Order this document by MPX50/D SEMICONDUCTOR TECHNICAL DATA The MPX50 silicon piezoresistive pressure sensor provides a very accurate and linear voltage output — directly proportional to the applied pressure. This standard, low cost, uncompensated sensor permits manufacturers to design and add their own external temperature compensating and signal conditioning networks. Compensation techniques are simplified because of the predictability of Motorola’s single element strain gauge design. 0 to 50 kPa (0 – 7.25 psi) 60 mV FULL SCALE SPAN (TYPICAL) Features • Low Cost • Patented Silicon Shear Stress Strain Gauge Design • Ratiometric to Supply Voltage • Easy to Use Chip Carrier Package Options • 60 mV Span (Typ) • Differential and Gauge Options • ± 0.25% (Max) Linearity BASIC CHIP CARRIER ELEMENT CASE 344–15, STYLE 1 Application Examples • Air Movement Control • Environmental Control Systems • Level Indicators • Leak Detection • Medical Instrumentation • Industrial Controls • Pneumatic Control Systems • Robotics DIFFERENTIAL PORT OPTION CASE 344C–01, STYLE 1 Figure 1 shows a schematic of the internal circuitry on the stand–alone pressure sensor chip. PIN 3 NOTE: Pin 1 is the notched pin. + VS PIN NUMBER PIN 2 + Vout X–ducer 1 Gnd 3 VS 2 +Vout 4 –Vout PIN 4 – Vout PIN 1 Figure 1. Uncompensated Pressure Sensor Schematic VOLTAGE OUTPUT versus APPLIED DIFFERENTIAL PRESSURE The differential voltage output of the X–ducer is directly proportional to the differential pressure applied. The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1). Senseon and X–ducer are trademarks of Motorola, Inc. REV 5 Motorola Sensor Device Data Motorola, Inc. 1997 1 MAXIMUM RATINGS Symbol Value Unit Overpressure(8) (P1 > P2) Rating Pmax 200 kPa Burst Pressure(8) (P1 > P2) Pburst 500 kPa Tstg – 40 to +125 °C TA – 40 to +125 °C Storage Temperature Operating Temperature OPERATING CHARACTERISTICS (VS = 3.0 Vdc, TA = 25°C unless otherwise noted, P1 > P2) Symbol Min Typ Max Unit Pressure Range(1) POP 0 — 50 kPa Supply Voltage(2) VS — 3.0 6.0 Vdc Characteristic Supply Current Full Scale Span(3) Offset(4) Io — 6.0 — mAdc VFSS 45 60 90 mV Voff 0 20 35 mV Sensitivity ∆V/∆P — 1.2 — mV/kPa Linearity(5) — – 0.25 — 0.25 %VFSS Pressure Hysteresis(5) (0 to 50 kPa) — — ± 0.1 — %VFSS Temperature Hysteresis(5) (– 40°C to +125°C) — — ± 0.5 — %VFSS Temperature Coefficient of Full Scale Span(5) TCVFSS – 0.22 — – 0.16 %VFSS/°C TCVoff — ± 15 — µV/°C TCR 0.21 — 0.27 %Zin/°C Zin 400 — 550 Ω Temperature Coefficient of Offset(5) Temperature Coefficient of Resistance(5) Input Impedance Zout 750 — 1800 Ω Response Time(6) (10% to 90%) tR — 1.0 — ms Warm–Up — — 20 — ms Offset Stability(9) — — ± 0.5 — %VFSS Output Impedance MECHANICAL CHARACTERISTICS Symbol Min Typ Max Unit Weight (Basic Element Case 344–15) Characteristic — — 2.0 — Grams Common Mode Line Pressure(7) — — — 690 kPa NOTES: 1. 1.0 kPa (kiloPascal) equals 0.145 psi. 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self–heating. 3. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. 4. Offset (Voff) is defined as the output voltage at the minimum rated pressure. 5. Accuracy (error budget) consists of the following: • Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range. • Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. • Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C. • TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C. • TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C. • TCR: Zin deviation with minimum rated pressure applied, over the temperature range of – 40°C to +125°C, relative to 25°C. 