Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Features Introduction • Meets jitter requirements for AT&T TR62411 PT7A4401C is functionally enhanced version of Stratum 4 and Stratum 4 Enhanced for DS1 PT7A4401B. It has better jitter performance and C16 interfaces, and for ETSI ETS300 011 for E1 inter- whose output duty cycle is independent of 20MHz faces master clock. • Provides C1.5, C3, C2, C4, C8 and C16 output The PT7A4401C employs a digital phase-locked loop clock signals • Provides 3 kinds of 8kHz framing signals (DPLL) to provide timing and synchronizing signals • Selectable 1.544MHz, 2.084MHz or 8kHz input for multitrunk T1 and E1 primary rate transmission links. It generates the ST-BUS clock and framing sig- reference signals • Operates in either Normal or Free-Run states nals that are phase-locked to input reference signals • Enhanced in jitter and duty cycle comparing with of either 2.048MHz, 1.544MHz or 8kHz. PT7A4401B The PT7A4401C is compliant with AT&T TR62411 • Package: 28-pin PLCC (PT7A4401CJ) Stratum 4 and Stratum 4 Enhanced, and ETSI ETS Applications 300 011. It meets the requirements for jitter tolerance, jitter transfer, intrinsic jitter, frequency accuracy, cap- • Synchronization and timing control for multitrunk ture range and phase slope, etc. T1 and E1 systems • ST-BUS clock and frame pulse sources PT0108(09/02) 1 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Contents Contents Page Features ............................................................................................................................................... 1 Applications ........................................................................................................................................ 1 Introduction ......................................................................................................................................... 1 Block Diagram .................................................................................................................................... 3 Pin Information ................................................................................................................................... 4 Pin Assignment .......................................................................................................................... 4 Pin Configuration ...................................................................................................................... 4 Pin Description .......................................................................................................................... 5 Functional Description ........................................................................................................................ 6 Overall Operation ...................................................................................................................... 6 States of Operation .................................................................................................................... 7 Applications Information ........................................................................................................... 8 Detailed Specifications ...................................................................................................................... 10 Definition of Critical Performance Specifications .................................................................... 10 Absolute Maximum Ratings .................................................................................................... 11 Recommended Operating Conditions ...................................................................................... 11 DC Electrical and Power Supply Characteristics ..................................................................... 12 AC Electrical Characteristics ................................................................................................... 13 Mechanical Specifications ....................................................................................................... 25 Ordering Information ........................................................................................................................ 26 Notes ................................................................................................................................................. 