See the following
page for pin numbers
and descriptions
See the following
page for pin numbers
and descriptions
Index
44
12
1
11
44-Pin PQFP (14 mm x 14 mm)
44-Pin PLCC
Rev. 3.01
2
VREFN
MP7611
PIN OUT DEFINITIONS
PLCC
PIN NO.
PQFP
PIN NO.
29
1
NAME
DESCRIPTION
N/C
No Connection
30
2
VO3
DAC 3 Output
31
3
VEE
Analog Negative Power Supply (--12 V)
32
4
VCC
Analog Positive Power Supply (+12 V)
33
5
N/C
No Connection or DVDD
34
6
VREF
Analog Voltage Reference Input (+5 V)
35
7
VREFN
Analog Negative Voltage Reference
Output (--2.5 V)
36
8
VCC
Analog Positive Power Supply (+12 V)
37
9
VEE
Analog Negative Power Supply (--12 V)
DAC 4 Output
38
10
VO4
39
11
N/C
No Connection
40
12
VO5
DAC 5 Output
41
13
VO6
DAC 6 Output
42
14
VO7
DAC 7 Output
43
15
AGND
Analog Ground ( 0 V)
44
16
CS
Chip Select Enable
1
17
RD
Read Back Enable
2
18
R2
Second--Latch-Bank Reset Enable
3
19
R1
First--Latch-Bank Reset Enable
4
20
LD2
Second--Latch-Bank Load Enable
5
21
LD1
First--Latch-Bank Load Enable
6
22
A2
Digital Address Bit 2
7
23
A1
Digital Address Bit 1
8
24
A0
Digital Address Bit 0
9
25
DB0
Digital Input Data Bit 0
10
26
DB1
Digital Input Data Bit 1
11
27
DB2
Digital Input Data Bit 2
12
28
DB3
Digital Input Data Bit 3
13
29
DB4
Digital Input Data Bit 4
14
30
DB5
Digital Input Data Bit 5
15
31
DB6
Digital Input Data Bit 6
16
32
DB7
Digital Input Data Bit 7
17
33
DB8
Digital Input Data Bit 8
18
34
DB9
Digital Input Data Bit 9
19
35
DB10
Digital Input Data Bit 10
20
36
DB11
Digital Input Data Bit 11
21
37
DB12
Digital Input Data Bit 12
22
38
DB13
Digital Input Data Bit 13 (MSB)
23
39
DVDD
Digital Positive Power Supply (+5 V)
24
40
DGND
Digital Ground (0 V)
25
41
AGND
Analog Ground (0 V)
26
42
VO0
DAC 0 Output
27
43
VO1
DAC 1 Output
28
44
VO2
DAC 2 Output
Rev. 3.01
3
MP7611
ELECTRICAL CHARACTERISTICS
VCC = +12 V, VEE = --12 V, VREF = 5 V, DVDD = 5.0 V, T = 25°C, Output Load = 5kW (unless otherwise noted)
Parameter
Symbol
Min
N
14
25°C
Typ
Max
Tmin to Tmax
Min
Max
Units
Test Conditions/Comments
STATIC PERFORMANCE
Resolution (All Grades)
Integral Non-Linearity
(Relative Accuracy)
A
B
C
INL
Differential Non-Linearity
A
B
C
DNL
Positive Full Scale Error
A
B
C
+FSE
Positive Full Scale Error
D+FSE/
DT
Temperature Coefficient
--FSE
Negative Full Scale Error
D--FSE/
DT
ZOFS
Bipolar Zero Offset
DZOFS/
DT
INL Matching
A
B
C
All Channels Maximum Error
with DAC 0 adjusted to
minimum error
A
B
C
Bipolar Zero Matching
A
B
C
Full Scale Error Matching
A
B
C
¦8
¦4
¦2
¦8
¦4
¦2.5
¦4
¦3
¦2
¦4
¦3
¦2.5
¦32
¦24
¦16
¦32
¦24
¦16
End Point Linearity Spec
LSB
LSB
4
ppm/°C
0°C to 85°C
LSB
24
16
12
Bipolar Zero Offset
