NCV8406, NCV8406A Self-Protected Low Side Driver with Temperature and Current Limit 65 V, 7.0 A, Single N−Channel NCV8406/A is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments. http://onsemi.com VDSS (Clamped) RDS(on) TYP ID TYP (Limited) 65 V 210 mW 7.0 A Features • • • • • • • • • • • Drain Short Circuit Protection Thermal Shutdown with Automatic Restart Over Voltage Protection Integrated Clamp for Inductive Switching ESD Protection dV/dt Robustness Analog Drive Capability (Logic Level Input) These Devices are Faster than the Rest of the NCV Devices AEC−Q101 Qualified and PPAP Capable NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements These Devices are Pb−Free and are RoHS Compliant Overvoltage Protection Gate Input ESD Protection Temperature Limit Current Sense Source Typical Applications • Switch a Variety of Resistive, Inductive and Capacitive Loads • Can Replace Electromechanical Relays and Discrete Circuits • Automotive / Industrial Current Limit 4 1 2 DRAIN 4 3 SOT−223 CASE 318E STYLE 3 4 1 2 MARKING DIAGRAM 3 DPAK CASE 369C AYW xxxxxG G 1 2 3 SOURCE GATE DRAIN YWW xxxxxG A = Assembly Location Y = Year W, WW = Work Week xxxxx = V8406 or 8406A G or G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. © Semiconductor Components Industries, LLC, 2011 November, 2011 − Rev. 2 1 Publication Order Number: NCV8406/D NCV8406, NCV8406A MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Rating Symbol Value Unit Drain−to−Source Voltage Internally Clamped VDSS 70 Vdc Gate−to−Source Voltage VGS "14 Vdc Drain Current Continuous ID Total Power Dissipation − SOT−223 Version @ TA = 25°C (Note 1) @ TA = 25°C (Note 2) PD Total Power Dissipation − DPAK Version @ TA = 25°C (Note 1) @ TA = 25°C (Note 2) PD Internally Limited 1.25 1.81 1.31 2.31 W W Thermal Resistance − SOT−223 Version Junction−to−Case Junction−to−Ambient (Note 1) Junction−to−Ambient (Note 2) RqJC RqJA RqJA 7.0 100 69 Thermal Resistance − DPAK Version Junction−to−Case Junction−to−Ambient (Note 1) Junction−to−Ambient (Note 2) RqJC RqJA RqJA 1.0 95 54 Single Pulse Inductive Load Switching Energy (Starting TJ = 25°C, VDD = 50 Vdc, VGS = 5.0 Vdc, IL = 2.1 Apk, L = 50 mH, RG = 25 W) EAS 110 mJ Load Dump Voltage (VGS = 0 and 10 V, RI = 2 W, RL = 7 W, td = 400 ms) VLD 75 V Operating Junction Temperature Range TJ −40 to 150 °C Storage Temperature Range Tstg −55 to 150 °C °C/W °C/W Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Surface mounted onto minimum pad size (100 sq/mm) FR4 PCB, 1 oz cu. 2. Mounted onto 1″ square pad size (700 sq/mm) FR4 PCB, 1 oz cu. + ID DRAIN IG + VDS GATE SOURCE VGS − − Figure 1. Voltage and Current Convention http://onsemi.com 2 NCV8406, NCV8406A MOSFET ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit 60 65 70 V − 22 100 − 30 100 1.2 − 1.66 4.0 2.0 − − 185 210 − − 210 445 240 520 − 0.9 1.1 OFF CHARACTERISTICS V(BR)DSS Drain−to−Source Clamped Breakdown Voltage (VGS = 0 V, ID = 2 mA) Zero Gate Voltage Drain Current (VDS = 52 V, VGS = 0 V) IDSS Gate Input Current (VGS = 5.0 V, VDS = 0 V) IGSS mA mA ON CHARACTERISTICS Gate Threshold Voltage (VDS = VGS, ID = 150 mA) Threshold Temperature Coefficient VGS(th) Static Drain−to−Source On−Resistance (Note 3) (VGS = 10 V, ID = 2.0 A, TJ @ 25°C) RDS(on) Static Drain−to−Source On−Resistance (Note 3) (VGS = 5.0 V, ID = 2.0 A, TJ @ 25°C) (VGS = 5.0 V, ID = 2.0 A, TJ @ 150°C) RDS(on) Source−Drain Forward On Voltage (IS = 7.0 A, VGS = 0 V) VSD V −mV/°C mW mW V SWITCHING CHARACTERISTICS (Note 6) Turn−on Delay Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 10% Vin to 10% ID td(on) − 127 − ns Turn−on Rise Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 10% ID to 90% ID trise − 486 − ns Turn−off Delay Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 90% Vin to 90% ID td(off) − 1600 − ns Turn−off Fall Time RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 90% ID to 10% ID tfall − 692 − ns Slew Rate ON RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 70% to 50% VDD dVDS/dTon − 79 − V/ms Slew Rate OFF RL = 6.6 W, Vin = 0 to 10 V, VDD = 13.8 V, ID = 2.0 A, 50% to 70% VDD dVDS/dToff − 27 − V/ms VDS = 10 V, VGS = 5.0 V, TJ = 25°C (Note 5) VDS = 10 V, VGS = 5.0 V, TJ = 150°C (Notes 5, 6) VDS = 10 V, VGS = 10 V, TJ = 25°C (Notes 5) ILIM 5.0 3.5 6.5 7.0 4.5 8.5 9.5 6.0 10.5 A VGS = 5.0 V (Note 6) TLIM(off) 150 180 200 °C SELF PROTECTION CHARACTERISTICS (Note 4) Current Limit Temperature Limit (Turn−off) Thermal Hysteresis VGS = 5.0 V DTLIM(on) − 10 − °C VGS = 10 V (Note 6) TLIM(off) 150 180 200 °C Thermal Hysteresis VGS = 10 V DTLIM(on) − 20 − °C Input Current during Thermal Fault VDS = 0 V, VGS = 5.0 V, TJ = TJ > T(fault) (Note 6) VDS = 0 V, VGS = 10 V, TJ = TJ > T(fault) (Note 6) Ig(fault) − − 5.9 12.3 − mA 6000 500 − − − − Temperature Limit (Turn−off) ESD ELECTRICAL CHARACTERISTICS ESD Electro−Static Discharge Capability Human Body Model (HBM) Machine Model (MM) 3. 4. 5. 6. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%. Fault conditions are viewed as beyond the normal operating range of the part. Current limit measured at 380 ms after gate pulse. Not subject to production test. http://onsemi.com 3 V NCV8406, NCV8406A TYPICAL PERFORMANCE CURVES 1000 TJstart = 25°C Emax (mJ) ILmax (A) 10 TJstart = 25°C 100 TJstart = 150°C TJstart = 150°C 1 10 10 100 L (mH) Figure 2. Single Pulse Maximum Switch−off Current vs. Load Inductance Figure 3. Single−Pulse Maximum Switching Energy vs. Load Inductance Emax (mJ) ILmax (A) 1000 TJstart = 25°C 1 TJstart = 150°C 1 TJstart = 25°C 100 TJstart = 150°C 10 10 1 10 TIME IN CLAMP (ms) TIME IN CLAMP (ms) Figure 4. Single Pulse Maximum Inductive Switch−off Current vs. Time in Clamp Figure 5. Single−Pulse Maximum Inductive Switching Energy vs. Time in Clamp 6V 12 7V 8V 9V 12 10 V −40°C VDS = 10 V 10 25°C 9 100°C ID (A) 5V 8 ID (A) 100 L (mH) 