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure. 7. Common mode pressures beyond specified may result in leakage at the case–to–lead interface. 8. Exposure beyond these limits may cause permanent damage or degradation to the device. 9. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test. 2 Motorola Sensor Device Data or by designing your system using the MPX2050 series sensors. Several approaches to external temperature compensation over both – 40 to +125°C and 0 to + 80°C ranges are presented in Motorola Applications Note AN840. TEMPERATURE COMPENSATION Figure 2 shows the typical output characteristics of the MPX50 series over temperature. The X–ducer piezoresistive pressure sensor element is a semiconductor device which gives an electrical output signal proportional to the pressure applied to the device. This device uses a unique transverse voltage diffused semiconductor strain gauge which is sensitive to stresses produced in a thin silicon diaphragm by the applied pressure. Because this strain gauge is an integral part of the silicon diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the diaphragm, as are often encountered in bonded strain gauge pressure sensors. However, the properties of the strain gauge itself are temperature dependent, requiring that the device be temperature compensated if it is to be used over an extensive temperature range. Temperature compensation and offset calibration can be achieved rather simply with additional resistive components, LINEARITY Linearity refers to how well a transducer’s output follows the equation: Vout = Voff + sensitivity x P over the operating pressure range (see Figure 3). There are two basic methods for calculating nonlinearity: (1) end point straight line fit or (2) a least squares best line fit. While a least squares fit gives the “best case” linearity error (lower numerical value), the calculations required are burdensome. Conversely, an end point fit will give the “worst case” error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Motorola’s specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure. 70 100 OUTPUT (mVdc) 70 MPX50 VS = 3 Vdc P1 > P2 – 40°C + 25°C 50 60 OUTPUT (mVdc) 80 LINEARITY 60 90 SPAN RANGE (TYP) + 125°C 50 40 30 ACTUAL 40 SPAN (VFSS) 30 THEORETICAL 20 20 10 0 PSI 0 kPa 0 OFFSET (TYP) 1 2 10 3 20 4 5 30 6 40 7 10 OFFSET (VOFF) 0 8 0 50 MAX POP PRESSURE (kPA) PRESSURE DIFFERENTIAL Figure 2. Output versus Pressure Differential SILICONE DIE COAT Figure 3. Linearity Specification Comparison STAINLESS STEEL METAL COVER EPOXY CASE ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉ DIE P1 WIRE BOND LEAD FRAME P2 RTV DIE BOND Figure 4. Cross–Sectional Diagram (not to scale) Figure 4 illustrates the differential or gauge configuration in the basic chip carrier (Case 344–15). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPX50 series pressure sensor operating characteris- Motorola Sensor Device Data tics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application. 