A
B
C
Temperature Coefficient
LSB
24
16
12
Negative Full Scale Error
A
B
C
Temperature Coefficient
Bits
¦32
¦24
¦16
¦32
¦24
¦16
4
ppm/°C
0°C to 85°C
LSB
¦16
¦12
¦12
¦16
¦12
¦12
2
ppm/°C
DINL
LSB
¦8
¦6
¦6
¦8
¦6
¦6
ME
LSB
¦16
¦8
¦6
¦16
¦8
¦6
¦16
¦12
¦12
¦16
¦12
¦12
¦16
¦12
¦12
¦16
¦12
¦12
DZOFS
LSB
DFSE
LSB
Rev. 3.01
4
0°C to 85°C
MP7611
ELECTRICAL CHARACTERISTICS (CONT’D)
Parameter
25°C
Typ
Max
Tmin to Tmax
Min
Max
tsd
30
50
50
CT
Q
PSRR
0.04
--70
5
Symbol
Min
Units
Test Conditions/Comments
DYNAMIC PERFORMANCE
Voltage Settling from LD
to VDAC Out1
Channel-to-Channel Crosstalk6
Digital Feedthrough1, 6
Power Supply Rejection Ratio
ms
LSB
dB
ppm/%
ZS to FS (20 V Step)
5k, 50pF load
DC
CLK and Data to VOUTi
DVEE & DVCC = +5%, ppm of FS
REFERENCE INPUTS
Impedance of VREF
REF
350
VREF Voltage1, 2
VREF
3.5
VIH
VIL
IL
CL
2.4
700
1.05k
350
1.05k
6
W
See Application Hints for driving
the reference input
V
DIGITAL INPUTS3
Logic High
Logic Low
Input Current
Input Capacitance1
V
V
mA
pF
0.8
+10
8
ANALOG OUTPUTS
Output Swing
Output Drive Current
VREFN Output Drive Current
Output Impedance
Output Short Circuit Current
--VEE +1.4
--5
--10
VCC --1.4
RO
ISC
1
25
30
40
55
V
mA
mA
W
mA
mA
mA
mA
VOH
VOL
4.5
0.5
V
V
5
+10
For test purposes only
+FS to AGND
+FS to VEE
--FS to AGND
--FS to VCC
DIGITAL OUTPUTS
Output High Voltage
Output Low Voltage
POWER SUPPLIES
VCC Voltage5
VEE Voltage5
DVDD Voltage
Positive Supply Current
Negative Supply Current
Digital Supply Current
Power Dissipation
VCC VREF+1.5 12
VEE --12.75
--12
DVDD
4.5
5
ICC
8
IEE
15
IDD
PDISS
320
12.75
--5
5.5
10
20
2
420
VREF+1.5 12.75
--12.75
--5
4.5
5.5
10
20
2
450
V
V
V
mA
mA
mA
mW
Bipolar zero
Bipolar zero
Bipolar zero
Bipolar zero
mA
See Application Notes
ANALOG GROUND CURRENT
Per Channel1
IAGND
±60
DIGITAL TIMING
SPECIFICATIONS1,4
Data Setup Time
Data Hold Time
Address Set-up Time
Address Hold Time
Chip Select to LD1 Set-up Time
Chip Select to LD1 Hold Time
LD1 Pulse Width
LD1 Negative Edge to LD2
Positive Edge
LD2 Pulse Width
Chip Select to RD Set-Up Time
Chip Select to RD Hold Time
VIL = 0 V, VIH = 5 V, CL = 20 pF
tDS
tDH
tAS
tAH
tLD1W
tLD1LD2
20
20
100
0
6
0
50
60
ns
ns
ns
ns
ns
ns
ns
ns
tLD2W
tCS2
tCH2
60
6
0
ns
ns
ns
tCS1
tCH1
Rev. 3.01
5
MP7611
ELECTRICAL CHARACTERISTICS (CONT’D)
Parameter
Symbol
Min
tRD
tDA
tDR
600
600
200
100
100
25°C
Typ
Max
Tmin to Tmax
Min
Max
Units
Test Conditions/Comments
DIGITAL TIMING
SPECIFICATIONS1, 4 (CONT’D)
RD Pulse Width
High Z to Data Valid for Readback
Data Valid for Readback to High Z
R1 Pulse Width
R2 Pulse Width
tR1W
tR2W
ns
ns
ns
ns
ns
NOTES:
1
Guaranteed; not tested.