27 PT0108(09/02) 2 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Block Diagram Figure 1. Block Digram VCC GND Output Circuit REF Phase Detector Limiter & Loop Filter DCO1 T1 Divider C1.5 C3 C2 E1 Input Impairment Monitor State Machine DCO2 Divider C4 C8 C16 F0 F8 F16 OSCi OSCo Feedback Frequency Select MUX Master Clock RST PT0108(09/02) MS FS1 3 FS2 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Pin Information Pin Assignment Table 1. Pin Assignment G r ou p s Symb ols F u n ct ion s Chip Clock OSCi, OSCo Clock Power & Ground VCC, GND Power Clock and Framing Output C1.5, C3, C2, C4, C8, C16, F0, F8, F16 Clock and Framing Signals Control Signals MS, FS1, FS2, RST Control Reference Input REF Reference Clock Pin Configuration 4 3 FS2 FS1 RST GND NU NU REF Figure 2. Pin Configuration 2 1 28 27 26 VCC 5 25 NU OSCo 6 24 NU OSCi 7 23 MS 28-Pin PLCC F16 8 22 NU F0 9 21 NU F8 10 20 NC C1.5 11 19 NU VCC C16 C8 GND C4 C2 C3 12 13 14 15 16 17 18 Top View PT0108(09/02) 4 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Pin Description Table 2. Pin Description P in Na m e Typ e 1, 15 GND Ground 2, 3, 19, 21, 22, 24, 25 NU I Not Used (should be connected to ground) 4 REF I R efer en ce I n p u t (T T L com p a t ib le): Input reference signals 5, 18 Vcc Power 6 OSCo O O scilla t or Ma st er C lock O u t p u t (C MO S): Output of 20MHz master clock 7 OSCi I O scilla t or M a st er C lock I n p u t (C M O S): Input of 20MHz master clock (can be connected directly to a clock source) 8 F16 O F r a m e P u lse O u t p u t (C MO S C om p a t ib le): 8kHz framing output pulse that indicates the start of the ST-BUS frame. The pulse width is based upon the period of the 16.384MHz synchronization clock. 9 F0 O F r a m e P u lse O u t p u t (C MO S C om p a t ib le): 8kHz output framing pulse that indicates the start of the active ST-BUS frame. The pulse width is based upon the period of the 4.096MHz synchronization clock. 10 F8 O F r a m e P u lse O u t p u t (C MO S C om p a t ib le): 8kHz output framing pulse that indicates the start of the active ST-BUS frame. The pulse width is based upon the period of the 8.192MHz synchronization clock. 11 C1.5 O 1.544MH z C lock (C MO S C om p a t ib le) 12 C3 O 3.088MH z C lock (C MO S C om p a t ib le) 13 C2 O 2.048MH z C lock (C MO S C om p a t ib le) 14 C4 O 4.096MH z C lock (C MO S C om p a t ib le) 16 C8 O 8.192MH z C lock (C MO S C om p a t ib le) 17 C16 O 16.384MH z C lock (C MO S C om p a t ib le) 20 NC O Not C on n ect ed : Make no connection to this pin. 23 MS I Mod e Select (T T L C om p a t ib le): This input selects the operation mode of the device, i.e., Normal or Freerun. Refer to Table 4. 26 FS2 I F r eq u en cy Select 2 (T T L C om p a t ib le): This input, together with FS1, selects the frequency of the input reference signal, either 8kHz, 1.544MHz or 2.048MHz. Refer to Table 3. 27 FS1 I F r eq u en cy Select 1 (T T L C om p a t ib le): Refer to the pin description of FS2. I R eset (C MO S I n p u t Sch m it t Tr igger ): Reset the device when at low level. The reset is needed when power-up or when frequency select input change to ensure proper operation. The time constant for a power-up reset circuit must be a min. of five times the rise time of the power supply. In normal operation, the RST pin must be held low for a min. of 300 ns to reset the device. When RST at low level, all outputs are fixed at HIGH. 28 PT0108(09/02) RST Descr ip t ion G r ou n d (0V) Power Su p p ly (+5V) 5 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| The DCO synchronization method depends upon the PT7A4401C operating state, as follows: Functional Description Overall Operation In Normal state, each DCO generates an output signal which is frequency and phase locked to the input reference signal. The PT7A4401C is a multitrunk synchronizer that provides the clock and frame signals for T1 and E1 primary rate digital transmission links. In Auto-Holdover state, each DCO generates an output signal whose frequency is equal to what it was for a 30ms period shortly before the end of the last Normal State. It basically consists of the Master Clock Circuit, Digital PhaseLocked Loop (DPLL), Input Impairment Monitor and Output Circuit. In Free-Run state, the DCOs are free running with an accuracy equal to the accuracy of the OSCi 20MHz source. The DPLL circuit is employed to provide synchronization of the output signals. Output Circuit Referring to the block diagram on Page 3, the detailed functions of the PT7A4401C are described as follows. Signals from the two DCOs are sent to the Output Circuit to generate two clock signals, 12.352MHz and 16.384MHz, which are divided in the T1 and E1 Dividers respectively to provide needed clock and frame signals. Master Clock The T1 Divider uses the 12.352MHz signal to generate two clock signals, C1.5 and C3. They