ONSEMI NL27WZ14DFT2

NL27WZ14
Dual Schmitt−Trigger
Inverter
http://onsemi.com
MARKING
DIAGRAMS
6
6
M
The NL27WZ14 is a high performance dual inverter with
Schmitt−Trigger inputs operating from a 1.65 to 5.5 V supply.
Pin configuration and function are the same as the NL27WZ04, but
the inputs have hysteresis and, with its Schmitt trigger function, the
NL27WZ14 can be used as a line receiver which will receive slow
input signals. The NL27WZ14 is capable of transforming slowly
changing input signals into sharply defined, jitter−free output signals.
In addition, it has a greater noise margin than conventional inverters.
The NL27WZ14 has hysteresis between the positive−going and the
negative−going input thresholds (typically 1 V) which is determined
internally by transistor ratios and is essentially insensitive to
temperature and supply voltage variations.
1
SC−88/SOT−363/SC70−6
DF SUFFIX
CASE 419B
MA M G
G
1
Features
• Designed for 1.65 V to 5.5 V VCC Operation
• Over Voltage Tolerant Inputs and Outputs
• LVTTL Compatible − Interface Capability with 5 V TTL Logic
•
•
•
•
•
•
with VCC = 3 V
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current Substantially Reduces System
Power Requirements
Current Drive Capability is 24 mA at the Outputs
Chip Complexity: FET = 72
Pb−Free Packages are Available
6
6
MA M G
G
1
TSOP−6/SOT−23−6/SC59−6
DT SUFFIX
CASE 318G
1
MA = Device Marking
M
= Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary
depending upon manufacturing location.
PIN ASSIGNMENT
IN A1
1
6
OUT Y1
GND
2
5
VCC
IN A2
4
3
OUT Y2
Pin
Function
1
IN A1
2
GND
3
IN A2
4
OUT Y2
5
VCC
6
OUT Y1
Figure 1. Pinout (Top View)
IN A1
1
OUT Y1
IN A2
1
OUT Y2
FUNCTION TABLE
A Input
Y Output
L
H
H
L
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Figure 2. Logic Symbol
© Semiconductor Components Industries, LLC, 2007
February, 2007 − Rev. 9
1
Publication Order Number:
NL27WZ14/D
NL27WZ14
MAXIMUM RATINGS
Symbol
VCC
Characteristics
Value
Unit
*0.5 to )7.0
V
*0.5 ≤ VI ≤ )7.0
V
*0.5 ≤ VO ≤ 7.0
V
VI < GND
*50
mA
VO < GND
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
IOK
DC Output Diode Current
*50
mA
IO
DC Output Sink Current
$50
mA
ICC
DC Supply Current per Supply Pin
$100
mA
IGND
DC Ground Current per Ground Pin
$100
mA
TSTG
Storage Temperature Range
*65 to )150
°C
PD
Power Dissipation in Still Air
SC−88, TSOP−6
200
mW
qJA
Thermal Resistance
SC−88, TSOP−6
333
°C/W
TL
Lead Temperature, 1 mm from case for 10 s
260
°C
TJ
Junction Temperature under Bias
)150
°C
> 2000
> 200
N/A
V
VESD
Output in Z or LOW State (Note 1)
ESD Withstand Voltage
Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4)
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. IO absolute maximum rating must be observed.
