2EZ6.8~2EZ51 SILICON ZENER DIODES VOLTAGE 6.8 to 51 Volts POWER 2.0 Watts DO-15 Unit: inch(mm) FEATURES • Low profile package 1.0(25.4)MIN. .034(.86) • Built-in strain relief • Low inductance • Plastic package has Underwriters Laboratory Flammability Classification 94V-O .028(.71) .300(7.6) • In compliance with EU RoHS 2002/95/EC directives .230(5.8) • High temperature soldering : 260°C /10 seconds at terminals .140(3.6) .104(2.6) 1.0(25.4)MIN. MECHANICAL DATA • Case: JEDEC DO-15, Molded plastic over passivated junction • Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 • Polarity: Color band denotes positive end (cathode) • Standard packing: 52mm tape • Weight: 0.014 ounce, 0.0397 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified. Parameter Max Steady State Power Dissipation @TL<80OC (Note A) Derate above TA=25OC Peak Forward Surge Current 8.3ms single half sine-wave soperimposed on rated load (JEDEC mehod) Thermal resistance Junction to Ambient Junction to Lead S ymb o l Va lue Uni t PD 2 Watts I FSM 15 Amps RΘJA RΘJL 60 32 oC/W Operating Junction and Storage Temperature Range TJ , TSTG -55 to + 150 oC NOTES: A.Mounted on infinite heat sink with L=2mm B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum REV.0.2-FEB.26.2010 STAD-MAR.22.2010 PAGE . 1 2EZ6.8~2EZ51 Nomi nal Zene r Vo ltag e Part Number Ma xi mum Ze ner Imp e da nce V Z @ IZT Z ZT @ IZT Leakage Current Z ZK @ IZK Marking Code IR @VR No m. V Mi n. V Max. V Ω mA Ω mA uA V 2EZ6.8 6.8 6.46 7.14 2 73.5 700 1 5 4 2EZ6.8 2EZ7.5 7.5 7.13 7.88 2 66.5 700 0.5 5 5 2EZ7.5 2EZ8.2 8.2 7.79 8.61 2 61 700 0.5 5 6 2EZ8.2 2EZ8.7 8.7 8.27 9.14 2 58 700 0.5 4 6.6 2EZ8.7 2EZ9.1 9.1 8.65 9.56 3 55 700 0.5 3 7 2EZ9.1 2EZ10 10 9.5 10.5 4 50 700 0.25 3 7.6 2EZ10 2EZ11 11 10.45 11.55 4 45.5 700 0.25 1 8.4 2EZ11 2EZ12 12 11.4 12.6 5 41.5 700 0.25 1 9.1 2EZ12 2EZ13 13 12.35 13.65 5 38.5 700 0.25 0.5 9.9 2EZ13 2EZ14 14 13.3 14.7 6 35.7 700 0.25 0.5 10.6 2EZ14 2EZ15 15 14.25 15.75 7 33.4 700 0.25 0.5 11.4 2EZ15 2EZ16 16 15.2 16.8 8 31.2 700 0.25 0.5 12.2 2EZ16 2EZ17 17 16.15 17.85 9 29.4 750 0.25 0.5 13 2EZ17 2EZ18 18 17.1 18.9 10 27.8 750 0.25 0.5 13.7 2EZ18 2EZ19 19 18.05 19.95 11 26.3 750 0.25 0.5 14.4 2EZ19 2EZ20 20 19 21 11 25 750 0.25 0.5 15.2 2EZ20 2EZ22 22 20.9 23.1 12 22.8 750 0.25 0.5 16.7 2EZ22 2EZ24 24 22.8 25.2 13 20.8 750 0.25 0.5 18.2 2EZ24 2EZ25 25 23.75 26.25 14 20 750 0.25 0.5 19 2EZ25 2EZ27 27 25.65 28.35 18 18.5 750 0.25 0.5 20.6 2EZ27 2EZ28 28 26.6 29.4 18 17 750 0.25 0.5 21.3 2EZ28 2EZ30 30 28.5 31.5 20 16.6 1000 0.25 0.5 22.5 2EZ30 2EZ33 33 31.35 34.65 23 15.1 1000 0.25 0.5 25.1 2EZ33 2EZ36 36 34.2 37.8 25 13.9 1000 0.25 0.5 27.4 2EZ36 2EZ39 39 37.05 40.95 30 12.8 1000 0.25 0.5 29.7 2EZ39 2EZ43 43 40.85 45.15 35 11.6 1500 0.25 0.5 32.7 2EZ43 2EZ47 47 44.65 49.35 40 10.6 1500 0.25 0.5 35.8 2EZ47 2EZ51 51 48.45 53.55 48 9.8 1500 0.25 0.5 38.8 2EZ51 2.0 Watt ZENER REV.0.2-FEB.26.2010 STAD-MAR.22.2010 PAGE . 2 2EZ6.8~2EZ51 500 L=2mm 2 1.5 1 L L 0.5 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 P PK, PEAK SURGE POWER (WATTS) PD, Maximum Power Dissipation (W) 2.5 RECTANGU LAR NON - REPETITIVE T J=25 OC PRIOR TOINTIAL PULSE 250 100 100 50 25 15 10 5 0.1 0.20.3 0.5 1 2 3 5 10 20 30 50 100 TL, Lead Temperature (℃) P.W.PULSE WIDTH(ms) Fig.1 Power Temperature Derating Curve FIGURE 2. MAXIMUM SURGE POWER FIGURE 3. TYPICAL THERMAL RESPONSEL, APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T L, should be determined from: T L= qL A P D + T A O q L A is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for q L A will vary and depends on the device mounting method. qL A is generally 30-40 OC/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: T J = T L + D T JL D T JL is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses or from Figure 10 for dc power. D T JL = qJ L P D For worst-case design, using expected limits of I Z, limits of P D and the extremes of T J( D T J) may be estimated. Changes in voltage, V Z, can then be found from: D V = qV Z D T J V , the zener voltage temperature coefficient, is found from Figures 5 and 6. q Z Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 2 be exceeded. REV.0.2-FEB.26.2010 STAD-MAR.22.2010 PAGE . 3 TEMPERATURE COEFFICIENT(mV/ oC)@I ZT TEMPERATURE COEFFICIENT(mV/ oC)@I ZT 2EZ6.8~2EZ51 6 FIGURE 4. UNITS 6.8 TO 12 VOLTS FIGURE 6. VZ=6.8 THRU 10 VOLTS FIGURE 5. UNITS 10 TO 51 VOLTS FIGURE 7. VZ=12 THRU 51 VOLTS PD, Maximum Power Dissipation (W) 2.50 L=2mm 2.00 L=10mm 1.50 1.00 L L 0.50 0.00 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 TA, Ambient temperature (°C) FIGURE 8.TYPICAL THERMAL RESISTANCE REV.0.2-FEB.26.2010 STAD-MAR.22.2010 PAGE . 4