10 0.1 10 4V Ta = 25°C 6 6 150°C 3.3 V 4 3V 2 0 3 VGS = 2.5 V 0 5 10 0 15 0 1 2 3 4 VDS (V) VGS (V) Figure 6. On−state Output Characteristics Figure 7. Transfer Characteristics http://onsemi.com 4 5 NCV8406, NCV8406A TYPICAL PERFORMANCE CURVES 500 600 ID = 2 A ID = 0.5 A 550 450 150°C 400 350 100°C 300 250 200 150 100 3 4 5 300 100 8 9 50 10 25°C, VGS = 5 V 200 −40°C 7 100°C, VGS = 10 V 250 150 6 100°C, VGS = 5 V 350 25°C 25°C, VGS = 10 V −40°C, VGS = 5 V −40°C, VGS = 10 V 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 VGS (V) ID (A) Figure 8. RDS(on) vs. Gate−Source Voltage Figure 9. RDS(on) vs. Drain Current 3 15 2.5 ID = 2 A VGS = 10 V 2.0 VGS = 5 V 1.5 ILIM (A) NORMALIZED RDS(on) 150°C, VGS = 10 V 400 RDS(on) (mW) RDS(on) (mW) 500 150°C, VGS = 5 V 450 13 −40°C 11 25°C 9 100°C 7 1.0 150°C 5 0.5 −40 −20 0 20 40 60 80 100 120 3 140 VDS = 10 V 4 5 6 7 8 9 T (°C) VGS (V) Figure 10. Normalized RDS(on) vs. Temperature Figure 11. Current Limit vs. Gate−Source Voltage 15 10 1000 VGS = 10 V VDS = 10 V 100 13 11 VGS = 5 V IDSS (mA) ILIM (A) 10 9 150°C 1 100°C 0.1 0.01 25°C 7 VGS = 0 V 0.001 5 −40 −20 0 20 40 60 80 100 0.0001 120 140 −40°C 10 20 30 40 50 60 TJ (°C) VDS (V) Figure 12. Current Limit vs. Junction Temperature Figure 13. Drain−to−Source Leakage Current http://onsemi.com 5 70 NCV8406, NCV8406A TYPICAL PERFORMANCE CURVES 1100 ID = 150 mA VDS = VGS 1.1 VSD (mV) 0.9 25°C 800 0.8 700 0.7 600 0.6 −40 −20 500 100°C 150°C 0 20 40 80 60 100 120 140 VGS = 0 V 1 2 3 4 5 6 8 9 IS (A) Figure 14. Normalized Threshold Voltage vs. Temperature Figure 15. Source−Drain Diode Forward Characteristics 3400 VDD = 13.8 V ID = 2 A RG = 0 W 1200 td(off) 2600 2200 tf 600 tr TIME (ns) 800 td(off), VGS = 5 V 1800 tf, VGS = 5 V tr, VGS = 10 V 1000 600 td(on) 200 5 6 7 8 9 td(on), VGS = 5 V 200 −200 10 tr, VGS = 5 V tf, VGS = 10 V 1400 400 4 10 td(off), VGS = 10 V 3000 1000 3 7 T (°C) 1400 0 −40°C 900 1600 TIME (ns) 1000 1.0 td(on), VGS = 10 V 0 500 1000 1500 2000 VGS (V) RG (W) Figure 16. Resistive Load Switching Time vs. Gate−Source Voltage Figure 17. Resistive Load Switching Time vs. Gate Resistance DRAIN−SOURCE VOLTAGE SLOPE (V/ms) NORMALIZED VGS(th) (V) 1.2 35 30 25 dVDS/dt(off), VGS = 5 V 20 dVDS/dt(off), VGS = 10 V 15 10 5 0 500 1000 1500 2000 RG (W) Figure 18. Drain−Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance http://onsemi.com 6 NCV8406, NCV8406A TYPICAL PERFORMANCE CURVES 110 110 100 100 90 PCB Cu thickness, 1.0 oz RqJA (°C/W) RqJA (°C/W) 90 80 70 PCB Cu thickness, 2.0 oz 60 80 70 PCB Cu thickness, 1.0 oz 60 50 50 40 40 100 200 300 400 500 600 PCB Cu thickness, 2.0 oz 100 200 300 400 500 COPPER HEAT SPREADER AREA (mm2) COPPER HEAT SPREADER AREA (mm2) Figure 19. RqJA vs. Copper Area − SOT−223 Figure 20. RqJA vs. Copper Area − DPAK 600 1000 R(t) (°C/W) 100 50% Duty Cycle 20% 10% 10 5% 2% 1 0.1 1% Single Pulse 0.01 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10 