MICRON MT9V011

Preliminary‡
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
1/4-INCH VGA CMOS
ACTIVE-PIXEL DIGITAL
IMAGE SENSOR
MT9V011
Features
Table 1:
Micron Part Number: MT9V011P11ST
•
•
•
•
•
•
DigitalClarity™ CMOS Imaging Technology
Ultra low-power, low cost CMOS image sensor
Superior low-light performance
Simple two-wire serial interface
Auto black level calibration
Window Size: VGA, programmable to any smaller
format (QVGA, CIF)
• Programmable Controls: Gain, frame rate, left-right
and up-down image reversal, window size and
panning
PARAMETER
Optical Format
Active Imager Size
Active Pixels
Pixel Size
Color Filter Array
Shutter Type
Max. Data Rate/Master Clock
Frame
VGA (640x480)
Rate
CIF (352x288)
QVGA (320x240)
ADC Resolution
Responsivity
Dynamic Range
SNRMAX
Applications
•
•
•
•
Cellular phones
PDAs
PC Cameras
Toys and other battery-powered products
Description
Supply Voltage
Power Consumption
The Micron® Imaging MT9V011 is a VGA-format
with a 1/4-inch CMOS active-pixel digital image sensor. The active imaging pixel array is 649H x 489V. It
incorporates sophisticated camera functions on-chip
such as windowing, column and row mirroring. It is
programmable through a simple two-wire serial bus
interface and has very low power consumption.
The MT9V011 features DigitalClarity, our breakthrough, low-noise CMOS imaging technology that
achieves CCD image quality (based on signal-to-noise
ratio and low-light sensitivity) while maintaining the
inherent size, cost and integration advantages of
CMOS.
09005aef80c6407f
MT9V011_external_DS_1.fm - Rev. A 8/04 EN
‡
Key Performance Parameters
Operating Temperature
Packaging
TYPICAL VALUE
1/4-inch (4:3)
3.58mm(H) x 2.688mm (V),
8.4mm Diagonal
640H x 480V
5.6um x 5.6um
RGB Bayer Pattern
Electronic Rolling Shutter
(ERS)
13.5 MPS/27 MHz
30 fps at 27 MHz
Programmable up to 60 fps
Programmable up to 90 fps
10-bit, on-chip
1.9 V/lux-sec (550nm)
60dB
45dB
2.8V ±0.25V
70mW at 2.8V, 20pF load,
27 MHz, 30 fps
-20°C to +60°C
28-Pin PLCC
The sensor can be operated in its default mode or
programmed by the user for frame size, exposure, gain
setting, and other parameters. The default mode outputs a VGA-size image at 30 frames per second (fps).
An on-chip analog-to-digital converter (ADC) provides
10 bits per pixel. FRAME_VALID and LINE_VALID signals are output on dedicated pins, along with a pixel
clock which is synchronous with valid data.
1
©2004 Micron Technology, Inc.
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PURPOSES ONLY AND ARE SUBJECT TO CHANGE BY
MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON’S PRODUCTION DATA SHEET SPECIFICATIONS.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Pixel Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Pixel Array Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Output Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Output Data Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Frame Timing Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Serial Bus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Bus Idle State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Data Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
No-Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Two-Wire Serial Interface Sample Read and Write Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
16-Bit Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
16-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Eight-Bit Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Eight-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Window Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Blanking Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Pixel Integration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Pixel Clock Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Digital Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
True Decimation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Column Mirror image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Row Mirror Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Column and Row Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Line Valid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Recommdended Gain Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Propagation Delays for FRAME_VALID and LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Two-Wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Data Sheet Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
09005aef80c6407f
MT9V011TOC.fm - Rev. A 8/04 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
List of Figures
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Typical Configuration (Connection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Pin Out Diagram - 28-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Pixel Color Pattern Detail (Top Right Corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Spatial Illustration of Image Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Timing Example of Pixel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Row Timing and FRAME_VALID/LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Timing Diagram Showing a Write to Reg0x09 with the Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Timing Diagram Showing a Read from Reg0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . .13
Timing Diagram Showing a Write to Reg0x09 with the Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Timing Diagram Showing a Read from Reg0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . .14
Readout of 4 Pixels in Normal and Zoom 2x Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Readout of 8 Pixels in Normal and 2x Decimation Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Readout of 6 Pixels in Normal and Column Mirror Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Readout of 6 Rows in Normal and Row Mirror Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Readout of 8 Pixels in Normal and Column Skip Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Different Line Valid Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Propagation Delays for FRAME_VALID and LINE_VALID Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Data Output Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Serial Host Interface Start Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Serial Host Interface Stop Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Serial Host Interface Data Timing for Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Serial Host Interface Data Timing for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Acknowledge Signal Timing After an 8-bit Write to the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Acknowledge Signal Timing After an 8-bit Read from the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Spectral Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Die Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Image Center Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
28-Pin PLCC Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
09005aef80c6407f
MT9V011LOF.fm - Rev. A 8/04 EN
3
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
List of Tables
Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:
Table 11:
Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Constant Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Frame Time - Master Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Register Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Vertical Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Recommended Gain Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
09005aef80c6407f
MT9V011LOT.fm - Rev. A 8/04 EN
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 1: Block Diagram
Serial
I/O
Control Register
APS Array
668H x 496V
Timing and Control
Analog Processing
Data
Out
ADC
Figure 2: Typical Configuration (Connection)
VAA
VDD
VAA
VAAPIX
VDD
1KΩ
1.5KΩ
RESET_BAR
10µF
DOUT(9:0)
FRAME_VALID
LINE_VALID
PIXCLK
SDATA
SCLK
Two-wire
serial bus
Master
Clock
CLK_IN
SCAN_EN
DGND
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
AGND
STANDBY
DGND
OE_BAR
AGND
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 3: Pin Out Diagram - 28-Pin PLCC
NC
SDATA
SCLK
LINE_VALID
FRAME_VALID
PIXCLK
9
8
7
6
5
AGND
11 10
VAA 12
4 CLK_IN
AGND 13
3 DOUT0
VAAPIX 14
2 DOUT1
1 VDD
SCAN_EN 15
RESET_BAR 16
STANDBY 17
27 DOUT2
NC 18
26 DOUT3
DOUT4
DOUT5
DOUT6
DOUT7
DOUT8
25
DOUT9
19 20 21 22 23 24
OE_BAR
Table 2:
28 DGND
Pin Descriptions
PIN
NUMBER
NAME
TYPE
DESCRIPTION
12
14
1
28
11,13
4
19
16
VAA
VAAPIX
VDD
DGND
AGND
CLK_IN
OE_BAR
RESET_BAR
Power
Power
Power
Ground
Ground
Input
Input
Input
15
8
17
9
3
2
27
26
25
24
23
SCAN_EN
SCLK
STANDBY
SDATA
DOUT0
DOUT1
DOUT2
DOUT3
DOUT4
DOUT5
DOUT6
Input
Input
Input
Bi-directional
Output
Output
Output
Output
Output
Output
Output
Analog Power (2.8V).
