Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series The S-817 is an ultra compact 3-pin positive voltage regulator developed using CMOS technology. Housing into a miniaturized 2.0 x 2.1 mm SC-82AB package, the S-817 offers key advantages for small, portable applications. The S-817 allows many types of output capacitors including ceramic capacitors and ensures highly-stable operations at light load as low as 1µA. Applications Features y Low current consumption y Power source for y y y y Power source for y y y y Operating current: Typ. 1.2 µA, Max. 2.5 µA Output voltage: 1.1 to 6.0 V(0.1 V step) Output voltage accuracy: ±2.0 % Output current; Note 50 mA capable (3.0 V output product, VIN=5 V) Note 75 mA capable (5.0 V output product, VIN=7 V) Dropout voltage Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA) Low ESR capacitor (e.g., a ceramic capacitor of 0.1 µF or more) can be used as an output capacitor. Short circuit protection for: Series A Excellent Line Regulation: Stable operation at light load of 1 µA battery-powered devices personal communication devices y Power source for home electric/electronic appliances Packages y y y y SOT-23-5 (PKG drawing code : MP005-A) 4-pin SC-82AB PKG drawing code : NP004-A) 3-pin SOT-89-3 PKG drawing code : UP003-A) PKG drawing code : Y003-A) TO-92 Note) Power dissipation of the package should be taken into account when the output current is large. Block Diagram Note 1 VIN VOUT Note 2 Reference Short circuit protection voltage VSS Note 1 Parasitic diode Note 2 Series A only Figure 1 Block Diagram Seiko Instruments Inc. 1 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 Selection Guide Product Name S-817x xx Axx - xxx - T2 IC orientation for tape specifications Product code Package code NB: SC-82AB MC: SOT-23-5 UA:SOT-89-3 Y:TO-92 Output voltage x 10 Short circuit protection: Yes = A No = B Output Voltage 1.1 V ± 2.0% 1.2 V ± 2.0% 1.3 V ± 2.0% 1.4 V ± 2.0% 1.5 V ± 2.0% 1.6 V ± 2.0% 1.7 V ± 2.0% 1.8 V ± 2.0% 1.9 V ± 2.0% 2.0 V ± 2.0% 2.1 V ± 2.0% 2.2 V ± 2.0% 2.4 V ± 2.0% 2.5 V ± 2.0% 2.7 V ± 2.0% 2.8 V ± 2.0% 2.9 V ± 2.0% 3.0 V ± 2.0% 3.2 V ± 2.0% 3.3 V ± 2.0% 3.4 V ± 2.0% 3.5 V ± 2.0% 3.6 V ± 2.0% 3.7 V ± 2.0% 3.8 V ± 2.0% 4.0 V ± 2.0% 4.2 V ± 2.0% 4.3 V ± 2.0% 4.5 V ± 2.0% 4.8 V ± 2.0% 5.0 V ± 2.0% 5.2 V ± 2.0% 5.3 V ± 2.0% 5.6 V ± 2.0% 6.0 V ± 2.0% SC-82AB S-817A11ANB-CUA-T2 S-817A12ANB-CUB-T2 S-817A13ANB-CUC-T2 S-817A14ANB-CUD-T2 S-817A15ANB-CUE-T2 S-817A18ANB-CUH-T2 S-817A19ANB-CUI-T2 S-817A20ANB-CUJ-T2 S-817A21ANB-CUK-T2 S-817A22ANB-CUL-T2 S-817A24ANB-CUN-T2 S-817A25ANB-CUO-T2 S-817A27ANB-CUQ-T2 S-817A28ANB-CUR-T2 S-817A30ANB-CUT-T2 S-817A32ANB-CUV-T2 S-817A33ANB-CUW-T2 S-817A35ANB-CUY-T2 S-817A36ANB-CUZ-T2 S-817A40ANB-CVD-T2 S-817A42ANB-CVF-T2 S-817A43ANB-CVG-T2 S-817A45ANB-CVI-T2 S-817A48ANB-CVL-T2 S-817A50ANB-CVN-T2 S-817A56ANB-CVT-T2 Table 1 Selection Guide SOT-23-5 S-817B11AMC-CWA-T2 S-817B13AMC-CWC-T2 S-817B15AMC-CWE-T2 S-817B17AMC-CWG-T2 S-817B18AMC-CWH-T2 S-817B20AMC-CWJ-T2 S-817B22AMC-CWL-T2 S-817B25AMC-CWO-T2 S-817B28AMC-CWR-T2 S-817B30AMC-CWT-T2 S-817B33AMC-CWW-T2 S-817B35AMC-CWY-T2 S-817B37AMC-CXA-T2 S-817B38AMC-CXB-T2 S-817B40AMC-CXD-T2 S-817B42AMC-CXF-T2 S-817B50AMC-CXN-T2 SOT-89-3 TO-92 S-817B11AUA-CWA-T2 S-817B15AUA-CWE-T2 S-817B16AUA-CWF-T2 S-817B18AUA-CWH-T2 S-817B19AUA-CWI-T2 S-817B20AUA-CWJ-T2 S-817B25AUA-CWO-T2 S-817B27AUA-CWQ-T2 S-817B30AUA-CWT-T2 S-817B33AUA-CWW-T2 S-817B35AUA-CWY-T2 S-817B36AUA-CWZ-T2 S-817B37AUA-CXA-T2 S-817B38AUA-CXB-T2 S-817B40AUA-CXD-T2 S-817B43AUA-CXG-T2 S-817B45AUA-CXI-T2 S-817B50AUA-CXN-T2 S-817B52AUA-CXP-T2 S-817B53AUA-CXQ-T2 S-817B56AUA-CXT-T2 S-817B60AUA-CXX-T2 S-817B11AY-X S-817B15AY-X S-817B25AY-X S-817B30AY-X S-817B33AY-X S-817B37AY-X S-817B40AY-X S-817B50AY-X S-817B52AY-X S-817B60AY-X Note: Contact SII sales office for products with output voltage not specified above. X changes according to the packing form in TO-92. Standard forms are B; Bulk and Z; Zigzag (tape and ammo). If tape and reel (T) is needed, please contact SII sales office. 