2. Tested to EIA/JESD22−A114−A
3. Tested to EIA/JESD22−A115−A
4. Tested to JESD22−C101−A
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Parameter
Supply Voltage
VI
Input Voltage
VO
Output Voltage
TA
Operating Free−Air Temperature
Dt/DV
Input Transition Rise or Fall Rate
Operating
Data Retention Only
(High or LOW State)
VCC = 2.5 V $0.2 V
VCC =3.0 V $0.3 V
VCC =5.0 V $0.5 V
Min
Max
Unit
2.3
1.5
5.5
5.5
V
0
5.5
V
0
5.5
V
*55
)125
°C
0
0
0
No Limit
No Limit
No Limit
ns/V
ORDERING INFORMATION
Device
Package
NL27WZ14DFT2
SC−88/SOT−363/SC70−6
NL27WZ14DFT2G
SC−88/SOT−363/SC70−6
(Pb−Free)
Shipping†
3000 / Tape & Reel
NL27WZ14DTT1
TSOP−6/SOT−23−6/SC59−6
NL27WZ14DTT1G
TSOP−6/SOT−23−6/SC59−6
(Pb−Free)
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
2
NL27WZ14
DC ELECTRICAL CHARACTERISTICS
VCC
Symbol
Parameter
*55°C ≤ TA ≤ 125°C
(V)
Min
Typ
Max
Min
Max
Min
Max
Unit
VT)
Positive Input
Threshold Voltage
2.3
2.7
3.0
4.5
5.5
1.0
1.2
1.3
1.9
2.2
1.5
1.7
1.9
2.7
3.3
1.8
2.0
2.2
3.1
3.6
1.0
1.2
1.3
1.9
2.2
1.8
2.0
2.2
3.1
3.6
1.0
1.2
1.3
1.9
2.2
1.8
2.0
2.2
3.1
3.6
V
VT*
Negative Input
Threshold Voltage
2.3
2.7
3.0
4.5
5.5
0.4
0.5
0.6
1.0
1.2
0.75
0.87
1.0
1.5
1.9
1.15
1.4
1.5
2.0
2.3
0.4
0.5
0.6
1.0
1.2
1.15
1.4
1.5
2.0
2.3
0.4
0.5
0.6
1.0
1.2
1.15
1.4
1.5
2.0
2.3
V
VH
Input Hysteresis
Voltage
2.3
2.7
3.0
4.5
5.5
0.25
0.3
0.4
0.6
0.7
0.75
0.83
0.93
1.2
1.4
1.1
1.15
1.2
1.5
1.7
0.25
0.3
0.4
0.6
0.7
1.1
1.15
1.2
1.5
1.7
0.25
0.3
0.4
0.6
0.7
1.1
1.15
1.2
1.5
1.7
V
VOH
High−Level
Output Voltage
IOH = −100 mA
IOH = *3 mA
IOH = *8 mA
IOH = *12 mA
IOH = *16 mA
IOH = *24 mA
IOH = *32 mA
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
VCC − 0.1
1.29
1.9
2.2
2.4
2.3
3.8
VCC
1.52
2.1
2.4
2.7
2.5
4.0
IOL = 100 mA
IOL = 4 mA
IOL = 8 mA
IOL = 12 mA
IOL = 16 mA
IOL = 24 mA
IOL = 32 mA
1.65 to 5.5
1.65
2.3
2.7
3.0
3.0
4.5
VIN = VIH or VIL
VOL
Low−Level
Output Voltage
VIN = VIH or VIL
Condition
*40°C ≤ TA ≤ 85°C
TA = 25°C
IIN
Input Leakage
Current
VIN = VCC or GND
IOFF
Power Off−Output
Leakage Current
VOUT = 5.5 V
ICC
Quiescent Supply
Current
VIN = VCC or GND
VCC − 0.1
1.29
1.9
2.2
2.4
2.3
3.8
VCC − 0.1
1.29
1.8
2.1
2.3
2.2
3.7
V
0.1
0.24
0.3
0.4
0.4
0.55
0.55
0.1
0.24
0.3
0.4
0.4
0.55
0.55
0.1
0.24
0.4
0.5
0.5
0.55
0.65
V
0 to 5.5
$0.1
$1.0
$1.0
mA
0
1
10
10
mA
5.5
1
10
10
mA
0.08
0.2
0.22
0.28
0.38
0.42
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns)
*40°C ≤ TA ≤ 85°C
TA = 25°C
*55°C ≤ TA ≤ 125°C
Symbol
Parameter
Condition
VCC (V)
Min
Typ
Max
Min
Max
Min
Max
tPLH
tPHL
Propagation
Delay
Input A to Y
(Figure 3 and 4)
RL = 1 MW, CL = 15 pF
2.5 $ 0.2
1.8
4.3
7.4
1.8
8.1
1.8
9.1
Unit
ns
RL = 1 MW, CL = 15 pF
RL = 500 W, CL = 50 pF
3.3 $ 0.3
1.5
1.8
3.3
4.0
5.0
6.0
1.5
1.8
5.5
6.6
1.5
1.8
6.5
7.6
RL = 1 MW, CL = 15 pF
RL = 500 W, CL = 50 pF
5.0 $ 0.5
1.0
1.2
2.7
3.2
4.1
4.9
1.0
1.2
4.5
5.4
1.0
1.2
5.5
6.4
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
CIN
Input Capacitance
CPD
Power Dissipation Capacitance (Note 5)
Condition
Typical
Unit
VCC =5.5 V, VI = 0 V or VCC
2.5
pF
10 MHz, VCC = 3.3 V, VI = 0 V or VCC
10 MHz, VCC = 5.0 V, VI = 0 V or VCC
11
12.5
pF
5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin ) ICC. CPD is used to determine the no−load dynamic
power consumption; PD = CPD VCC2 fin ) ICC VCC.