Pixel Power (2.8V).
Digital Power Supply (2.8V).
Digital Ground.
Analog Ground.
Master Clock into sensor (27 MHz maximum).
Output_Enable_Bar pin. When HIGH: disables the pixel data output drivers.
Asynchronous reset of sensor when LOW. All registers assume factory
defaults.
Tie to Digital Ground.
Serial Clock.
When HIGH: disables the imager.
Serial Data I/O.
Pixel Data Output Bit 0, D0 (LSB).
Pixel Data Output Bit 1, D1.
Pixel Data Output Bit 2, D2.
Pixel Data Output Bit 3, D3.
Pixel Data Output Bit 4, D4.
Pixel Data Output Bit 5, D5.
Pixel Data Output Bit 6, D6.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table 2:
Pin Descriptions (continued)
PIN
NUMBER
NAME
TYPE
22
21
20
6
7
DOUT7
DOUT8
DOUT9
FRAME_VALID
LINE_VALID
Output
Output
Output
Output
Output
5
PIXCLK
Output
10
18
NC
NC
-
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
DESCRIPTION
Pixel Data Output Bit 7, D7.
Pixel Data Output Bit 8, D8.
Pixel Data Output Bit 9, D9 (MSB).
Active HIGH during frame of valid pixel data.
Active HIGH during line of selectable valid pixel data (see Reg0x20 for
options).
Pixel Clock Output. Pixel data outputs are valid during rising edge of this
clock. Frequency = 1/2 (master clock).
No connect.
No connect.
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Pixel Data Format
Pixel Array Structure
Figure 5: Pixel Color Pattern Detail
(Top Right Corner)
The MT9V011’s pixel array is 668 columns by 496
rows. The first 18 columns and the first 6 rows of pixels
are optically black and can be used to monitor the
black level. The last column and the last row of pixels
are also optically black. The black row data is used
internally for automatic black level adjustment. There
are 649 columns by 489 rows of optically active pixels,
which provides a four-pixel boundary around the VGA
(640 x 480) image to avoid boundary affects during
color interpolation and correction. The additional
active column and additional active row are used to
allow horizontally and vertically mirrored readout to
also start on the same color pixel, as shown in Figure 4.
column readout direction
…
black pixels
row
readout
direction
R
G
R
G
R
G
B
G
B
G
B
G
B
G
R
G
R
G
R
G
B
G
B
G
B
G
B
G
R
G
R
G
R
G
B
G
B
G
B
G
B
…
Figure 4: Pixel Array Description
…
G
Pixel
(18, 6)
(First Optical
clear pixel)
(0, 0)
6 black rows
Output Data Format
1 black column
VGA (640 x 480)
+ 4 pixel boundary for
color correction
+ additional active column
+ additional active row
= 649 x 489 active pixels
(667,495)
The MT9V011 image data is read-out in a progressive scan. Valid image data is surrounded by horizontal and vertical blanking, as shown in Figure 6. The
amount of horizontal and vertical blanking is programmable through Reg0x05 and Reg0x06, respectively. LINE_VALID is HIGH during the shaded region
of the figure. See “Output Data Timing” on page 9 for
the description of FRAME_VALID timing.
18 black columns
1 black row
The MT9V011 uses the RGB Bayer color pattern.
Even numbered rows contain green and red color pixels, and odd numbered rows contain blue and green
color pixels. Likewise, even numbered columns contain green and blue color pixels, and odd numbered
columns contain red and green color pixels.
Figure 6: Spatial Illustration of Image
Readout
P0,0 P0,1 P0,2.....................................P0,n-1 P0,n
P1,0 P1,1 P1,2.....................................P1,n-1 P1,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
VALID IMAGE
HORIZONTAL
BLANKING
Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n 00 00 00 .................. 00 00 00
Pm,0 Pm,1.....................................Pm,n-1 Pm,n
00 00 00 .................. 00 00 00
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
8
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
VERTICAL BLANKING
VERTICAL/HORIZONTAL
BLANKING
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Output Data Timing
The data output of the MT9V011 is synchronized
with the PIXCLK output. When LINE_VALID is HIGH,
one 10-bit pixel datum is output every PIXCLK period.
Figure 7: Timing Example of Pixel Data
....
LINE_VALID
....
PIXCLK
Blanking
DOUT9-DOUT0
P0
(9:0)
P1
(9:0)
P2
(9:0)
P3
(9:0)
Blanking
....
Valid Image Data
P4
(9:0)
Pn-1
(9:0)
....
Pn
(9:0)
MT9V011 can be programmed to move the PIXCLK
edge relative to the DOUT transitions from +1 to -1
master clock, in steps of one-half of a master clock.
This can be achieved by programming the corresponding bits in Reg0x07.
The parameters P, A, and Q in Figure 8 are defined
in Table 3.
The rising edges of the PIXCLK signal are nominally
timed to occur one-half of a master clock period after
the DOUT edges. This allows PIXCLK to be used as a
clock to latch the data. The PIXCLK is HIGH for one
complete master clock period and then LOW for one
complete master clock period. It is continuously
enabled, even during the blanking period. The
Figure 8: Row Timing and FRAME_VALID/LINE_VALID Signals
...
FRAME_VALID
...
LINE_VALID
...