3 PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE Motorola designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Motorola MPX Part Number pressure sensor is designed to operate with positive differential pressure applied, P1 > P2. The Pressure (P1) side may be identified by using the table below: Case Type Pressure (P1) Side Identifier MPX50D 344–15 Stainless Steel Cap MPX50DP 344C–01 Side with Part Marking MPX50GP 344B–01 Side with Port Attached MPX50GVP 344D–01 Stainless Steel Cap MPX50GS 344E–01 Side with Port Attached MPX50GVS 344A–01 Stainless Steel Cap MPX50GSX 344F–01 Side with Port Attached MPX50GVSX 344G–01 Stainless Steel Cap ORDERING INFORMATION MPX50 series pressure sensors are available in differential and gauge configurations. Devices are available with basic element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure connections. MPX Series D i T Device Type O i Options C Case Type T Order Number Device Marking Basic Element Differential Case 344–15 MPX50D MPX50D Ported Elements Differential Case 344C–01 MPX50DP MPX50DP Gauge Case 344B–01 MPX50GP MPX50GP Gauge Vacuum Case 344D–01 MPX50GVP MPX50GVP Gauge Stovepipe Case 344E–01 MPX50GS MPX50D Gauge Vacuum Stovepipe Case 344A–01 MPX50GVS MPX50D Gauge Axial Case 344F–01 MPX50GSX MPX50D Gauge Vacuum Axial Case 344G–01 MPX50GVSX MPX50D 4 Motorola Sensor Device Data PACKAGE DIMENSIONS NOTES: C 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION –A– IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630). POSITIVE PRESSURE (P1) R M B –A– DIM A B C D F G J L M N R N 1 PIN 1 2 3 L 4 –T– SEATING PLANE J POSITIVE PRESSURE (P1) G F D 4 PL 0.136 (0.005) M T A M INCHES MIN MAX 0.595 0.630 0.514 0.534 0.200 0.220 0.016 0.020 0.048 0.064 0.100 BSC 0.014 0.016 0.695 0.725 30_ NOM 0.475 0.495 0.430 0.450 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 15.11 16.00 13.06 13.56 5.08 5.59 0.41 0.51 1.22 1.63 2.54 BSC 0.36 0.40 17.65 18.42 30_ NOM 12.07 12.57 10.92 11.43 GROUND + OUTPUT + SUPPLY – OUTPUT CASE 344–15 ISSUE W PORT #2 VACUUM PRESSURE (P2) –B– C NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. A POSITIVE PRESSURE (P1) PIN 1 V 1 2 3 4 K J N R SEATING PLANE S –T– G F D 4 PL 0.13 (0.005) M T B M DIM A B C D F G J K N R S V INCHES MIN MAX 0.690 0.720 0.245 0.255 0.780 0.820 0.016 0.020 0.048 0.064 0.100 BSC 0.014 0.016 0.345 0.375 0.300 0.310 0.178 0.186 0.220 0.240 0.182 0.194 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 17.53 18.28 6.22 6.48 19.81 20.82 0.41 0.51 1.22 1.63 2.54 BSC 0.36 0.41 8.76 9.53 7.62 7.87 4.52 4.72 5.59 6.10 4.62 4.93 GROUND + OUTPUT + SUPPLY – OUTPUT CASE 344A–01 ISSUE B Motorola Sensor Device Data 5 PACKAGE DIMENSIONS — CONTINUED SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1982. 2. CONTROLLING DIMENSION: INCH. –A– –T– U L R H N PORT #1 POSITIVE PRESSURE (P1) –Q– B 1 2 3 4 PIN 1 K –P– 0.25 (0.010) T Q M S S J F G D 4 PL 0.13 (0.005) C M T S S Q S INCHES MIN MAX 1.145 1.175 0.685 0.715 0.305 0.325 0.016 0.020 0.048 0.064 0.100 BSC 0.182 0.194 0.014 0.016 0.695 0.725 0.290 0.300 0.420 0.440 0.153 0.159 0.153 0.159 0.230 0.250 0.220 0.240 0.910 BSC DIM A B C D F G H J K L N P Q R S U STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 29.08 29.85 17.40 18.16 7.75 8.26 0.41 0.51 1.22 1.63 2.54 BSC 4.62 4.93 0.36 0.41 17.65 18.42 7.37 7.62 10.67 11.18 3.89 4.04 3.89 4.04 5.84 6.35 5.59 6.10 23.11 BSC GROUND + OUTPUT + SUPPLY – OUTPUT CASE 344B–01 ISSUE B PORT #1 R NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. –A– U V W L H PORT #2 N PORT #1 POSITIVE PRESSURE (P1) PORT #2 VACUUM (P2) –Q– B SEATING PLANE SEATING PLANE 1 2 3 4 PIN 1 K –P– –T– –T– 0.25 (0.010) M T Q S S F J G D 4 PL C 0.13 (0.005) M T S S Q S DIM A B C D F G H J K L N P Q R S U V W INCHES MIN MAX 1.145 1.175 0.685 0.715 0.405 0.435 0.016 0.020 0.048 0.064 0.100 BSC 0.182 0.194 0.014 0.016 0.695 0.725 0.290 0.300 0.420 0.440 0.153 0.159 0.153 0.159 0.063 0.083 0.220 0.240 0.910 BSC 0.248 0.278 0.310 0.330 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 29.08 29.85 17.40 18.16 10.29 11.05 0.41 0.51 1.22 1.63 2.54 BSC 4.62 4.93 0.36 0.41 17.65 18.42 7.37 7.62 10.67 11.18 3.89 4.04 3.89 4.04 1.60 2.11 5.59 6.10 23.11 BSC 6.30 7.06 7.87 8.38 GROUND + OUTPUT + SUPPLY – OUTPUT CASE 344C–01 ISSUE B 6 Motorola Sensor Device Data PACKAGE DIMENSIONS — CONTINUED NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1982. 