http://onsemi.com
3
NL27WZ14
VCC
VCC
A or B
50%
GND
tPLH
Y
PULSE
GENERATOR
DUT
tPHL
RT
CL
RL
50% VCC
RT = CL or equivalent (includes jog and probe capacitance)
RT = ZOUT of pulse generator (typically 50 W)
VT , TYPICAL INPUT THRESHOLD VOLTAGE (VOLTS)
Figure 3. Switching Waveforms
Figure 4. Test Circuit
4
3
(VT))
2
VHtyp
(VT*)
1
2
2.5
3.5
3
VCC, POWER SUPPLY VOLTAGE (VOLTS)
VHtyp = (VT) typ) − (VT* typ)
3.6
Figure 5. Typical Input Threshold, VT), VT* versus Power Supply Voltage
VH
Vin
VCC
VCC
VH
VT)
VT*
VT)
VT*
Vin
GND
GND
VOH
VOH
Vout
Vout
VOL
VOL
(a) A Schmitt−Trigger Squares Up Inputs With
Slow Rise and Fall Times
(b) A Schmitt−Trigger Offers Maximum Noise Immunity
Figure 6. Typical Schmitt−Trigger Applications
http://onsemi.com
4
NL27WZ14
PACKAGE DIMENSIONS
SC−88/SC70−6/SOT−363
CASE 419B−02
ISSUE W
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419B−01 OBSOLETE, NEW STANDARD 419B−02.
D
e
6
5
4
1
2
3
HE
DIM
A
A1
A3
b
C
D
E
e
L
HE
−E−
b 6 PL
0.2 (0.008)
M
E
M
MILLIMETERS
MIN
NOM MAX
0.80
0.95
1.10
0.00
0.05
0.10
0.20 REF
0.10
0.21
0.30
0.10
0.14
0.25
1.80
2.00
2.20
1.15
1.25
1.35
0.65 BSC
0.10
0.20
0.30
2.00
2.10
2.20
A3
C
A
A1
L
SOLDERING FOOTPRINT*
0.50
0.0197
0.65
0.025
0.65
0.025
0.40
0.0157
1.9
0.0748
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
5
INCHES
NOM MAX
0.037 0.043
0.002 0.004
0.008 REF
0.004 0.008 0.012
0.004 0.005 0.010
0.070 0.078 0.086
0.045 0.049 0.053
0.026 BSC
0.004 0.008 0.012
0.078 0.082 0.086
MIN
0.031
0.000
NL27WZ14
PACKAGE DIMENSIONS
TSOP−6
CASE 318G−02
ISSUE S
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS OF
BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
D
6
HE
1
5
4
2
3
E
b
DIM
A
A1
b
c
D
E
e
L
HE
q
e
q
c
A
0.05 (0.002)
L
A1
MIN
0.90
0.01
0.25
0.10
2.90
1.30
0.85
0.20
2.50
0°
MILLIMETERS
NOM
MAX
1.00
1.10
0.06
0.10
0.38
0.50
0.18
0.26
3.00
3.10
1.50
1.70
0.95
1.05
0.40
0.60
2.75
3.00
10°
−
MIN
0.035
0.001
0.010
0.004
0.114
0.051
0.034
0.008
0.099
0°
INCHES
NOM
0.039
0.002
0.014
0.007
0.118
0.059
0.037
0.016
0.108
−
MAX
0.043
0.004
0.020
0.010
0.122
0.067
0.041
0.024
0.118
10°
SOLDERING FOOTPRINT*
2.4
0.094
1.9
0.075
0.95
0.037
0.95
0.037
0.7
0.028
1.0
0.039
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NL27WZ14/D