2 Seiko Instruments Inc. Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Pin Configuration Table 2 Pin Assignment For details of package, refer to the attached drawing. 5 4 Pin No. Symbol Description 1 VSS GND pin Input voltage pin 2 VIN SOT-23-5 3 VOUT Top view 4 N.C. No connection 5 N.C. No connection 2 1 3 Note Figure 2 SOT-23-5 Output voltage pin Note Note N.C. pin is electrically open. N.C. pin can be connected to VIN or VSS. Table 3 Pin Assignment 4 3 Pin No. Symbol SC-82AB 1 VSS GND pin Top view 2 VIN Input voltage pin 3 VOUT 4 N.C. 2 1 Figure 3 SC-82AB Note Description Output voltage pin No connection Note N.C. pin is electrically open. N.C. pin can be connected to VIN or VSS. Table 4 Pin Assignment SOT-89-3 Top view 1 2 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin 3 Figure 4 SOT-89-3 Table 5 Pin Assignment TO-92 Bottom view 1 2 Pin No. Symbol Description 1 VSS GND pin 2 VIN Input voltage pin 3 VOUT Output voltage pin 3 Figure 5 TO-92 Seiko Instruments Inc. 3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 Absolute Maximum Ratings Table 6 Absolute Maximum Ratings Item Symbol VIN VOUT PD Input voltage Output voltage Power dissipation Operating temperature range Storage temperature range Topr Tstg (Ta=25°C unless otherwise specified) Absolute Maximum Rating 12 VSS-0.3 to VIN+0.3 SOT-23-5 250 SC-82AB 150 SOT-89-3 500 TO-92 400 -40 to +85 -40 to +125 Units V V mW °C °C Note: Although the IC contains protection circuit against static electricity, excessive static electricity or voltage which exceeds the limit of the protection circuit should not be applied to. Electrical Characteristics 1. S-817AXXANB Table 7 Electrical Characteristics Item Symbol Output voltage 1) Output current 2) Dropout voltage 3) Line regulation 1 Line regulation 2 Load regulation Output voltage temperature 4) coefficient Current consumption Input voltage Short current limit 4 VOUT(E) Conditions VIN=VOUT(S)+2V, IOUT=10mA VOUT(S)+2V1.1V ≤ VOUT(S) ≤ 1.9V ≤ VIN≤10V 2.0V ≤ VOUT(S) ≤ 2.9V 3.0V ≤ VOUT(S) ≤ 3.9V 4.0V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 6.0V Vdrop IOUT = 1.1V ≤ VOUT(S) ≤ 1.4V 10mA 1.5V ≤ VOUT(S) ≤ 1.9V 2.0V ≤ VOUT(S) ≤ 2.4V 2.5V ≤ VOUT(S) ≤ 2.9V 3.0V ≤ VOUT(S) ≤ 3.4V 3.5V ≤ VOUT(S) ≤ 3.9V 4.0V ≤ VOUT(S) ≤ 4.4V 4.5V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 5.4V 5.5V ≤ VOUT(S) ≤ 6.0V ∆ VOUT11 VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1mA ∆ VOUT21 VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1µA ∆ VOUT31 VIN= 1.1V ≤ VOUT(S) ≤ 1.9V, VOUT(S)+ 2 V 1µA ≤ IOUT ≤ 10mA 2.0V ≤ VOUT(S) ≤ 2.9V, 1µA ≤ IOUT ≤ 20mA 3.0V ≤ VOUT(S) ≤ 3.9V, 1µA ≤ IOUT ≤ 30mA 4.0V ≤ VOUT(S) ≤ 4.9V, 1µA ≤ IOUT ≤ 40mA 5.0V ≤ VOUT(S) ≤ 6.0V, 1µA ≤ IOUT ≤ 50mA ∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 10mA ∆Ta • VOUT -40°C ≤ Ta ≤ 85°C ISS VIN = VOUT(S) + 2 V, no load VIN IOS VIN = VOUT(S) + 2 V, VOUT pin = 0 V IOUT Seiko Instruments Inc. (Ta=25°C unless otherwise specified) Min. Typ. Max. VOUT(S) VOUT(S) VOUT(S) × 0.98 × 1.02 − − 20 − − 35 − − 50 − − 65 − − 75 0.92 1.58 − 0.58 0.99 − 0.40 0.67 − 0.31 0.51 − 0.25 0.41 − 0.22 0.35 − 0.19 0.30 − 0.18 0.27 − 0.16 0.25 − 0.15 0.23 − − 5 20 V Test circuits 1 mA mA mA mA mA V V V V V V V V V V mV 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 Units − 5 20 mV 1 − 5 20 mV 1 − 10 30 mV 1 − 20 45 mV 1 − 25 65 mV 1 − 35 80 mV 1 ±100 − 1 1.2 − 40 2.5 10 − ppm /°C µA V mA − − − 2 1 3 Rev.2.3 1) 2) 3) 4) ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series VOUT(S)=Specified output voltage VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. Output current at which output voltage becomes 95% of V OUT(E) after gradually increasing output current. Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation. ∆VOUT ∆VOUT [mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000 ∆Ta Temperature change ratio for output voltage Specified output voltage Output voltage temperature coefficient Seiko Instruments Inc. 5 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 2. S-817BXXAMC Table 8 Electrical Characteristics Item Symbol Output voltage 1) Output current 2) Dropout voltage 3) Line regulation 1 Line regulation 2 Load regulation Output voltage temperature 4) coefficient Current consumption Input voltage 1) 2) 3) 4) VOUT(E) Conditions (Ta=25°C unless otherwise specified) Min. VIN=VOUT(S)+2V, IOUT=10mA VOUT(S)+2V1.1V ≤ VOUT(S) ≤ 1.9V ≤ VIN≤10V 2.0V ≤ VOUT(S) ≤ 2.9V 3.0V ≤ VOUT(S) ≤ 3.9V 4.0V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 6.0V Vdrop IOUT = 1.1V ≤ VOUT(S) ≤ 1.4V 10mA 1.5V ≤ VOUT(S) ≤ 1.9V 2.0V ≤ VOUT(S) ≤ 2.4V 2.5V ≤ VOUT(S) ≤ 2.9V 3.0V ≤ VOUT(S) ≤ 3.4V 3.5V ≤ VOUT(S) ≤ 3.9V 4.0V ≤ VOUT(S) ≤ 4.4V 4.5V ≤ VOUT(S) ≤ 4.9V 5.0V ≤ VOUT(S) ≤ 5.4V 5.5V ≤ VOUT(S) ≤ 6.0V ∆ VOUT11 VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1mA ∆ VOUT21 VOUT(S) + 1 V ≤ VIN ≤ 10 V, IOUT = 1µA ∆ VOUT31 VIN= 1.1V ≤ VOUT(S) ≤ 1.9V, VOUT(S)+ 2 V 1µA ≤ IOUT ≤ 10mA 2.0V ≤ VOUT(S) ≤ 2.9V, 1µA ≤ IOUT ≤ 20mA 3.0V ≤ VOUT(S) ≤ 3.9V, 1µA ≤ IOUT ≤ 30mA 4.0V ≤ VOUT(S) ≤ 4.9V, 1µA ≤ IOUT ≤ 40mA 5.0V ≤ VOUT(S) ≤ 6.0V, 1µA ≤ IOUT ≤ 50mA ∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 10mA ∆Ta • VOUT -40°C ≤ Ta ≤ 85°C ISS VIN = VOUT(S) + 2 V, no load VIN IOUT Typ. Max. VOUT(S) VOUT(S) VOUT(S) × 0.98 × 1.02 − − 20 − − 35 − − 50 − − 65 − − 75 0.92 1.58 − 0.58 0.99 − 0.40 0.67 − 0.31 0.51 − 0.25 0.41 − 0.22 0.35 − 0.19 0.30 − 0.18 0.27 − 0.16 0.25 − 0.15 0.23 − − 5 20 mA mA mA mA mA V V V V V V V V V V mV 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 − 5 20 mV 1 − 5 20 mV 1 − 10 30 mV 1 − 20 45 mV 1 − 25 65 mV 1 − 35 80 mV 1 ±100 − 1 1.2 − 2.5 10 ppm /°C µA V − − 2 1 VOUT(S)=Specified output voltage VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V. Output current at which output voltage becomes 95% of V OUT(E) after gradually increasing output current. Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after gradually decreasing input voltage. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation. ∆VOUT ∆VOUT [mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000 ∆Ta Temperature change ratio for output voltage 6 V Test circuits 1 Units Specified output voltage Output voltage temperature coefficient Seiko Instruments Inc. Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Test Circuits 1. 2. VIN A VOUT A VIN VOUT V VSS VSS 3. VIN A VOUT V VSS Figure 6 Test Circuits Standard Circuit OUTPUT INPUT VIN CIN VOUT CL VSS Single GND In addition to a tantalum capacitor, a ceramic capacitor of 0.1 µF or more can be used for CL. CIN is a capacitor used to stabilize input. GND Figure 7 Standard Circuit Technical Terms 1. Low ESR ESR is the abbreviation for Equivalent Series Resistance. Low ESR output capacitors (CL) can be used in the S-817 Series. 