QSZ4 Transistors General purpose transistor (isolated transistor and diode) QSZ4 A 2SB1706 and a 2SD2671 are housed independently in a TSMT5 package. zExternal dimensions (Unit : mm) zApplications DC / DC converter Motor driver QSZ4 zStructure Silicon epitaxial planar transistor ROHM : TSMT5 (5) 0.95 0.95 1.9 2.9 0.85 0∼0.1 0.3∼0.6 0.7 0.16 (3) (4) (2) zFeatures 1) Low VCE(sat) 2) Small package (1) 0.4 2.8 1.6 Each lead has same dimensions Abbreviated symbol : Z04 zEquivalent circuit (5) (4) Tr1 Tr2 (1) (2) (3) zPackaging specifications Type QSZ4 Package TSMT5 Marking Code Z04 Basic ordering unit(pieces) 3000 TR 1/4 QSZ4 Transistors zAbsolute maximum ratings (Ta=25°C) Tr1 Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Power dissipation Junction temperature Range of storage temperature Symbol VCBO VCEO VEBO IC ICP Pc Tj Tstg Limits −30 −30 −6 −2 −4 500 1.25 0.9 150 −55 to +150 Unit V V V A ∗1 A mW/Total ∗2 W/Total ∗3 W/Element ∗3 °C °C Limits 30 30 6 2 4 500 1.25 0.9 150 −50 to +150 Unit V V V A ∗1 A mW/Total ∗2 W/Total ∗3 W/Element ∗3 °C °C ∗1 Single pulse, Pw=1ms. ∗2 Each terminal mounted on a recommended land. ∗3 Mounted on a 25×25× t 0.8mm ceramic substrate. Tr 2 Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Power dissipation Junction temperature Range of storage temperature Symbol VCBO VCEO VEBO IC ICP Pc Tj Tstg ∗1 Single pulse, Pw=1ms. ∗2 Each terminal mounted on a recommended land. ∗3 Mounted on a 25×25× t 0.8mm ceramic substrate. zElectrical characteristics (Ta=25°C) Tr1 Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance Symbol BVCBO BVCEO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. −30 −30 −6 − − − 270 − − Typ. − − − − − −180 − 280 20 Max. − − − −100 −100 −370 680 − − Unit V V V nA nA mV − MHz pF Conditions IC= −10µA IC= −1mA IE= −10µA VCB= −30V VEB= −6V IC= −1.5A, IB= −75mA VCE= −2V, IC= −200mA∗ VCE= −2V, IE=200mA, f=100MHz∗ VCB= −10V, IE=0A, f=1MHz Symbol BVCBO BVCEO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. 30 30 6 − − − 270 − − Typ. − − − − − 180 − 280 20 Max. − − − 100 100 370 680 − − Unit V V V nA nA mV − MHz pF Conditions IC=10µA IC=1mA IE=10µA VCB=30V VEB=6V IC=1.5A, IB=75mA VCE=2V, IC=200mA ∗ VCE=2V, IE= −200mA, f=100MHz∗ VCB=10V, IE=0A, f=1MHz ∗ Pulsed Tr 2 Parameter Collector-base breakdown voltage Collector-emitter breakdown voltage Emitter-base breakdown voltage Collector cutoff current Emitter cutoff current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance ∗ Pulsed 2/4 QSZ4 Transistors zElectrical characteristic curves VCE= −2V Pulsed Ta=25 C Ta=−40 C 100 10 0.001 0.01 0.1 1 10 10 IC/IB=20/1 Pulsed 1 0.1 Ta=25 C Ta=100 C 0.01 0.001 0.1 1 10 10 1000 TRANSITION FREQUENCY : fT (MHz) VBE=2V Pulsed Ta=100 C Ta=25 C 1 Ta=−40 C 0.1 0.1 1 1 Fig.4 Grounded emitter propagation characteristics IC/IB=50/1 IC/IB=20/1 0.1 0.001 IC/IB=10/1 0.01 0.1 1 10 Fig.3 Base-emitter saturation voltage vs. collectir current 10000 Ta=25 C VCE= −2V f=100MHz 100 Ta=25 C VCE= −12V IC/IB=20/1 Pulsed 1000 tstg 100 tf tdon 10 tr 10 0.01 10 BASE TO EMITTER CURRENT : VBE (V) Ta=25 C Pulsed COLLECTOR CURRENT : IC (A) Fig.2 Collector-emitter saturation voltage vs. collector current Fig.1 DV current gain vs. collector current COLLECTOR CURRENT :IC (A) 0.01 10 COLLECTOR CURRENT : IC (A) COLLECTOR CURRENT : IC (A) 0.01 Ta=−40 C SWITCHINGTIME : (ns) DC CURRENT GAIN : hFE Ta=100 C BASE SATURATION VOLTAGE : VBE(sat) (V) 1000 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Tr1(PNP) 0.1 1 10 1 0.01 0.1 1 EMITTER CURRENT : IE (A) COLLECTOR CURRENT : IC(A) Fig.5 Gain bandwidth product vs. emitter curent Fig.6 Switching time 10 COLLECTOR CURRENT :IC (A) 1000 IC=0A f=1MHz Ta=25 C Cib 100 Cob 10 1 0.001 0.01 0.1 1 10 100 EMITTER TO BASE VOLTAGE : VBE (V) COLLECTOR TO BASE VOLTAGE : VCB (V) Fig.7 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage 3/4 QSZ4 Transistors DC CURRENT GAIN : hFE Ta=125 C Ta=25 C Ta=−25 C 100 10 0.001 0.01 0.1 1 10 10 IC/IB=20/1 Pulsed 1 Ta=−25 C Ta=25 C Ta=125 C 0.1 0.01 0.001 COLLECTOR CURRENT : IC (A) 1 10 TRANSITION FREQUENCY : fT (MHz) Ta=125 C 1 Ta=25 C Ta=−25 C 0.1 0.01 0.4 0.6 0.8 1 1.2 IC/IB=20/1 Pulsed Ta=−25 C Ta=25 C Ta=125 C 1 0.1 0.001 1.4 BASE TO EMITTER CURRENT : VBE (V) Fig.11 Grounded emitter propagation characteristics Ta=25 C VCE=−2V f= 100MHz 100 10 0.01 0.1 1 EMITTER CURRENT : IE (A) Fig.12 Gain bandwidth product vs. emitter current 0.01 0.1 1 10 COLLECTOR CURRENT : IC (A) 1000 VCE=−2V Pulsed COLLECTOR CURRENT : IC (A) 0.1 Fig.9 Collector-emitter saturation voltage base-emitter saturation voltage vs. collector current 10 0.2 0.01 10 COLLECTOR CURRENT : IC (A) Fig.8 DC current gain vs. collector current 0.001 0 BASE SATURATION VOLTAGE : VBE(sat) (V) VCE=−2V Pulsed 10 Fig.10 Base-emitter saturation voltage vs. collector current EMITTER INPUT CAPACITANCE : Cib (pF) COLLECTOR OUTPUT CAPACITANCE : Cob (pF) 1000 COLLECTOR SATURATION VOLTAGE : VCE(sat) (V) Tr2(NPN) 1000 IC=0A f=1MHz Ta=25 C Cob 100 Cib 10 0.001 0.01 0.1 1 10 100 EMITTER TO BASE VOLTAGE : VEB (V) COLLECTOR TO BASE VOLTAGE : VCB (V) Fig.13 Collector output chapacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage 4/4 Appendix Notes No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Appendix1-Rev1.1