2. CONTROLLING DIMENSION: INCH. –A– U L SEATING PLANE –T– R DIM A B C D F G H J K L N P Q R S U H PORT #2 VACUUM (P2) POSITIVE PRESSURE (P1) N –Q– B 1 2 3 4 K PIN 1 S C J F –P– 0.25 (0.010) M T Q G D 4 PL 0.13 (0.005) S M T S S Q S INCHES MIN MAX 1.145 1.175 0.685 0.715 0.305 0.325 0.016 0.020 0.048 0.064 0.100 BSC 0.182 0.194 0.014 0.016 0.695 0.725 0.290 0.300 0.420 0.440 0.153 0.159 0.153 0.158 0.230 0.250 0.220 0.240 0.910 BSC STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 29.08 29.85 17.40 18.16 7.75 8.26 0.41 0.51 1.22 1.63 2.54 BSC 4.62 4.93 0.36 0.41 17.65 18.42 7.37 7.62 10.67 11.18 3.89 4.04 3.89 4.04 5.84 6.35 5.59 6.10 23.11 BSC GROUND + OUTPUT + SUPPLY – OUTPUT CASE 344D–01 ISSUE B PORT #1 POSITIVE PRESSURE (P1) –B– C NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. A BACK SIDE VACUUM (P2) DIM A B C D F G J K N R S V V 4 3 2 1 PIN 1 K J N R SEATING PLANE S –T– INCHES MIN MAX 0.690 0.720 0.245 0.255 0.780 0.820 0.016 0.020 0.048 0.064 0.100 BSC 0.014 0.016 0.345 0.375 0.300 0.310 0.178 0.186 0.220 0.240 0.182 0.194 MILLIMETERS MIN MAX 17.53 18.28 6.22 6.48 19.81 20.82 0.41 0.51 1.22 1.63 2.54 BSC 0.36 0.41 8.76 9.53 7.62 7.87 4.52 4.72 5.59 6.10 4.62 4.93 G F D 4 PL 0.13 (0.005) M T B M STYLE 1: PIN 1. 2. 3. 4. GROUND + OUTPUT + SUPPLY – OUTPUT CASE 344E–01 ISSUE B Motorola Sensor Device Data 7 PACKAGE DIMENSIONS — CONTINUED –T– C A E –Q– U N V B R PORT #1 POSITIVE PRESSURE (P1) PIN 1 –P– 0.25 (0.010) M T Q M 4 3 2 1 S K F J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G J K N P Q R S U V INCHES MIN MAX 1.080 1.120 0.740 0.760 0.630 0.650 0.016 0.020 0.160 0.180 0.048 0.064 0.100 BSC 0.014 0.016 0.220 0.240 0.070 0.080 0.150 0.160 0.150 0.160 0.440 0.460 0.695 0.725 0.840 0.860 0.182 0.194 MILLIMETERS MIN MAX 27.43 28.45 18.80 19.30 16.00 16.51 0.41 0.51 4.06 4.57 1.22 1.63 2.54 BSC 0.36 0.41 5.59 6.10 1.78 2.03 3.81 4.06 3.81 4.06 11.18 11.68 17.65 18.42 21.34 21.84 4.62 4.92 G D 4 PL 0.13 (0.005) T P M S Q STYLE 1: PIN 1. 2. 3. 4. S GROUND V (+) OUT V SUPPLY V (–) OUT CASE 344F–01 ISSUE B –T– C A E –Q– U POSITIVE PRESSURE (P1) N V B R PIN 1 PORT #2 VACUUM (P2) –P– 0.25 (0.010) M T Q M 1 2 3 4 S K J F G D 4 PL 0.13 (0.005) M T P S Q S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G J K N P Q R S U V INCHES MIN MAX 1.080 1.120 0.740 0.760 0.630 0.650 0.016 0.020 0.160 0.180 0.048 0.064 0.100 BSC 0.014 0.016 0.220 0.240 0.070 0.080 0.150 0.160 0.150 0.160 0.440 0.460 0.695 0.725 0.840 0.860 0.182 0.194 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 27.43 28.45 18.80 19.30 16.00 16.51 0.41 0.51 4.06 4.57 1.22 1.63 2.54 BSC 0.36 0.41 5.59 6.10 1.78 2.03 3.81 4.06 3.81 4.06 11.18 11.68 17.65 18.42 21.34 21.84 4.62 4.92 GROUND V (+) OUT V SUPPLY V (–) OUT CASE 344G–01 ISSUE B 8 Motorola Sensor Device Data Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Motorola Sensor Device Data 9 Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315 Mfax: [email protected] – TOUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 INTERNET: http://motorola.com/sps 10 ◊ MPX50/D Motorola Sensor Device Data