2. Output voltage (VOUT) The accuracy of the output voltage is ± 2.0% guaranteed under the specified conditions for input voltage, which differs depending upon the product items, output current, and temperature. Note: If the above conditions change, the output voltage value may vary and go out of the accuracy range of the output voltage. See the electrical characteristics and characteristics data for details. 3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2) Indicate the input voltage dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the input voltage with the output current remained unchanged. 4. Load regulation (∆VOUT3) Indicates the output current dependencies of output voltage. That is, the values show how much the output voltage changes due to a change in the output current with the input voltage remained unchanged. Seiko Instruments Inc. 7 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 5. Dropout voltage (Vdrop) Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98 % of VOUT (E) by gradually decreasing the input voltage (VIN). Vdrop = VIN1-[VOUT(E) × 0.98] 6. Temperature coefficient of output voltage [∆VOUT/(∆Ta • VOUT)] The output voltage lies in the shaded area in the whole operating temperature shown in figure 8 when the temperature coefficient of the output voltage is ±100 ppm/°C. VOUT [V] +0.15mV/°C VOUT (E) is a measurement value of output voltage at 25°C. VOUT(E) -0.15mV/°C -40 25 85 Ta [°C] Figure 8 Typical Example of the S-817A15A Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation. ∆VOUT ∆VOUT [mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000 ∆Ta Specified output voltage Temperatures change ratio for output voltage 8 Output voltage temperature coefficient Seiko Instruments Inc. Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Operation VIN 1. Basic Operation Figure 9 shows the block diagram of the S-817 series. The error amplifier compares a reference voltage *1 Current source Error amplifier VOUT Vref Vref with a part of the output voltage divided by the feedback resistors Rs and Rf, and supplies the gate voltage to the output transistor, necessary to ensure certain output voltage independent from change of input voltage and temperature. Rf Reference voltage circuit VSS Rs *1 Parasitic diode Figure 9 Block Diagram 2. Output Transistor The S-817 series uses a Pch MOS transistor as the output transistor. The voltage at VOUT must not exceed VIN+0.3V. When the VOUT voltage becomes higher than that of VIN, reverse current flows and may break the regulator since a parasitic diode between VOUT and VIN exists inevitably. 3. Short Circuit Protection The S-817A series incorporates a short circuit protection to protect the output transistor against short circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the output transistor against short-circuit between VOUT and VSS can be selected in the S-812C series. The short-circuit protection controls output current as shown in the typical characteristics, (1) OUTPUT VOLTAGE versus OUTPUT CURRENT, and suppresses output current at about 40 mA even if VOUT and VSS pins are shortcircuited. The short-circuit protection can not at the same time be a thermal protection. Attention should be paid to the Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the package including the case for short-circuit. When the output current is large and the difference between input and output voltage is large even if not shorted, the short-circuit protection may work and the output current is suppressed to the specified value. Products without short-circuit protection can provide comparatively large current by removing a short-circuit protection. For details, refer to (3) MAXIMUM OUTPUT CURRENT versus INPUT VOLTAGE curve. The