2
Specified values guarantee functionality.
3
Digital inputs should not go below digital GND or exceed DVDD supply voltage.
4
See Figures 1, 2 and 3. All digital input signals are specified with tR = tF = 10 ns 10% to 90% and timed from a 50% voltage level.
5
For power supply values < ¦2£VREF, the output swing is limited as specified in Analog Outputs.
6
Digital feedthrough and channel-to-channel crosstalk are heavily dependent on the board layout and environment.
Specifications are subject to change without notice
ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)1, 2
DVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +.5 V
DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --.5 V
Operating Temperature Range
Extended Industrial . . . . . . . . . . . . . . . --40°C to +85°C
Military . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to +125°C
Maximum Junction Temperature . . . . . . . . . . . . 150°C
Storage Temperature Range . . . . . . --65°C to +150°C
Lead Temperature (Soldering, 10 sec) . . . . . +300°C
Package Power Dissipation Rating to 75°C
PQFP, PGA, PLCC . . . . . . . . . . . . . . . . . . 800mW
Derates above 75°C . . . . . . . . . . . . . . . . 11mW/°C
VCC to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . +16.5 V
VEE to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . --16.5 V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . +6.5 V
VREF to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . +7.0 V
Analog Outputs & Inputs
Infinite Shorts to VCC, VEE, DVDD, AGND and DGND
(provided that power dissipation of the package spec is
not exceeded)
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1 V
(Functionality guaranteed for ¦0.5 V only)
Digital Input & Digital Output Voltage to:
NOTES:
1
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
2
Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps
(HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short
transients outside the supplies of less than 100mA for less than 100ms.
APPLICATION NOTES
NOTE: When using these DACs to drive remote devices, the accuracy of the output can be improved by utilizing a remote analog
ground connection. The difference between the DGND and AGND should be limited to ¦300 mV to assure normal operation. If there
is any chance that the AGND to DGND can be greater than ¦1 V, we recommend two back-to-back diodes be used between DGND
and AGND to clamp the voltage and prevent damage to the DAC. Using a buffer between the remote ground location and AGND may
help reduce noise induced from long lead or trace lengths.
Rev. 3.01
6
MP7611
Data
Input/Output
Bus
1
Address
A0-A2
1
0
0
Chip Select
CS
1
Load Latch A
LD1
1
Load Latch B
LD2
1
Analog Output
tDS
tDH
tAH
tAS
tCH1
don’t care
0
tCS1
don’t care
tLD1W
0
tLD1LD2
0
tLD2W
+FS
--FS
tSD
Figure 1. Loading Latch A and Updating Latch B
Notes:
(1) Chip Select (CS) and Load LATCHA (LD1) Signals follow the same timing constraints and are interchangeable
in the above diagram.
(2) R1 = R2 = 1.
(3) For the case where LD2 is in the low state, analog output would respond to the falling edge of LD1 (transparent mode).
Address
A0-A2
1
0
Chip Select
CS
1
0
Data Readback
RD
1
0
Digital Output Data
D0 to D113
1
0
tAS
tAH
don’t care
don’t care
tCS2
HIGH-Z
tRD
tCH2
tDR
tDA
HIGH-Z
Figure 2. Read Back First Latch Bank of One DAC
Notes:
(1) Chip Select (CS) and Data Readback (RD) Signals follow the same timing constraints and are interchangeable
in the above diagram.