Number of master clocks
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
P
A
Q
A
9
Q
A
P
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Frame Timing Formulas
Table 3:
Frame Time
PARAMETER
A
NAME
EQUATION
Active Data Time
DEFAULT TIMING AT 27 MHZ
(Reg0x04 + 1) x (Reg0x0A + 2)
640 pixel clocks
= 1280 master
= 47.4µs
P
Frame Start/End Blanking 6 x (Reg0x0A + 2)
6 pixel clocks
= 12 master
= 0.44µs
Q
Horizontal Blanking
(113 + Reg0x05) x (Reg0x0A + 2)
244 pixel clocks
(minimum Reg0x05 value = 9)
= 488 master
= 18.07µs
A+Q
Row Time
(Reg0x04 + 1 + 113 + Reg0x05) x (Reg0x0A + 2) 884 pixel clocks
= 1,768 master
= 65.48µs
V
Vertical Blanking
(Reg0x06 + 1) x (A + Q) + (Q - 2 x P)
25,868 pixel clocks
= 51,736 master
= 1.92ms
(Reg0x03 + 1) x (A + Q) - (Q - 2 x P)
424,088 pixel clocks
Nrows x (A + Q) Frame Valid Time
= 848,176 master
= 31.41ms
F
Total Frame Time
(Reg0x03 + 1 + Reg0x06 + 1) x (A + Q)
449,956 pixel clocks
= 899,912 master
= 33.33ms
Sensor timing is shown above in terms of pixel clock
and master clock cycles (please refer to Figure 7). The
recommended master clock frequency is 27 MHz.
The constant 113 in the formulas in Table 3 is the
constant value in default mode, when 8 dark columns
are read out through Reg0x30. The constant follows
the dark columns read out as shown in Table 4.
Table 4:
Constant Value
REG 0X30, BIT 1:0
CONSTANT
1x
01
00
121
113
107
For 16 columns
For 8 columns
For no dark columns read, no row-wise noise correction applied
If this is not the case, the number of integration rows
must be used instead to determine the frame time, as
shown in Table 5.
The vertical blanking and total frame time equations assume that the number of integration rows (bits
11 through 0 of Reg0x09) is less than the number of
active plus blanking rows (Reg0x03 + 1 + Reg0x06 + 1).
Table 5:
Frame Time - Master Clock
PARAMETER
NAME
EQUATION (MASTER CLOCK)
V’
Vertical Blanking (long
integration time)
(Reg0x09 - Reg0x03) x (A + Q) + (Q - 2 x P)
F’
Total Frame Time (long
integration time)
(Reg0x09 + 1) x (A + Q)
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
10
DEFAULT TIMING
25,868 pixel clocks
= 51,736 master
= 1.92 ms
449,956 pixel clocks
= 899,912 master
= 33.33ms
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Serial Bus Description
edge bit after each eight-bit transfer. The register
address is auto-incremented after every 16 bits is
transferred. The data transfer is stopped when the
master sends a no-acknowledge bit. The MT9V011
allows for eight-bit data transfers through the two-wire
serial interface by writing (or reading) the most significant eight bits to the register and then writing (or reading) the least significant eight bits to Reg0x80 (128).
Registers are written to and read from the MT9V011
through the two-wire serial interface bus. The sensor is
a serial interface slave and is controlled by the serial
clock (SCLK), which is driven by the serial interface
master. Data is transferred into and out through the
MT9V011 serial data (SDATA) line. The SDATA line is
pulled up to VDD off-chip by a 1.5KΩ resistor. Either
the slave or master device can pull the SDATA line
down—the serial interface protocol determines which
device is allowed to pull the SDATA line down at any
given time. The registers are 16 bits wide, and can be
accessed through 16- or eight-bit two-wire serial bus
sequences.
Bus Idle State
The bus is idle when both the data and clock lines
are HIGH. Control of the bus is initiated with a start
bit, and the bus is released with a stop bit. Only the
master can generate the start and stop bits.
Protocol
The two-wire serial interface defines several different transmission codes, as follows:
• a start bit
• the slave device eight-bit address
• a(n) (no) acknowledge bit
• an eight-bit message
• a stop bit
Start Bit
The start bit is defined as a HIGH-to-LOW transition
of the data line while the clock line is HIGH.
Stop Bit
The stop bit is defined as a LOW-to-HIGH transition
of the data line while the clock line is HIGH.
Sequence
Slave Address
A typical read or write sequence begins by the master sending a start bit. After the start bit, the master
sends the slave device’s eight-bit address. The last bit
of the address determines if the request will be a read
or a write, where a “0” indicates a write and a “1” indicates a read. The slave device acknowledges its address
by sending an acknowledge bit back to the master.
If the request was a write, the master then transfers
the eight-bit register address to which a write should
take place. The slave sends an acknowledge bit to indicate that the register address has been received. The
master then transfers the data eight bits at a time, with
the slave sending an acknowledge bit after each eight
bits. The MT9V011 uses 16-bit data for its internal registers, thus requiring two eight-bit transfers to write to
one register. After 16 bits are transferred, the register
address is automatically incremented, so that the next
16 bits are written to the next register address. The
master stops writing by sending a start or stop bit.
A typical read sequence is executed as follows. First
the master sends the write-mode slave address and
eight-bit register address, just as in the write request.
The master then sends a start bit and the read-mode
slave address. The master then clocks out the register
data eight bits at a time. The master sends an acknowl-
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
The eight-bit address of a two-wire serial interface
device consists of seven bits of address and 1 bit of
direction. A “0” in the LSB of the address indicates
write mode, and a “1” indicates read mode. The write
address of the sensor is 0xBA, while the read address is
0xBB.
Data Bit Transfer
One data bit is transferred during each clock pulse.
The two-wire serial interface clock pulse is provided by
the master. The data must be stable during the HIGH
period of the serial clock—it can only change when the
two-wire serial interface clock is LOW. Data is transferred eight bits at a time, followed by an acknowledge
bit.
Acknowledge Bit
The master generates the acknowledge clock pulse.
The transmitter (which is the master when writing, or
the slave when reading) releases the data line, and the
receiver indicates an acknowledge bit by pulling the
data line low during the acknowledge clock pulse.
11
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
No-Acknowledge Bit
The no-acknowledge bit is generated when the data
line is not pulled down by the receiver during the
acknowledge clock pulse. A no-acknowledge bit is
used to terminate a read sequence.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Two-Wire Serial Interface Sample Read and Write Sequences
16-Bit Write Sequence
sor will give an acknowledge bit. All 16 bits must be
written before the register will be updated. After 16 bits
are transferred, the register address is automatically
incremented, so that the next 16 bits are written to the
next register. The master stops writing by sending a
start or stop bit.
A typical write sequence for writing 16 bits to a register is shown in Figure 9. A start bit given by the master, followed by the write address, starts the sequence.
The image sensor will then give an acknowledge bit
and expects the register address to come first, followed
by the 16-bit data. After each eight-bit the image sen-
Figure 9: Timing Diagram Showing a Write to Reg0x09 with the Value 0x0284
SCLK
SDATA
Reg 0x09
0xBA ADDR
START
0000 0010
ACK
ACK
16-Bit Read Sequence
1000 0100
ACK
STOP
ACK
bits at a time. The master sends an acknowledge bit
after each eight-bit transfer. The register address is
auto-incremented after every 16 bits is transferred.