S-817B series can provide comparatively large current by removing a short circuit protection. Selection of Output Capacitor (CL) To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT and VSS in the S-817 series because the phase is compensated with the help of the internal phase compensation circuit and the ESR of the output capacitor. When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and when selecting a tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and ESR 30 Ω or less. When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large. Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in “TRANSIENT RESPONSE CHARACTERISTICS”. Seiko Instruments Inc. 9 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 Applied Circuits 1. Output Current Boosting Circuit As shown in Figure 10, the output current can be boosted by externally attaching a PNP transistor. The base current of the PNP transistor is controlled so that output voltage VOUT goes the voltage specified in the S-817 when base-emitter voltage VBE necessary to turn on the PNP transistor is obtained between input voltage VIN and S817 power source pin VIN. Tr1 VIN R1 VOUT S-817 Series VIN R2 VSS CIN VOUT CL GND Figure 10 Output Current Boosting The following are tips and hints for selecting and ensuring optimum use of external parts: • PNP transistor Tr1: 1. Set hFE to approx. 100 to 400. 2. Confirm that no problem occurs due to power dissipation under normal operation conditions. • Resistor R1: Generally set R1 to 1 kΩ ÷ VOUT (S) (the voltage specified in the S-817 Series) or more. Output capacitor CL: Output capacitor CL is effective in minimizing output fluctuation at powering on or due to power or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output capacitor CL. • Resistor R2: Set R2 to 2 Ω x VOUT(S) or more. • DO NOT attach a capacitor between the S-817 power source VIN and GND pins or between base and emitter of the PNP transistor to avoid oscillation. • To improve transient response characteristics of the output current boosting circuit shown in Figure 10, check that no problem occurs due to output fluctuation at powering on or due to power or load fluctuation under normal operating conditions. • Pay attention to the short current limit circuit incorporated into the S-817 Series because it does not function as a shortcircuiting protection circuit for this boosting circuit. The following graphs show the examples of input-output voltage characteristics (Ta = 25°C, typ.) in the output current boosting circuit: (1) S-817A11ANB/S-817B11AMC (2) S-817A50ANB/S-817B50AMC Tr1: 2SA1213Y, R1: 1kΩ, CL: 10µF, R2: 2Ω Tr1: 2SA1213Y, R1: 200Ω, CL: 10µF, R2: 10Ω 5.20 1.20 100mA 1.10 5.10 V OUT (V) 0.90 V OUT (V) 50mA 1.00 10mA 1mA 800mA 600mA 0.80 100mA 50mA 10mA 4.90 800mA 600mA 400mA 5mA 4.80 400mA 0.70 5.00 4.70 200mA 200mA 0.60 1.4 4.60 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 5.2 5.4 5.5 5.6 V IN (V) VIN (V) 10 5.3 Seiko Instruments Inc. 5.7 5.8 5.9 Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series 2. Constant Current Circuit The S-817 Series can be configured as a constant current circuit. See Figure 11. Constant amperage IO is calculated using the following equation (VOUT (E): Effective output voltage): IO = (VOUT (E) ÷ RL) +ISS. Please note that it is impossible to set constant amperage IO in case of circuit (1) of Figure 11 to the value exceeding the drive ability of the S-817. However, circuit (2) of Figure 11 is an example to set constant amperage to the value exceeding the drive ability of the S817. Circuit (2) incorporates a current boosting circuit. The maximum input