have a nominal 50% duty cycle. As its master clock, the PT7A4401C uses either an external clock source or an external crystal and a few discrete components with its internal oscillator. The E1 Divider uses the 16.384MHz signal to generate four clock signals and three frame signals, i.e., C2, C4, C8, C16, F0, F8 and F16. The frame signals are generated directly from the C16 signal. Major Digital Phase-Locked Loop (DPLL) Block The major DPLL blocks are the Phase Detector, Limiter, Loop Filter, and Digitally Controlled Oscillators (DCO1 and DCO2). The C2, C4 and C8 signals have a nominal 50% duty cycle, and C16’s duty cycle is about 50% if the master clock has a 50% duty cycle. The input signal is sent to the Phase Detector for comparison with the feedback Signal from the Feedback Frequency Select MUX. An error signal corresponding to their instantaneous phase difference is produced and sent to the Limiter. All the frame and clock outputs are locked to each other for all operating states. They have limited driving capability and should be buffered when driving high capacitance loads. The Limiter amplifies this error signal to ensure that the DPLL responds to all input transient conditions with a maximum output phase slope of 5ns per 125µs. This performance easily meets the maximum phase slope of 7.6ns per 125µs or 81ns per 1.326ms specified by AT&T TR62411. Feedback Frequency Selection MUX The feedback frequency is selected by FS1 and FS2 (as shown in Table 3) to match the particular incoming reference frequency (1.544MHz, 2.048MHz or 8kHz). A reset (RST) must be performed after every frequency select input change. The Loop Filter is a 1.9Hz low pass filter for all three reference frequency selections: 8kHz, 1.544MHz and 2.048MHz. This filter ensures that the jitter transfer requirements in ETS 300011 and AT&T TR62411 are met. Input Impairment Monitor The Error Signal, after being limited and filtered, is sent to two Digitally Controlled variable frequency Oscillators (DCO1 and DCO2). Based upon the processed error value, the DCOs will generate the corresponding digital output signals to the Output Circuit to produce 12.352MHz and 16.384MHz signals. PT0108(09/02) This circuit monitors the input signal to the DPLL and automatically enables Auto-Holdover state when the incoming signal is completely lost, or if its frequency is outside the Autoholdover capture range (either a small or large amount). When the incoming signal returns to normal, the DPLL will be returned to Normal State. 6 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Table 3. Input Frequency Selection States of Operation F S2 F S1 I n p u t F r eq u en cy 0 0 Reserved 0 1 8kHz 1 0 1.544MHz 1 1 2.048MHz Typically, the PT7A4401C operates in either the Normal or Free-Run state. However, when the input signal is temporarily missing or its frequency is temporarily out of specification, it operates in Auto-Holdover State (Refer to Table 7). Normal State In Normal State, the output signals of the PT7A4401C are synchronized with the input reference signal by the DPLL. Free-Run State Typically, the Free-Run State is used immediately following system power-up before network synchronization is achieved, or when a master clock is otherwise required. State Machine If the value of MS is 1, the “Free-Run” state of operation is forced. If the value of MS is 0, the state of operation is either “Normal” or “Auto-Holdover”, depending upon the state of the Input Impairment Monitor. See Table 4. In Free-Run State, the outputs of the PT7A4401C are uncorrelated with the input reference signal (and the stored information concerning the output reference signals). Instead, these output signals are based solely on the master clock frequency (OSCi). Table 4. Operation State Selection MS MS O p er a t ion St a t e 0 Normal 1 Freerun Auto-Holdover State The Auto-Holdover State will be automatically initiated when incoming reference signal disappears or its frequency moves outside the Auto-holdover capture range (Table 7), by either a small or large amount. In Auto-Holdover State, the PT7A4401C output signals are not synchronized with the external input reference signal. Instead, they are generated by using the information stored 30 ms to 60ms before the incoming reference signal became unusable. While in Normal State, a numerical value related to the output reference frequency is stored alternately in two memory locations every 30ms. Whenever the device is switched into AutoHoldover State, the value in memory between 30ms and 60ms is used to set the output frequency of the device. PT0108(09/02) 7 