The data transfer is stopped when the master sends a
no-acknowledge bit.
A typical read sequence is shown in Figure 10. First
the master has to write the register address, as in a
write sequence. Then a start bit and the read address
specifies that a read is about to happen from the register. The master then clocks out the register data eight
Figure 10: Timing Diagram Showing a Read from Reg0x09; Returned Value 0x0284
SCLK
SDATA
0xBA ADDR
START
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
Reg 0x09
ACK
0xBB ADDR
ACK
START
13
1000 0100
0000 0010
ACK
ACK
STOP
NACK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Eight-Bit Write Sequence
not updated until all 16 bits have been written. It is not
possible to just update half of a register. In Figure 11 a
typical sequence for eight-bit writing is shown. The
second byte is written to the special register (Reg
0x80).
To be able to write one byte at a time to the register
a special register address is added. The eight-bit write
is done by first writing the upper eight bits to the
desired register and then writing the lower eight bits to
the special register address (Reg0x80). The register is
Figure 11: Timing Diagram Showing a Write to Reg0x09 with the Value 0x0284
SCLK
SDATA
0xBA ADDR
0000 0010
Reg0x09
0xBA ADDR
1000 0100
Reg0x80
STOP
START
START
ACK
ACK
ACK
ACK
Eight-Bit Read Sequence
ACK
ACK
with a read from the special register (Reg0x80) the
lower eight bits are accessed (Figure 12). The master
sets the no-acknowledge bits shown.
To read one byte at a time the same special register
address is used for the lower byte. The upper eight bits
are read from the desired register. By following this
Figure 12: Timing Diagram Showing a Read from Reg0x09; Returned Value 0x0284
SCLK
SDATA
0xBA ADDR
0xBB ADDR
Reg0x09
0000 0010
START
START
ACK
ACK
NACK
ACK
SCLK
SDATA
0xBA ADDR
0xBB ADDR
Reg0x80
1000 0100
STOP
START
START
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
ACK
ACK
ACK
14
NACK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Registers
Register Map
Table 6:
Register Map
REGISTER # (HEX)
0x00/0xFF
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x09
0x0A
0x0B
0x0C
0x0D
0x1E
0x20
0x21
0x22
0x27
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x3B
0x3C
0x3D
0x3E
0x3F
0x40
0x41
0x42
0x58
0x59
0x5A
0x5B
DESCRIPTION
Chip Version
Row Start
Column Start
Window Height
Window Width
Horizontal Blanking
Vertical Blanking
Output Control
Shutter Width
Pixel Clock Speed
Restart
Shutter Delay
Reset
Digital Zoom
Read Mode
Reserved
Reserved
Reserved
Green1 Gain
Blue Gain
Red Gain
Green2 Gain
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Global Gain
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
DATA FORMAT (BINARY)
DEFAULT VALUE (HEX)
1000 0010 0011 0010
0000 000d dddd dddd
0000 00dd dddd dddd
0000 000d dddd dddd
0000 00dd dddd dddd
0000 00dd dddd dddd
0000 dddd dddd dddd
dddd dddd dddd dddd
0000 dddd dddd dddd
0000 0000 000d dddd
0000 0000 0000 000d
0000 00dd dddd dddd
0000 0000 0000 000d
0000 0ddd 0000 00dd
dddd dddd dddd dddd
0000 0ddd dddd dddd
0000 0ddd dddd dddd
0000 0ddd dddd dddd
0000 0ddd dddd dddd
0000 0ddd dddd dddd
0x8232
0x000A
0x0016
0x01DF
0x027F
0x0083
0x001C
0x3002
0x01FC
0x0000
0x0000
0x0000
0x0000
0x0000
0x1000
0x0000
0x0000
0x0024
0x0020
0x0020
0x0020
0x0020
0xF7B0
0x0005
0x002A
0x0000
0x300F
0x0100
0x0020
N/A
-
0x0820
0x068F
N/A
-
0x06A0
0x01E0
0x00D1
0x0882
0x0078
0x0703
0x0427
R/O
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table 6:
Register Map (continued)
REGISTER # (HEX)
0x5C
0x5D
0x5E
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0xF1
0xF7
0xF8
0xF9
0xFA
0xFB
0xFC
0xFD
DESCRIPTION
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Chip Enable
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
DATA FORMAT (BINARY)
DEFAULT VALUE (HEX)
R/O
R/O
R/O
0000 0000 0000 00dd
0xA31D
0x0000
0x0000
0x0418
0x0000
0x0000
0x0000
0x0001
R/O
R/O
-
0x002C
R/O
R/O
R/O
R/O
NOTE:
1 = always 1
0 = always 0
d = programmable
? = read only
Do not change reserved register defaults; doing so may put device into an unknown state.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
16
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Register Descriptions
Table 7:
REGISTER
Register Description
BIT
DESCRIPTION
Chip Version
0x00 / 0xFF 0-15 This register is read-only and gives the chip identification number: 0x8232.
Window Control
These registers control the size of the window.
0x01
0-8
First row to be read out—default = 0x000A (10).
Minimum recommended value = 0x0006.
0x02
0-9
First column to be read out—default = 0x0016 (22). Minimum recommended value = 0x0012 (18).
0x03
0-8
Window height (number of rows - 1)—default = 0x01DF (479).
0x04
0-9
Window width (number of columns - 1)—default = 0x027F (639).
Minimum recommended value = 0x0009.
Blanking Control
These registers control the blanking time in a row and between frames.
0x05
0-9
Horizontal Blanking (number of columns)—default = 0x0083 (131 pixel clocks).
Minimum value for 0x05 = 0x0009.
Minimum recommended value for 0x05 = 0x007B (123 pixel clocks).
0x06
0-11 Vertical Blanking (number of rows -1)—default = 0x001C (28 rows).
Minimum recommended value = 0x0003.
Output Control
This register controls various features of the output format for the sensor.
0x07
0
Synchronize changes (copied to Reg0xF1, bit1).
0 = normal operation, update changes to registers that affect image brightness (integration time,
integration delay, gain, horizontal and vertical blanking, window size, row/column skip, or row
mirror) at the next frame boundary.
1 = do not update any changes to these settings until this bit is returned to “0.”