(2) R1 = R2 = 1.
R1
R2
tR1W
1
0 Reset first latch bank to
1000 . . . . .0000
1
0 Reset second latch bank to 1000 . . . . .0000 and analog
output to zero volt.
Figure 3. Reset Operations
Rev. 3.01
7
tR2W
MP7611
all 8-channels simultaneously. The selected DAC becomes
transparent (activity on the digital inputs appear at the analog
output) when both LD1 = LD2 = 0.
A standard m-processor and TTL/CMOS compatible input
data port loads the data into the pre-selected DACS. If CS = 0,
the chip accesses digital data on the bus. Then address bits A0
to A2 select the appropriate DAC and LD1 loads the data into the
first-latch-bank. When all 8-channels first-latch-banks are
loaded, then LD2 enables the second-latch-bank and updates
Function
R1 = 0 resets the first-latch-bank. R2 = 0 resets the secondlatch-bank which sets the analog output to zero volts (data =
100...00), regardless of digital inputs.
A2
A1
A0
RD
LD1
LD2
CS
R1
R2
Load Latch 1 of DAC1
Load Latch 1 of DAC2
Load Latch 1 of DAC3
Load Latch 1 of DAC4
Load Latch 1 of DAC5
Load Latch 1 of DAC6
Load Latch 1 of DAC7
Load Latch 1 of DAC8
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0®1
0®1
0®1
0®1
0®1
0®1
0®1
0®1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Load Latch 2 of DAC1®8
X
X
X
1
1
0®1
X
1
1
Read Latch 1 of DAC1
Read Latch 1 of DAC2
Read Latch 1 of DAC3
Read Latch 1 of DAC4
Read Latch 1 of DAC5
Read Latch 1 of DAC6
Read Latch 1 of DAC7
Read Latch 1 of DAC8
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Reset Latch 1 of DAC1®8
Reset Latch 2 of DAC1®8
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
0
Note: 1: High, 0: Low, X: Don’t Care
Table 1. Octal Parallel Data Input 14-Bit DAC Truth Table
Note: For timing information see Electrical Characteristics
Rev. 3.01
8
MP7611
3
A0 to A2
3-8
Decoder
8
8
To first latch bank enable
LD1
8
8
CS
To switches across the first latch
bank for readback enable
RD
To second latch bank enable
LD2
R1
To reset all first latch bank
R2
To reset all second latch bank
Figure 4. Simplified Parallel Logic Port
Hex Code
Binary Code
Output Voltage = 2 · Vr (--1 + 2·D )
(Vr = +5 V)
16384
OOOO
00000000000000
10 · (--1 + 0) = --10
1FFF
01111111111111
2OOO
10000000000000
10 · (--1 +16384 ) = 0
2OO1
10000000000001
10 · (--1 +16386 ) = 1.22 mV
16384
3FFF
11111111111111
10 · (--1 +32766 ) = 9.99878
16382
) = --1.22 mV
16384
10 · (--1 +
16384
16384
Table 2. MP7611
Ideal DAC Output vs. Input Code
Note: See Electrical Characteristics for real system accuracy
Rev. 3.01
9
MP7611
A0 to A15
16
3
AS
mP
Address
Decoder
A0 to A2
LD1
R
DB0 to DB16
From System Reset
R1
From System Reset
R2
12 or 14
DB0 to DB11
or DB13
Figure 5. Parallel mP Interface
Rev. 3.01
10
MP7611
PERFORMANCE CHARACTERISTICS
11 V
0V
--11 V
VOUT
2.5mV
0V
--2.5mV
VOUT Settling
50ms/Division
Graph 1. Typical Output Settling Characteristic
VREF = 5 V, RL = 5K, CL = 500pF
Graph 1 shows the typical output settling characteristic of the MP7610 Family for a RESET !ZS!FS!ZS series of code
transitions. The top graph shows the output voltage transients, while the bottom graph shows the difference between the output
and the ideal output.