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| When selecting the clock oscillator, following specifications should be considered. They are - absolute frequency - frequency change over temperature - output rise and fall time - output level - duty cycle Applications Information Master Clock The PT7A4401C uses either an external clock source or an external crystal and a few passive components with its internal oscillator as the master timing source. • Crystal Oscillator In Free-Run State, the frequency tolerance of the PT7A4401C output clocks are equal to the frequency tolerance of the timing source. In a given application, if an accurate Free-Run State is not required, the tolerance of the master timing source may be 100ppm. If required, the tolerance must be no worse than 32 ppm. If a crystal and passive components operating together with the PT7A4401C oscillator are selected as the master timing source, they should be connected as shown in Figure 4. It should be possible to adjust the trimmer capacitor so that the frequency is well within the 32 ppm tolerance; however, only the proper specification of components will insure this tolerance over the necessary temperature range. The capture range of PT7A4401C must also be considered when deciding the accuracy of the master timing source. The sum of the accuracy of the master timing source and the capture range of the PT7A4401C will always equal 230ppm. For example, if the master timing source is 100ppm, the capture range will be 130ppm. Figure 4. Crystal Oscillator Connection PT7A4401C • Clock Oscillator 20MHz OSCi If using an external clock source, its output pin should be connected directly (not AC coupled) to the OSCi pin of the PT7A4401C, and the OSCo pin can be left open as shown in Figure 3 or connected as an output pin. 1MΩ 56pF 39pF 3-50pF Figure 3. Clock Oscillator Connection PT7A4401C OSCo +5V 100Ω OSCi +5V 20MHz OUT GND 0.1µF The crystal specification is as follows: - Frequency: - Tolerance: - Oscillation Mode: - Resonance Mode: - Load Capacitance: - Maximum Series Resistance: - Αpproximate Drive Level: OSCo No Connection PT0108(09/02) 8 20MHz as required Fundamental Parallel 32pF 35Ω 1mW Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Reset Circuit Power Supply Decoupling A simple power-up reset circuit with about a 50µs reset active (low) time is shown in Figure 5. Resistor RP is used for protection only. The reset time is not critical but should be greater than 300ns. The PT7A4401C has two VCC pins and two GND pins. Power decoupling capacitors should be included as shown in Figure 6. Figure 6. Power Supply Decoupling Figure 5. Power-up Reset Circuit C1 0.1µF PT7A4401C + +5V 18 R 10kΩ 5 1 RST RP 1kΩ PT0108(09/02) PT7A4401C 15 C 10nF + C2 0.1µF 9 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Detailed Specifications Definitions of Critical Performance Specifications Intrinsic Jitter: Intrinsic jitter is the jitter produced by the synchronizing circuit. It is measured by applying a reference signal with no jitter to the input of the device, and measuring its output jitter. Intrinsic jitter may also be measured when the device is in a non-synchronizing mode--such as free running or auto-holdover--by measuring the output jitter of the device. Intrinsic jitter is usually measured with various band limiting filters depending on the applicable standards. Jitter Tolerance: Jitter tolerance is a measure of the ability of a PLL to operate properly (i.e., remain in lock and/or regain lock in the presence of large jitter magnitudes at various jitter frequencies) when jitter is present on its reference. The applicable standard specifies how much jitter to apply to the reference when testing for jitter tolerance. Jitter Transfer: Jitter transfer or jitter attenuation refers to the magnitude of jitter at the output of a device with respect to a given amount of jitter at the input of the device. Input jitter is applied at various amplitudes and frequencies, and output jitter is measured with various filters depending on the applicable standard. Its 3 possible input frequencies and 9 outputs gives the PT7A4401C 27 possible jitter transfer combinations. However, only three cases of the jitter transfer specifications are given in the AC Electrical Characteristics; as the remaining combinations can be derived from them. For the PT7A4401C, jitter attenuation is determined by the internal 1.9Hz low pass loop filter and phase slope limiter. The phase slope limiter limits the output phase slope to 5ns/125µs. Therefore, if the input signal exceeds this rate, such as for very large amplitude