1
Chip Enable (copied to Reg0xF1, bit0).
1 = normal operation.
0 = stop sensor readout. When this is returned to “1,” sensor readout restarts at the starting row in a
new frame. The digital power consumption can then also be reduced to less than 5uA by turning off
the master clock.
4
By setting this bit to “1,” the sampling and reset timing of the pixels will be halved. This bit should
therefore only be used if the master clock frequency is 13.5 MHz or less. When this bit is set the
minimum recommended horizontal blanking value is 17, compared to 123 when this bit is not set.
Shutter Delay will be master clocks divided by 2 when this bit is set, compared to master clocks
divided by 4 when this bit is 0.
Note: Use this register for 15 fps with 12 MHz master clock.
5
Allow Shutter Width to be exactly one full frame.
0 = normal operation = Maximum Shutter Width equals the total number of rows - 1. If Shutter
Width exceeds the number of rows -1, the total number of rows in the image will be increased to
Shutter Width + 1.
1 = Maximum Shutter Width equals the total number of rows. When the Shutter Width exceeds the
number of rows, the total number of rows in the image will be increased to match the Shutter Width.
6
Reserved.
8 -11 Shift pixel clock: (11,10,9,8) = (1, x, x, x): shift pixel clock 1 clock earlier (0, 1, x, x): shift pixel clock ½
clock earlier (0, 0, 1, x): delay pixel clock by ½ clock(0, 0, 0, 1): delay pixel clock by 1 clock (0, 0, 0, 0):
no delay pixel clock (default mode).
15
Invert pixel clock:
0 = normal operation.
1 = invert pixel clock.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
17
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table 7:
REGISTER
Register Description (continued)
BIT
DESCRIPTION
Pixel Integration Control
These registers (along with the Window Size and Blanking registers) control the integration time for the pixels.
0x09
0-11 Number of rows of integration, default = 0x01FC (508).
0x0C
0-9
Reset delay, default = 0x0000 (0). This is the number of master clocks x 4 that the timing and control
logic waits before asserting the reset for a given row.
Pixel Clock Speed
0x0A
4-0
This register determines the pixel data rate, default = 0x0000 (0). Pixel clock period = 2 master clocks
+ [Reg0x0A, bits (4-0)]. The pixel clock out can be shifted relative to the data out by setting bit 8-11 of
Reg0x07 appropriately. Maximum value for 0x0A = 0x0015.
Frame Restart
0x0B
0
Setting bit 0 to “1” of Reg0x0B will cause the sensor to abandon the readout of the current frame
and restart from the first row. This register automatically resets itself to 0x0000 after the frame
restart. The first frame after this event is considered to be a "bad frame" (see description for
Reg0x20, bit 0).
Reset (Soft)
0x0D
0
This register is used to reset the sensor to its default, power-up state. To reset the MT9V011, first
write a “1” into bit 0 of this register to put the MT9V011 in reset mode, then write a “0” into bit 0 to
resume operation.
Zoom Mode / True Decimation Mode
0x1E
0
Zoom by 2.
1
Zoom by 4 (if bit 0 is 0).
8
True decimation by 2. Decimate 2x will skip every other column and row, without considering the
colors of the pixels.
9
True decimation by 4. Decimate 4x will skip 3 rows/columns for every row/column read out, without
considering the colors of the pixels.
10
True decimation by 8. Decimate 8x will skip 7 rows/columns for every row/column read out, without
considering the colors of the pixels.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
18
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table 7:
REGISTER
Register Description (continued)
BIT
DESCRIPTION
Read Mode
This register is used to control many aspects of the readout of the sensor.
0x20
0
Show bad frames:
1 = output all frames (including bad frames).
0 = only output good frames. A bad frame is defined as the first frame following a change to:
window size or position, horizontal blanking, pixel clock speed, zoom, row or column skip, or
mirroring.
3
Column skip:
1= read out two columns, and then skip two columns (as with rows).
0 = normal readout.
4
Row skip:
1 = read out two rows, and then skip two rows (i.e. row 8, row 9, row 12, row 13…).
0 = normal readout.
9
"Continuous" Line Valid (continue producing line valid during vertical blanking).
0 = Normal Line Valid (default, no line valid during vertical blanking).
10
Line valid = "Continuous" Line Valid XOR Frame Valid.
0 = Normal Line Valid. Ineffective if Continuous Line Valid is set.
11
The four dark rows 0 to 3 are read out in addition to the valid data.
0 = normal readout.
To preserve a right-reading image and the correct color order, all four of these bits should be set to “1” to
invert the image.
5
1 = readout starting 1 column later.
0 = normal readout.
7
1 = readout starting 1 row later.
0 = normal readout.
14
1 = read out from right to left (mirrored).
0 = normal readout.
15
1 = read out from bottom to top (upside down).
0 = normal readout.
Gain Settings
The gain can be individually controlled for each color in the Bayer pattern.
0x2B
Green1 Gain—default = 0x0020 (32) = 1x gain.
0-6
7, 8
9,10
Initial Gain = bits (6:0) x 0.03125.
Analog Gain = (Bit 8 + 1) x (Bit 7 + 1) x Initial Gain (each bit gives 2x gain).
9, 10: Total Gain = (Bit 9 + 1) x (Bit 10 + 1) x Analog Gain (each bit gives 2x gain).
0-6
7, 8
9,10
Initial Gain = bits (6-0) x 0.03125.
Analog gain = (Bit 8 + 1) x (Bit 7 + 1) x Initial Gain (each bit gives 2x gain).
9, 10: Total Gain = (Bit 9 + 1) x (Bit 10 + 1) x Analog Gain (each bit gives 2x gain).
0-6
7, 8
9,10
Red gain—default = 0x0020 (32) = 1x gain.
Initial Gain = bits (6-0) x 0.03125.
Analog Gain = (Bit 8 + 1) x (Bit 7 + 1) x Initial Gain (each bit gives 2x gain).
9, 10: Total Gain = (Bit 9 + 1) x (Bit 10 + 1) x Analog Gain (each bit gives 2x gain).
0x2C
Blue Gain—default = 0x0020 (32) = 1x gain.
0x2D
0x2E
Green2 gain—default = 0x0020 (32) = 1x gain.
0-6
7, 8
9,10
Initial Gain = bits (6-0) x 0.03125.
Analog Gain = (Bit 8 + 1) x (Bit 7 + 1) x Initial Gain (each bit gives 2x gain).