14-BIT LSB
4
--4
0
CODE
Graph 2. Linearity with
VREF = 5 V, All DACs, All Codes
Rev. 3.01
11
16384
MP7611
Graph 3. DAC 0 INL vs. VREF
Graph 4. DAC 0 DNL vs. VREF
4
14-BIT LSB
14-BIT LSB
4
--4
0
CODE
--4
16384
0
Graph 5. DAC 0 Linearity with
VREF = 5 V, VOUT = ¦10
16384
Graph 6. DAC 0 Linearity with
VREF = 4.5 V, VOUT = ¦9
14-BIT LSB
4
14-BIT LSB
4
--4
CODE
0
CODE
--4
16384
Graph 7. DAC 0 Linearity with
VREF = 4 V, VOUT = ¦8
0
CODE
16384
Graph 8. DAC 0 Linearity with
VREF = 3.5 V, VOUT = ¦7
Rev. 3.01
12
MP7611
50
VOUT
MP7610
Family
5k
VO
500pF
I
CL
2mA
CL = 500pF, 5nF, 50nF, 500nF
Figure 6. Circuit for Determining Typical Analog Output Pulse Response
2.0mA
I
0.0
400mV
VO
--400mV
200mV
CL = 500pF
CL = 5nF
CL = 50nF
CL = 500nF
VOUT
--200mV
0s
1.0ms
2.0ms
3.0ms
4.0ms
5.0ms
Graph 9. Typical Response of the MP7610 Family Analog Output to
a Current Pulse with CL=500pF, 5nF, 50nF, 500nF
(See Figure 9. above)
Rev. 3.01
13
6.0ms
MP7611
44 LEAD PLASTIC QUAD FLAT PACK
(14 mm x 14 mm QFP)
Rev. 1.00
D
D1
33
23
34
22
D1 D
44
12
1
11
B
A2
e
C
A
Seating Plane
a
A1
L
INCHES
SYMBOL
A
MILLIMETERS
MIN
MAX
MIN
MAX
0.110
0.134
2.80
3.40
A1
0.010
0.014
0.25
0.35
A2
0.100
0.120
2.55
3.05
B
0.014
0.020
0.35
0.50
C
0.005
0.009
0.13
0.23
D
0.667
0.687
16.95
17.45
D1
0.547
0.555
13.90
14.10
e
0.039 BSC
1.00 BSC
L
0.026
0.37
0.65
0.95
a
0°
7°
0°
7°
Note: The control dimension is the millimeter column
Rev. 3.01
14
MP7611
44 LEAD PLASTIC LEADED CHIP CARRIER
(PLCC)
Rev. 1.00
C
D
D1
Seating Plane
45° x H1
45° x H2
A2
2 1 44
B1
D
D1
B D
2
D3
e
R
D3
A1
A
INCHES
SYMBOL
A
MILLIMETERS
MIN
MAX
MIN
MAX
0.165
0.180
4.19
4.57
A1
0.090
0.120
2.29
3.05
A2
0.020
------.
0.51
------
B
0.013
0.021
0.33
0.53
B1
0.026
0.032
0.66
0.81
C
0.008
0.013
0.19
0.32
D
0.685
0.695
17.40
17.65
D1
0.650
0.656
16.51
16.66
D2
0.590
0.630
14.99
16.00
D3
0.500 typ.
12.70 typ.
e
0.050 BSC
1.27 BSC
H1
0.042
0.056
1.07
1.42
H2
0.042
0.048
1.07
1.22
R
0.025
0.045
0.64
1.14
Note: The control dimension is the inch column
Rev. 3.01
15
MP7611
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Copyright 1998 EXAR Corporation
Datasheet June 1998
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
Rev. 3.01
16