low frequency input jitter, the maximum output phase slope will be limited (i.e., attenuated) to 5ns/125µs. It should be noted that 1UI at 1.544MHz (644ns) is not equal to 1UI at 2.048MHz (488ns). A transfer value using different input and output frequencies must be calculated in common units (e.g., seconds) as shown in the following example. Example - When the T1 input jitter is 20UI (T1 UI Units) and the T1 to T1 jitter attenuation is 18dB, the T1 and E1 output jitter can be calculated as follows: JT1o ( -18 ) ( -A ) = JT1i x 10 2 0 = 20 x 10 2 0 = 2.5UI JE1o = JT1o x ( 1UIT1) = JT1o x ( 644ns ) = 3.3UI 1UIE1 488ns PT0108(09/02) Using the above method, the jitter attenuation can be calculated for all combinations of inputs and outputs based upon the three jitter transfer functions provided. Note that the resulting jitter transfer functions for all combinations of inputs (8kHz, 1.544MHz, 2.048MHz) and outputs (8kHz, 1.544MHz, 2.048MHz, 4.096MHz, 8.192MHz, 16.384MHz) for a given input signal (jitter frequency and jitter amplitude) are the same. As intrinsic jitter is always present, jitter attenuation will appear to be lower for small input jitter signals than for large ones. Consequently, accurate jitter transfer function measurements are usually made with large input jitter signals (e.g., 75% of the specified maximum jitter tolerance). Frequency Accuracy: Frequency accuracy is defined as the absolute tolerance of an output clock signal when it is operating in a free running mode (not locked to an external reference). For the PT7A4401C, Free-Run accuracy is equal to the Master Clock (OSCi) accuracy. Auto-Holdover Accuracy: Auto-Holdover accuracy is defined as the absolute tolerance of an output clock signal, when it is not locked to an external reference signal, but is operating using storage techniques. For the PT7A4401C the storage value is determined while the device is in Normal State and locked to an external reference signal. The absolute Master Clock (OSCi) accuracy of the PT7A4401C does not affect Auto-Holdover accuracy, but the change in OSCi accuracy while in Auto-Holdover State does. Lock Range: If the PT7A4401C DPLL is already in a state of synchronization (“lock”) with the incoming reference signal, it is able to track this signal to maintain lock as its frequency varies over a certain range, called the Lock Range. The size of Lock Range is related to the range of the Digitally Controlled Oscillators and is equal to 230ppm minus the accuracy of the master clock (OSCi). For example, a 32ppm master clock results in a Lock Range of 198ppm. Capture Range: If the PT7A4401C DPLL is not at present in a state of synchronization (lock) with the incoming reference signal, it is able to initiate (acquire) lock only if the signal’s frequency is within a certain range, called the Capture Range. For any PLL, no portion of the Capture Range can fall outside the Lock Range, and, in general, the Capture Range is more narrow than the Lock Range. However, owing to the design of its Phase Detector, the PT7A4401C’s Capture Range is equal to its Lock Range. Phase Slope: Phase slope is measured in seconds per second and is defined as the rate at which a given signal changes phase with respect to an ideal signal of constant frequency. The given signal is typically the output signal. The ideal signal has a constant frequency that is nominally equal in value to that of the final output signal or final input signal. 10 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Absolute Maximum Ratings Storage Temperature ...................................................... -65oC to +150oC Ambient Temperature with Power Applied ...................... -40oC to +85oC Supply Voltage to Ground Potential (Inputs & VCC Only) ...... -0.3 to 7.0V Supply Voltage to Ground Potential (Outputs & D/O Only) .. -0.3 to 7.0V DC Input Voltage .................................................................. -0.3 to 7.0V DC Output Current ...................................................................... 120mA Power Dissipation ....................................................................... 