9, 10: Total gain = (Bit 9 + 1) x (Bit 10 + 1) x Analog Gain (each bit gives 2x gain).
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
19
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table 7:
REGISTER
Register Description (continued)
BIT
0x35
0-6
7, 8
9,10
DESCRIPTION
GlobalGain—default = 0x0020 (32) = 1x gain. This register can be used to set all four gains at once.
When read, it will return the value stored in Reg0x2B.
Initial Gain = bits (6-0) x 0.03125.
Analog Gain = (Bit 8 + 1) x (Bit 7 + 1) x Initial Gain (each bit gives 2x gain).
9, 10: Total Gain = (Bit 9 + 1) x (Bit 10 + 1) x Analog Gain (each bit gives 2x gain).
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Feature Description
t
Window Control
INT =
Reg0x09 x Row Time - Overhead time - Reset delay,
where:
Row Time = (Reg0x04 + 1 + 113 + Reg0x05) x
(Reg0x0A + 2) master clock periods
Overhead time = K x 57 master clock periods
Reset delay = K x Reg0x0C master clock periods
If the value in Reg0x0C exceeds (row time - 444)/K
master clock cycles, the row time will be extended by
(K x Reg0x0C - (row time - 444)) clock cycles.
Reg0x01 Row Start, Reg0x02 Column Start,
Reg0x03 Window Height (row size), and Reg0x04
Window Width (column size)
These registers control the size and starting coordinates of the window. By changing these registers, any
image format smaller than or equal to VGA can be
specified.
Blanking Control
Reg0x05 Horizontal Blanking, and Reg0x06 Vertical Blanking
Blanking Control:
These registers control the blanking time in a row
(called column fill-in or horizontal blanking) and
between frames (vertical blanking).
• Horizontal blanking is specified in terms of pixel
clocks.
• Vertical blanking is specified in terms of row
readout times. (The programmed value is one less
than the actual value.)
The actual imager timing can be calculated using
Table 3 on page 10 which describes "Row Timing and
FRAME_VALID/LINE_VALID Signals.”
The number of dark rows read out depends on the
vertical blanking set as shown in the Table 8.
Table 8:
Where :
K = 4 when Reg0x07[4] = 0, and
K = 2 when Reg0x07[4] = 1
In this expression the row time term corresponds to
the number of rows integrated. The overhead time is
the time between the READ cycle and the RESET cycle,
and the final term is the effect of the reset delay.
Typically, the value of Reg0x09 (Shutter Width) is
limited to the number of rows per frame (which
includes vertical blanking rows), such that the frame
rate is not affected by the integration time. If Reg0x09
is increased beyond the total number of rows per
frame, the MT9V011 will add additional blanking rows
as needed. A second constraint is that tINT must be
adjusted to avoid banding in the image from light
flicker. Under 60 Hz flicker, this means tINT must be a
multiple of 1/120 of a second. Under 50 Hz flicker,
t
INT must be a multiple of 1/100 of a second.
Vertical Blanking
REG0X06
# DARK ROWS
0
1-2
3+
0
2
4
Pixel Clock Speed
Reg0x0A Pixel Clock Speed
The pixel clock speed is set by Reg0x0A. The pixel
clock period will be the number set plus two master
clock cycles. The default value is 0, which is equal to 2
master clock cycles. With a master clock frequency of
27 MHz the PIXCLK frequency will be 13.5 MHz. The
pixel clock out can be shifted relative to the data out by
setting bit 8-11 of Reg0x07 appropriately.
Pixel Integration Control
Reg0x09 Shutter Width, and Reg0x0C Shutter
Delay
These registers (along with the Window Size and
horizontal blanking registers) control the integration
time for the pixels.
Reg0x09: number of rows of integration, default =
0x01FC (508)
Reg0x0C: reset delay, default = 0x0000 (0). This is the
number of master clocks that the timing and control
logic waits before asserting the reset for a given row.
The actual total integration time, tINT, is:
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
Reset
Reg0x0D Reset
This register is used to reset the sensor to its default,
power-up state. To reset the MT9V011, first write a “1”
into bit 0 of this register, then write a “0” into bit 0 to
resume operation.
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Digital Zoom
The pixel clock speed is not affected by this operation, and the output data for each pixel is valid for
either 2 or 4 pixel clocks. In zoom by 2 mode, every row
is followed by a blank row (with its own line valid, but
all data bits = 0) of equal time. In zoom by 4 mode,
every row is followed by three blank rows. The combination of this register and an appropriate change to
the window sizing registers allows the user to zoom to
a region of interest without affecting the frame rate.
Reg0x1E Digital Zoom/True decimation
In zoom mode, the pixel data rate is slowed down by
a factor of either 2 or 4, and either 1 or 3 additional
blank rows are added between each output row. This is
designed to give the controller logic time to repeat
data to fill in a window that is either 2 or 4 times larger
with repeated data.
Figure 13: Readout of 4 Pixels in Normal and Zoom 2x Output Mode
LINE_VALID
Normal readout
G0
(9:0)
R0
(9:0)
G1
(9:0)
R1
(9:0)
DOUT9-DOUT0
PIXCLK
LINE_VALID
Zoom 2X readout
DOUT9-DOUT0
G0
(9:0)
R0
(9:0)
G1
(9:0)
R1
(9:0)
PIXCLK
True Decimation mode
4x three rows/columns will be skipped for every row/
column read out, and in decimate 8x seven rows/columns will be skipped for every row/column read out.
Decimate 2x is shown in Figure 14. In decimation
mode the global gain register should be used to set the
gain.
Reg0x1E Digital Zoom/True decimation
True decimation mode is intended for use in sensors without color filtering. There are three modes
with different amount of decimation. In decimate 2x
every other column and row are skipped. In decimate
Figure 14: Readout of 8 Pixels in Normal and 2x Decimation Output Mode
LINE_VALID
Normal readout
DOUT9-DOUT0
P0
(9:0)
P1
(9:0)
P2
(9:0)
P3
(9:0)
P0
(9:0)
P2
(9:0)
P4
(9:0)
P6
(9:0)
P4
(9:0)
P5
(9:0)
P6
(9:0)
P7
(9:0)
LINE_VALID
Decimate 2X readout
DOUT9-DOUT0
Read Mode
Column Mirror image
By setting bits 14 and 5 of Reg0x20 the readout order
of the columns will be reversed, as shown in Figure 15.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 15: Readout of 6 Pixels in Normal and Column Mirror Output Mode
LINE_VALID
Normal readout
DOUT9-DOUT0
Reverse readout
DOUT9-DOUT0
G0
(9:0)
R0
(9:0)
G1
(9:0)
R1
(9:0)
G2
(9:0)
R2
(9:0)
G3
(9:0)
R2
(9:0)
G2
(9:0)
R1
(9:0)
G1
(9:0)
R0
(9:0)
Row Mirror Image
By setting bits 15 and 7 of Reg0x20 the readout order
of the rows will be reversed, as shown in Figure 16.