100 1000 PULSE TIME (sec) Figure 21. Transient Thermal Resistance − SOT−223 Version 100 50% Duty Cycle R(t) (°C/W) 10 20% 10% 5% 2% 1 1% 0.1 Single Pulse 0.01 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 PULSE TIME (sec) Figure 22. Transient Thermal Resistance − DPAK Version http://onsemi.com 7 NCV8406, NCV8406A TEST CIRCUITS AND WAVEFORMS RL VIN + D RG VDD G DUT − S IDS Figure 23. Resistive Load Switching Test Circuit 90% VIN 10% td(ON) tr td(OFF) tf 90% 10% IDS Figure 24. Resistive Load Switching Waveforms http://onsemi.com 8 NCV8406, NCV8406A TEST CIRCUITS AND WAVEFORMS L VDS VIN D RG + VDD G DUT − S tp IDS Figure 25. Inductive Load Switching Test Circuit 5V VIN 0V Tav Tp V(BR)DSS Ipk VDD VDS VDS(on) IDS 0 Figure 26. Inductive Load Switching Waveforms http://onsemi.com 9 NCV8406, NCV8406A ORDERING INFORMATION Package Shipping† NCV8406STT3G SOT−223 (Pb−Free) 4000 / Tape & Reel NCV8406ASTT3G SOT−223 (Pb−Free) 4000 / Tape & Reel NCV8406DTRKG DPAK (Pb−Free) 2500 / Tape & Reel NCV8406ADTRKG DPAK (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 10 NCV8406, NCV8406A PACKAGE DIMENSIONS SOT−223 (TO−261) CASE 318E−04 ISSUE N D b1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. 4 HE E 1 2 3 b e1 e 0.08 (0003) A1 C q A DIM A A1 b b1 c D E e e1 L L1 HE MIN 1.50 0.02 0.60 2.90 0.24 6.30 3.30 2.20 0.85 0.20 1.50 6.70 0° q L STYLE 3: PIN 1. 2. 3. 4. L1 MILLIMETERS NOM MAX 1.63 1.75 0.06 0.10 0.75 0.89 3.06 3.20 0.29 0.35 6.50 6.70 3.50 3.70 2.30 2.40 0.94 1.05 −−− −−− 1.75 2.00 7.00 7.30 10° − GATE DRAIN SOURCE DRAIN SOLDERING FOOTPRINT* 3.8 0.15 2.0 0.079 2.3 0.091 2.3 0.091 6.3 0.248 2.0 0.079 1.5 0.059 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 11 MIN 0.060 0.001 0.024 0.115 0.009 0.249 0.130 0.087 0.033 0.008 0.060 0.264 0° INCHES NOM 0.064 0.002 0.030 0.121 0.012 0.256 0.138 0.091 0.037 −−− 0.069 0.276 − MAX 0.068 0.004 0.035 0.126 0.014 0.263 0.145 0.094 0.041 −−− 0.078 0.287 10° NCV8406, NCV8406A PACKAGE DIMENSIONS DPAK (SINGLE GAUGE) CASE 369C−01 ISSUE D A E b3 c2 B Z D 1 L4 A 4 L3 b2 e 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. C H DETAIL A 3 c b 0.005 (0.13) M H C L2 GAUGE PLANE C L SEATING PLANE A1 L1 DETAIL A ROTATED 905 CW SOLDERING FOOTPRINT* 6.20 0.244 2.58 0.102 5.80 0.228 INCHES MIN MAX 0.086 0.094 0.000 0.005 0.025 0.035 0.030 0.045 0.180 0.215 0.018 0.024 0.018 0.024 0.235 0.245 0.250 0.265 0.090 BSC 0.370 0.410 0.055 0.070 0.108 REF 0.020 BSC 0.035 0.050 −−− 0.040 0.155 −−− MILLIMETERS MIN MAX 2.18 2.38 0.00 0.13 0.63 0.89 0.76 1.14 4.57 5.46 0.46 0.61 0.46 0.61 5.97 6.22 6.35 6.73 2.29 BSC 9.40 10.41 1.40 1.78 2.74 REF 0.51 BSC 0.89 1.27 −−− 1.01 3.93 −−− STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN 3.00 0.118 1.60 0.063 DIM A A1 b b2 b3 c c2 D E e H L L1 L2 L3 L4 Z 6.17 0.243 SCALE 3:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 12 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCV8406/D