900mW Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Recommended Operating Conditions Table 5. Recommended Operating Conditions Sym Descr ip t ion VCC Supply Voltage TA Operating Temperature Test C on d it ion s Over Recommended Operating Conditions Min Typ Ma x Un it s 4.5 5.0 5.5 V -40 25 85 o C Note: Typical figures are at 25oC and are for design aid only; not production tested. PT0108(09/02) 11 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| DC Electrical and Power Supply Characteristics Table 6. DC Electrical and Power Supply Characteristics Sym Descr ip t ion Test C on d it ion s ICCO Quiescent Power Supply Current OSCi = 0V, Note 2 Min Typ ICC Ma x Un it s 500 µA 50 mA 60 mA Supply Current ICC OSCi = Crystal, Note 2 VIH TTL HIGH Input Voltage-All pins except OSCi, RST VIL TTL LOW Input Voltage-All pins except OSCi, RST VCIH CMOS HIGH Input VoltageOSCi pin VCIL CMOS LOW Input VoltageOSCi pin VSIH Schmitt HIGH Input VoltageRST pins VSIL Schmitt LOW Input VoltageRST pins VHYS Schmitt Hysteresis VoltageRST pins IIL Input Leakage Current VI = VCC or 0V VOH HIGH Output Voltage IOH = 4mA VOL LOW Output Voltage IOL = 4mA 2.0 V 0.8 0.7VCC V V 0.3VCC 3.6 V V 1.5 1.0 V V ±10 2.4 µA V 0.8 V Note: 1. VCC = 5V, 2. MS = VCC (Freerun), FS1 = VCC, FS2 = GND, REF = GND, other inputs connected to GND. 3. All outputs are unloaded except for VOH and VOL measurement. PT0108(09/02) 12 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| AC Electrical Characteristics Performance Table 7. Performance Sym Descr ip t ion Test C on d it ion s* Ma x Un it s 0 0 ppm -32 +32 ppm 100ppm -100 +100 ppm 0ppm -190 +230 ppm -158 +198 ppm -90 +130 ppm 0ppm Freerun State Accuracy with OSCi at: Capture Range With OSCi at: 32ppm 32ppm 3 1, 4-6 100ppm Min Typ Phase Lock Time 1, 4-12 30 s Output Phase Slope 1-12, 25 45 µs/s * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 13 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Voltage Levels for Timing Parameter Measurement Table 8. Voltage Levels for Timing Parameter Measurement Sym Descr ip t ion Sch mit t (for R ST ) TTL CMOS (for O SC i) Un it s VT Threshold Voltage 1.5 1.5 0.5VCC V VHM Rising and Falling Threshold Voltage High 2.4 2.0 0.7VCC V VLM Rising and Falling Threshold Voltage Low 0.8 0.8 0.3VCC V Figure 7. Voltage Levels for Timing Parameter Measurement Timing Reference Points Signal VHM VT VLM tIF/tOF PT0108(09/02) tIR/tOR 14 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Timing Characteristics Table 9. Timing Characteristics Sym Descr ip t ion tRW Reference Input Pulse Width High or Low tIR/tIF Reference Input Rising or Falling Time tR8D 8kHz Reference Input to F8 Delay tR15D 1.544MHz Reference Input to F8 Delay tR2D 2.048MHz Reference Input to F8 Delay tF0D F8 to F0 Delay tF16D F8 to F16 Delay tC15D Test C on d it ion s* Min Typ Ma x Un it s 100 ns 1, 4-9, 37 10 ns -28 -1 ns 337 363 ns 217 238 ns 1-12, 19, 37 110 134 ns 1-12, 19 19 44 ns F8 to C1.5 Delay -45 -31 ns tC3D F8 to C3 Delay -46 -31 ns tC2D F8 to C2 Delay -10 5 ns tC4D F8 to C4 Delay -10 5 ns tC8D F8 to C8 Delay -10 5 ns tC16D F8 to C16 Delay -10 5 ns tC15W C1.5 Pulse Width High or Low 309 339 ns tC3W C3 Pulse Width High or Low 149 175 ns tC2W C2 Pulse Width High or Low 230 258 ns tC4W C4 Pulse Width High or Low 111 133 ns tC8W C8 Pulse Width High or Low 52 70 ns 1, 4-12, 19, 21, 36 1-12, 19, 37 * Refer to the Test Conditions on Page 24 for details. Note: 1. Typical figures are at 25oC and are for design aid only; not production tested. 2. The maximum and minimum timing is measured under recommended temperature conditions and power supplies. 3. TTL voltage levels are used for timing parameter measurement. PT0108(09/02) 15 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Table 9. Timing Characteristics (Continued) Sym Descr ip t ion Test C on d it ion s* Min 1-12, 19 Typ Ma x Un it s 26 37 ns tC16WL C16 Pulse Width Low tF0WL F0 Pulse Width Low 230 258 ns tF8WH F8 Pulse Width High 111 133 ns tF16WL F16 Pulse Width Low 52 70 ns 9 ns tORF 1-12, 19, 37 Output Clock and Frame Pulse Rising or Falling Time tS Input Controls Setup Time 100 ns tH Input Controls Hold Time 100 ns * Refer to the Test Conditions on Page 24 for details. Note: 1. Typical figures are at 25oC and are for design aid only; not production tested. 2. The maximum and minimum timing is measured under recommended temperature conditions and power supplies. 