Figure 16: Readout of 6 Rows in Normal and Row Mirror Output Mode
FRAME_VALID
Normal readout
Row0 Row1 Row2
(9:0) (9:0) (9:0)
DOUT9-DOUT0
Row3
(9:0)
Row4 Row5
(9:0) (9:0)
Row 6 Row5 Row4 Row3
(9:0) (9:0) (9:0) (9:0)
Row2 Row1
(9:0) (9:0)
Reverse readout
DOUT9-DOUT0
Column and Row Skip
By setting bit 3 of Reg0x20 only half of the columns
set will be read out, as shown in Figure 17. The row
skip works in the same way and will only read out two
out of four rows. For both row and column skip the
number of rows/columns read out will be half of what
is set in Reg0x03 and Reg0x04.
Figure 17: Readout of 8 Pixels in Normal and Column Skip Output Mode
L INE_V AL ID
Normal readout
DOUT9-DOUT0
G0
(9:0)
R0
(9:0)
G1
(9:0)
R1
(9:0)
G0
(9:0)
R0
(9:0)
G2
(9:0)
R2
(9:0)
G2
(9:0)
R2
(9:0)
G3
(9:0)
R3
(9:0)
L INE_V AL ID
Column skip readout
DOUT9-DOUT0
Line Valid
By setting bit 9 and 10 of Reg0x20 the line valid signal can get three different output formats. The formats
are shown in Figure 18 when reading out four rows
and two vertical blanking rows. In the last format the
line valid signal is the XOR between the continuously
line valid signal and the frame valid signal.
Figure 18: Different Line Valid Formats
Default
FRAME_VALID
LINE_VALID
Continuously
FRAME_VALID
LINE_VALID
XOR
FRAME_VALID
LINE_VALID
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Recommdended Gain Settings
The gains for green1, blue, red, and green2 pixels
are set by registers Reg0x2B, Reg0x2C, Reg0x2D, and
Reg0x2D, respectively. Gain can also be set globally by
Reg0x35. The analog gain is set by bits[8:0] of the corresponding register as following:
The minimum gain of 1 (register set to 0x0020) corresponds to the lowest setting where the pixel signal is
guaranteed to saturate the ADC under all specified
operating conditions. Any reduction of the gain below
this value may cause the sensor to saturate at ADC output values less than the maximum, under certain conditions. It is recommended that this guideline be
followed at all times.
Since bits 7 and 8 of the gain registers are multiplicative factors for the gain settings, there are alternative
ways of achieving certain gains. Some settings offer
superior noise performance to others, while the same
overall gain. Table 9 lists the recommended gain settings.
Gain = (Bit[8] + 1) x (Bit[7] + 1) x (Bit[6:0]/32)
Digital gain is set by bits 9 and 10 of the same registers.
The analog gain circuitry (pre-ADC) is designed to
offer signal gains from 1 to 15.875.
Table 9:
Recommended Gain Settings
DESIRED GAIN
RECOMMENDED SETTINGS (GAIN
REGISTERS)
CONVERSION FORMULA
(ARITHMETIC)
1.000 to 1.969
2.000 to 7.938
8.000 to 15.875
0x0020 to 0x003F
0x00A0 to 0x00FF
0x01C0 to 0x01FF
(Register value)/32
(Register value - 128)/16
(Register value - 384)/8
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Electrical Specifications
Table 10: DC Electrical Characteristics
(VPWR = 2.8 ±0.25V; TA = Ambient = 25°C; 30 fps at 27 MHz)
SYMBOL
DEFINITION
VIH
VIL
IIN
Input High Voltage
Input Low Voltage
Input Leakage Current
VOH
VOL
IOH
IOL
IOZ
Output High Voltage
Output Low Voltage
Output High Current
Output Low Current
Tri-state Output
Leakage Current
Analog Operating
Current
Digital Operating
Current
Analog Standby Supply
Current
Digital Standby Supply
Current
IAA
IDD
IAA Standby
IDD Standby
CONDITION
MIN
TYP
VPWR-0.25
-0.3
-5
No Pull-up Resistor;
VIN = VPWR or VGND
MAX
UNIT NOTES
VPWR+0.25
0.8
5
V
V
µA
0.2
5.0
5.0
5.0
V
V
µA
µA
µA
VPWR-0.2
CLK = 27 MHz;
default setting, CLOAD = 10pF
CLK = 27 MHz;
default setting, CLOAD = 10pF
STDBY = VDD
14.0
20.0
28.0
mA
3.0
5.0
8.0
mA
0.0
0.0
5.0
µA
1
STDBY = VDD
0.0
1.0
5.0
µA
1
NOTE:
1. To place the chip in standby mode, first raise STANDBY to VDD, then wait two master clock cycles before turning off the
master clock. Two master clock cycles are required to place the analog circuitry into standby, low-power mode.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Table 11: AC Electrical Characteristics
(VDD = 2.8 ±0.25V; TA = Ambient = 25°C)
SYMBOL
fCLK_IN
DEFINITION
CONDITION
t
UNIT
27
27
MHz
45
50
55
%
R
2.5
ns
F
Input Clock Fall Time
2.0
ns
12.0
10.0
ns
15.0
14.0
ns
9.0
ns
12.0
11.0
ns
7.5
7.0
ns
CLK_IN to PIXCLK propagation delay:
LOW-TO-HIGH
HIGH-TO-LOW
CLOAD = 10pF
CLOAD = 10pF,
tDVHOLD
PIXCLK to DOUT<9:0>
Setup Time
Hold Time
t
Data Hold Time from CLK_IN
t
MAX
Input Clock Rise Time
tPLHP,
t
TYP
Input Clock Frequency
Clock Duty Cycle
t
MIN
PHLP
DVSETUP
OH
tPLHFL
CLK_IN to FRAME_VALID and LINE_VALID
propagation delay:
LOW-TO-HIGH,
HIGH-TO-LOW
CLOAD = 10pF
CLOAD = 10pF
t
PHLFL
t
PLH
t
PHL
Output propagation delay:
LOW-TO-HIGH,
HIGH-TO-LOW
t
OUTR
Output Rise Time
CLOAD = 10pF
7.0
ns
t
OUTF
Output Fall Time
CLOAD = 10pF
9.0
ns
NOTES
1
NOTE:
1. For 30 fps operation with a 27 MHz clock, it is very important to have a precise duty cycle equal to 50%. With a slower
frame rate and a slower clock the clock duty cycle can be relaxed.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Propagation Delays for PIXCLK and
Data Out Signals
falling master clock edge as the output of the first valid
pixel's data and returns LOW on the same master clock
falling edge as the end of the output of the last valid
pixel's data.