3. TTL voltage levels are used for timing parameter measurement. Figure 8. Setup and Hold Timing of Input Controls VT F8 tS tH VT MS PT0108(09/02) 16 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Figure 9. Timing Information for PT7A4401C t R 8D RE F 8kH z VT tRW t R 15 D tRW RE F 1.544M Hz VT t R 2D tRW RE F 2.048M Hz VT VT F8 Note: Input to output delay values are valid after a RST with no further state changes. Figure 10. Output Timing tF8W H VT F8 tF0D tF0W L F0 VT tF16D tF16W L F16 tC 16W L VT tC 16D C16 VT tC 8W tC 8W tC 8D C8 VT tC 4D tC 4W C4 VT tC 4W tC 2D tC 2W C2 VT tC 3D tC 3W tC 3W C3 VT tC 15D tC 15W C 1 .5 PT0108(09/02) VT 17 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Intrinsic Jitter Unfiltered Table 10. Intrinsic Jitter Unfiltered Sym Descr ip t ion Test C on d it ion s* Min Instrinsic Jitter at F0 (8kHz) Instrinsic Jitter at F8 (8kHz) 1-12, 19-22, 26, 33 Instrinsic Jitter at F16 (8kHz) Typ Ma x Un it s 0.0001 0.0002 UIpp 0.0001 0.0002 UIpp 0.0001 0.0002 UIpp Instrinsic Jitter at C1.5 (1.544MHz) 1-12, 19-22, 27, 33 0.016 0.030 UIpp Instrinsic Jitter at C2 (2.048MHz) 1-12, 19-22, 28, 33 0.020 0.040 UIpp Instrinsic Jitter at C3 (3.088MHz) 1-12, 19-22, 29, 33 0.032 0.060 UIpp Instrinsic Jitter at C4 (4.096MHz) 1-12, 19-22, 30, 33 0.047 0.080 UIpp Instrinsic Jitter at C8 (8.192MHz) 1-12, 19-22, 31, 33 0.09 0.16 UIpp Instrinsic Jitter at C16 (16.384MHz) 1-12, 19-22, 32, 33 0.18 0.32 UIpp Typ Ma x Un it s 0.015 UIpp 0.010 UIpp Instrinsic Jitter (8kHz to 40kHz Filter) 0.010 UIpp Instrinsic Jitter (10Hz to 8kHz Filter) 0.005 UIpp * Refer to the Test Conditions on Page 24 for details. C1.5 (1.544MHz) Instrinsic Jitter Filtered Table 11. C1.5 (1.544MHz) Instrinsic Jitter Filtered Sym Descr ip t ion Test C on d it ion s* Instrinsic Jitter (4Hz to 100kHz Filter) Instrinsic Jitter (10Hz to 40kHz Filter) Min 1-12, 19-22, 27 * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 18 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| C2 (2.048MHz) Instrinsic Jitter Filtered Table 12. C2 (2.048MHz) Instrinsic Jitter Filtered Sym Descr ip t ion Test C on d it ion s* Min Typ Ma x Un it s 0.015 UIpp 0.010 UIpp Instrinsic Jitter (8kHz to 40kHz Filter) 0.010 UIpp Instrinsic Jitter (10Hz to 8kHz Filter) 0.005 UIpp Ma x Un it s Instrinsic Jitter (4Hz to 100kHz Filter) Instrinsic Jitter (10Hz to 40kHz Filter) 1-12, 19-22, 28 * Refer to the Test Conditions on Page 24 for details. 8kHz Input to 8kHz Output Jitter Transfer Table 13. 8kHz Input to 8kHz Output Jitter Transfer Sym Descr ip t ion Test C on d it ion s* Min Typ Jitter Attenuation for 1Hz with 0.01UIpp Input 0 6 dB Jitter Attenuation for 1Hz with 0.54UIpp Input 6 16 dB 12 22 dB 28 38 dB Jitter Attenuation for 10Hz with 0.10UIpp Input Jitter Attenuation for 60Hz with 0.10UIpp Input 1, 4, 7-12, 19, 20, 22, 26, 33 Jitter Attenuation for 300Hz with 0.10UIpp Input 42 dB Jitter Attenuation for 3600Hz with 0.005UIpp Input 45 dB * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 19 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 1.544MHz Input to 1.544MHz Output Jitter Transfer Table 14. 1.544MHz Input to 1.544MHz Output Jitter Transfer Sym Descr ip t ion Test C on d it ion s* Min Typ Ma x Un it s Jitter Attenuation for 1Hz with 20UIpp Input 0 6 dB Jitter Attenuation for 1Hz with 104UIpp Input 6 16 dB Jitter Attenuation for 10Hz with 20UIpp Input 12 22 dB 28 38 dB Jitter Attenuation for 60Hz with 20UIpp Input 1, 5, 7-12, 19, 20, 22, 27, 33 Jitter Attenuation for 300Hz with 20UIpp Input 42 dB Jitter Attenuation for 10kHz with 0.3UIpp Input 45 dB Jitter Attenuation for 100kHz with 0.3UIpp Input 45 dB * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 20 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 2.048MHz Input to 2.048MHz Output Jitter Transfer Table 15. 2.048MHz Input to 2.048MHz Output Jitter Transfer Sym Descr ip t ion Test C on d it ion s* Min Typ Ma x Un it s 1,6,7-12,19,20,22,28,33 2.9 UIpp 1,6,7-12,19,20,22,28,34 0.09 UIpp 1,6,7-12,19,20,22,28,33 1.3 UIpp 1,6,7-12,19,20,22,28,34 0.10 UIpp 1,6,7-12,19,20,22,28,33 0.80 UIpp 1,6,7-12,19,20,22,28,34 0.10 UIpp 1,6,7-12,19,20,22,28,33 0.40 UIpp 1,6,7-12,19,20,22,28,34 0.10 UIpp 1,6,7-12,19,20,22,28,33 0.06 UIpp 1,6,7-12,19,20,22,28,34 0.05 UIpp 1,6,7-12,19,20,22,28,33 0.04 UIpp 1,6,7-12,19,20,22,28,34 0.03 UIpp 1,6,7-12,19,20,22,28,33 0.04 UIpp 1,6,7-12,19,20,22,28,34 0.02 UIpp Jitter at Output for 1Hz 3.00UIpp Input Jitter at Output for 3Hz 2.33UIpp Input Jitter at Output for 5Hz 2.07UIpp Input Jitter at Output for 10Hz 1.76UIpp Input Jitter at Output for 100Hz 1.50UIpp Input Jitter at Output for 2400Hz 1.50UIpp Input Jitter at Output for 100kHz 0.20UIpp Input * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 21 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 8kHz Input Jitter Tolerance Table 16. 8kHz Input Jitter Tolerance Sym Descr ip t ion Test C on d it ion s* Min Typ Ma x Un it s Jitter Tolerance for 1Hz Input 0.80 UIpp Jitter Tolerance for 5Hz Input 0.70 UIpp Jitter Tolerance for 20Hz Input 0.60 UIpp 0.20 UIpp 0.15 UIpp Jitter Tolerance for 700Hz Input 0.08 UIpp Jitter Tolerance for 2400Hz Input 0.02 UIpp Jitter Tolerance for 3600Hz Input 0.01 UIpp Jitter Tolerance for 300Hz Input Jitter Tolerance for 400Hz Input 1, 4, 7-12, 19, 20, 22-24, 26 * Refer to the Test Conditions on Page 24 for details. 1.544MHz Input Jitter Tolerance Table 17. 1.544MHz Input Jitter Tolerance Sym Descr ip t ion Test C on d it ion s* Min Typ Ma x Un it s Jitter Tolerance for 1Hz Input 150 UIpp Jitter Tolerance for 5Hz Input 140 UIpp Jitter Tolerance for 20Hz Input 130 UIpp Jitter Tolerance for 300Hz Input 35 UIpp 25 UIpp Jitter Tolerance for 700Hz Input 15 UIpp Jitter Tolerance for 2400Hz Input 4 UIpp Jitter Tolerance for 10kHz Input 1 UIpp Jitter Tolerance for 100kHz Input 0.5 UIpp Jitter Tolerance for 400Hz Input 1, 5, 7-12, 19, 20, 22-24, 27 * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 22 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 2.048MHz Input Jitter Tolerance Table 18. 2.048MHz Input Jitter Tolerance Sym Descr ip t ion Test C on d it ion s* Min Typ Ma x Un it s Jitter Tolerance for 1Hz Input 150 UIpp Jitter Tolerance for 5Hz Input 140 UIpp Jitter Tolerance for 20Hz Input 130 UIpp Jitter Tolerance for 300Hz Input 50 UIpp 40 UIpp Jitter Tolerance for 700Hz Input 20 UIpp Jitter Tolerance for 2400Hz Input 5 UIpp Jitter Tolerance for 10kHz Input 1 UIpp Jitter Tolerance for 100kHz Input 1 UIpp Jitter Tolerance for 400Hz Input 1, 6, 7-12, 19, 20, 22-24, 28 * Refer to the Test Conditions on Page 24 for details. OSCi 20MHz Master Clock Input Table 19. OSCi 20MHz Master Clock Input Sym Descr ip t ion Test C on d it ion s* Min 13, 16 Ma x Un it s 0 0 ppm 14, 17 -32 +32 ppm 15, 18 -100 +100 ppm 40 60 % Rise Time 10 ns Fall Time 10 ns Tolerance Duty Cycle Typ * Refer to the Test Conditions on Page 24 for details. PT0108(09/02) 23 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Notes: 1. Voltages are with respect to ground (GND) unless otherwise stated. 2. Supply voltage and operation temperature are as per Recommended Operating Conditions. 3. Timing parameters are as per AC Electrical Characteristics - Voltage Levels for Timing Parameter Measurement. Test Conditions: 1. Normal State selected. 2. Auto-Holdover State. 3. Freerun State selected. 4. 8kHz frequency source selected. 5. 1.544MHz frequency source selected. 6. 2.048MHz frequency source selected. 7. Master clock input OSCi at 20MHz ±0ppm. 8. Master clock input OSCi at 20MHz ±32ppm. 9. Master clock input OSCi at 20MHz ±100ppm. 10. Reference input at ±0ppm. 11. Reference input at ±32ppm. 12. Reference input at ±100ppm. 13. For Freerun State of ±0ppm. 14. For Freerun State of ±32ppm. 15. For Freerun State of ±100ppm. 16. For capture range of ±230ppm. 17. For capture range of ±198ppm. 18. For capture range of ±130ppm. 19. 25pF capacitive load. 20. OSCi Master Clock Jitter is less than 2ns p-p, or 0.04UI p-p where 1UI p-p = 1/20MHz. PT0108(09/02) 21. Jitter on reference input is less than 7ns p-p. 22. Applied jitter is sinusoidal. 23. Minimum applied input jitter magnitude to regain synchronization. 24. Loss of synchronization is obtained at slightly higher input jitter amplitudes. 25. Within 10 ms of the state or input change 26. 1UIpp = 125µs for 8kHz signals. 27. 1UIpp = 648ns for 1.544MHz signals. 28. 1UIpp = 488ns for 2.048MHz signals. 29. 1UIpp = 323ns for 3.088MHz signals. 30. 1UIpp = 244ns for 4.096MHz signals. 31. 1UIpp = 122ns for 8.192MHz signals. 32. 1UIpp = 61ns for 16.384MHz signals. 33. No filter. 34. 40Hz to 100kHz bandpass filter. 35. With respect to reference input signal frequency. 36. After a RST. 37. Master clock duty cycle 40% to 60%. 38. Prior to Auto-Holdover State, device was in Normal State and phase-locked. 24 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Mechanical Specifications Figure 11. 28-pin PLCC PT0108(09/02) 25 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Ordering Information Table 20. Ordering Information PT0108(09/02) Pa r t Nu mb er Pa ck a ge PT7A4401CJ 28-Pin PLCC 26 Ver:0 Data Sheet PT7A4401C T1/E1 System Synchronizer ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Notes Pericom Technology Inc. Email: [email protected] Web-Site: www.pti.com.cn, www.pti-ic.com China: No. 20 Building, 3/F, 481 Guiping Road, Shanghai, 200233, China Tel: (86)-21-6485 0576 Fax: (86)-21-6485 2181 Asia Pacific: Unit 1517, 15/F, Chevalier Commercial Centre, 8 Wang Hoi Rd, Kowloon Bay, Hongkong Tel: (852)-2243 3660 Fax: (852)- 2243 3667 U.S.A.: 2380 Bering Drive, San Jose, California 95131, USA Tel: (1)-408-435 0800 Fax: (1)-408-435 1100 Pericom Technology Incorporation reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom Technology does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom Technology product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom Technology Incorporation. PT0108(09/02) 27 Ver:0