As shown in the “Output Data Timing” on page 9,
FRAME_VALID goes HIGH 6 pixel clocks prior to the
time that the first LINE_VALID goes HIGH. It returns
LOW at a time corresponding to 6 pixel clocks after the
last LINE_VALID goes LOW.
The typical output delay, relative to the master
clock edge, is 7.5 ns. Note that the data outputs change
on the falling edge of the master clock, with the pixel
clock rising on the subsequent rising edge of the master clock.
Propagation Delays for FRAME_VALID
and LINE_VALID Signals
The LINE_VALID and FRAME_VALID signals
change on the same falling master clock edge as the
data output. The LINE_VALID goes HIGH on the same
Figure 19: Propagation Delays for PIXCLK and Data Out Signals
tPLHD, tPHLD
CLK_IN
PIXCLK
DOUT (7:0)
tR
tF
tR
tF
CLK_IN
tPHLP
tPLHP
PIXCLK
tPLHD, tPLHD
DOUT (9:0)
DOUT (9:0)
tOH
DOUT (9:0)
DOUT (9:0)
DOUT (9:0)
Figure 20: Propagation Delays for FRAME_VALID and LINE_VALID Signals
tPHLFL
tPLHFL
CLK_IN
CLK_IN
FRAME_VALID
LINE_VALID
FRAME_VALID
LINE_VALID
tF
tF
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
27
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 21: Data Output Timing Diagram
t
FVSETUP
PIXCLK
t
t
DHOLD
DSETUP
t
FVHOLD
t
LVSETUP
t
FRAME_VALID
LVHOLD
t
FTOL
LINE_VALID
DOUT(9:0)
t
outR
t outF
PIXCLK = max. 27 MHz
tFVSETUP
= / setup time for FRAME_VALID before rising edge of PIXCLK / = 18 ns
tFVHOLD
= / hold time for FRAME_VALID after falling edge of PIXCLK / = 18 ns
tLVSETUP
= / setup time for LINE_VALID before rising edge of PIXCLK / = 18 ns
tLVHOLD
= / hold time for LINE_VALID after falling edge of PIXCLK / = 18 ns
tDSETUP
= / setup time for DOUT before rising edge of PIXCLK / = 15 ns
tDHOLD
= / hold time for DOUT after falling edge of PIXCLK / = 14 ns
tFTOL
= / FRAME_VALID to LINE_VALID time / = 440 ns
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
28
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Two-Wire Serial Bus Timing
Figure 24: Serial Host Interface Data
Timing for Write
The two-wire serial bus operation requires certain
minimum master clock cycles between transitions.
These are specified in the following diagrams in master clock cycles.
4
4
SCLK
Figure 22: Serial Host Interface Start
Condition Timing
SDATA
4
5
SCLK
NOTE:
SDATA is driven by an off-chip transmitter.
SDATA
Figure 25: Serial Host Interface Data
Timing for Read
Figure 23: Serial Host Interface Stop
Condition Timing
5
SCLK
5
4
SCLK
SDATA
SDATA
NOTE:
SDATA is pulled LOW by the sensor, or allowed to be
pulled HIGH by a pull-up resistor off-chip.
NOTE:
All timing are in units of master clock cycle.
Figure 26: Acknowledge Signal Timing After an 8-bit Write to the Sensor
3
6
SCLK
Sensor pulls down
SDATA pin
SDATA
Figure 27: Acknowledge Signal Timing After an 8-bit Read from the Sensor
6
7
SCLK
SDATA
Sensor tri-states SDATA pin
(turns off pull down)
NOTE:
After a read, the master receiver must pull down SDATA to acknowledge receipt of data bits. When read sequence is
complete, the master must generate a no acknowledge by leaving SDATA to float high. On the following cycle a start or
stop bit may be used.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
29
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 28: Spectral Response
Relative Spectral Response
1.2
Blue
Green (B)
Green (R)
1.0
Relative Response
Red
0.8
0.6
0.4
0.2
0.0
350
450
550
650
750
850
950
1050
Wavelength (nm)
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
30
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 29: Die Placement
11.43mm
Sensor
Chip
Package center
Pixel
Array
11.43mm
Pin 1
Pin 28
Pixel
(0,0)
NOTE:
Image
center
Image center = package center.
Not to scale.
Figure 30: Image Center Offset
Image Center
Pixel (0,0)
697.4um
14.6um
Chip Center
NOTE:
Pixel
Array
Sensor Chip
Not to scale.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
31
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Figure 31: 28-Pin PLCC Package Outline Drawing
0.55 ±0.05
1.70 ±0.10
0.350 ±0.050
2.35 ±0.15
1.450 ±0.075
SEATING
PLANE
SECTION A–A
0.70 ±0.05
7.62
SUBSTRATE MATERIAL: FR4 RESIN
LID MATERIAL: BOROSILICATE GLASS
1.27 TYP
28
1
27X 1.27
2.16
29X R0.225
11.43 ±0.10
7.62
A
A
1.27 TYP
0.64 TYP
8X 1.905 ±0.100
LEAD FINISH: GOLD PLATING,
20 MICRO INCHES MINIMUM
THICKNESS
0.08
11.43 ±0.10
0.08
Data Sheet Designation
Preliminary: This data sheet contains initial characterization limits that are subject to change upon full
characterization of production devices.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
32
Micron Technology, Inc., reserves the right to change products or specifications without notice..
©2004 Micron Technology, Inc
Preliminary
1/4-INCH VGA CMOS ACTIVE-PIXEL
DIGITAL IMAGE SENSOR
Revision History
Rev A, Preliminary ...........................................................................................................................................................4/04
• Initial Release of document
09005aef80c6407f
MT9V011_external_DS_2.fm - Rev. A 8/04 EN
33
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.