voltage of the constant current circuit is the value obtained by adding 10 V to voltage VO of the device. It is not recommended to attach a capacitor between the S-817 power source VIN and VSS pins or between output VOUT and VSS pins because rush current flows at powering on. An example of input voltage between VIN and VO in circuit (2) vs. IO current characteristics (Ta = 25 °C, typ.) is illustrated in Figure 12. (1) Constant Current Circuit VIN VIN VOUT S-817 Series RL VSS V0 IO CIN VO GND Device (2) Constant Current Boosting Circuit Tr1 VIN VOUT S-817 R1 Series RL VSS CIN VO GND Io V0 Device Figure 11 Constant Current Circuit S-817A11ANB, S-817B11AMC; VIN-VO pins, Input voltage-IO current 3. Output Voltage Adjustment Circuit Tr: 2SK1213Y, R1: 1kΩ,VO=2V The output voltage can be boosted by using the 0.60 configuration shown in Figure 13. The output Voltage RL=1.83Ω 0.50 VO can be calculated using the following equation 2.2Ω (VOUT (E):Effective output voltage): 0.40 2.75Ω VO = VOUT (E) x (R1 + R2) ÷ R1 + R2 x ISS Io (A) 3.67Ω 0.30 Set R1 and R2 to high values of resistance so as not to 5.5Ω be affected by current consumption ISS. 0.20 11Ω Capacitor C1 is effective in minimizing output 0.10 fluctuation at powering on or due to power or load fluctuation. Determine the optimum value on your 0.00 1.4 1.6 1.8 2 2.2 2.4 actual device. V IN -V O (V) Figure 12 Input Voltage vs Current Characteristics VIN VIN It is not also recommended to attach a capacitor between the S-817 power source VIN and VSS pins or between output VOUT and VSS pins because CIN output fluctuation or oscillation at powering on might occur. GND S-817 V0 VOUT Series VSS C1 R1 CL R2 Figure 13 Voltage Adjustment Circuit Seiko Instruments Inc. 11 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 Notice • • • • • • 12 Design wiring patterns for VIN, VOUT and GND pins to hold low impedance. When mounting an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin should be as short as possible. Note that output voltage may be increased at low load current of less than 1 µA. To prevent oscillation, it is recommended to use the external parts under the following conditions. * Output capacitor (CL): 0.1 µF or more * Equivalent Series Resistance (ESR): 30 Ω or less * Input series resistance (RIN): 10 Ω or less A voltage regulator may oscillate when power source impedance is high and input capacitor is low or not connected. The application condition for input voltage and load current should not exceed the package power dissipation. SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of the products including this IC upon patents owned by a third party. Seiko Instruments Inc. Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Be sure that input voltage and load current do not exceed the power dissipation level of the package. Typical Operating Chracteristics (1) OUTPUT VOLTAGE versus OUTPUT CURRENT (When load current increases) S-817A20A(Ta=25°C) S-817A11A(Ta=25°C) 1.2 2.5 0.9 VIN= 1.5V 0.6 V OUT (V) 0.3 8V 2.0 3.1V 1.5 4.1V 2.1V 10V 3V V OUT (V) 1.0 4V 0.5 VIN= 2.4V 0.0 0.0 0 20 40 60 0 80 30 60 90 120 IOUT (mA) IOUT (mA) S-817A30A(Ta=25°C) S-817A50A(Ta=25°C) 3.0 5.0 2.5 5V 6V 1.0 6V 8V V OUT 3.0 (V) 2.0 10V VIN= 3.4V 0.5 10V 4.0 4V 2.0 V OUT 1.5 (V) VIN=5.4V 7V 1.0 0.0 0.0 0 30 60 90 120 150 0 40 IOUT(mA) 80 120 160 200 IOUT (mA) S-817B20A(Ta=25°C) S-817B11A(Ta=25°C) 2.5 1.2 8V 0.9 1.5 3.1V VOUT (V) 2.1V 0.3 10V VIN=2.4V 2.0 4.1V VOUT (V) 0.6 VIN= 1.5V 5V 1.0 3V 4V 0.5 0.0 0.0 0 50 100 150 200 250 0 50 100 IOUT (mA) 150 200 250 300 IOUT (mA) S-817B30A(Ta=25°C) S-817B50A(Ta=25°C) 3.5 5.0 3.0 10V 4.0 4V 2.5 VOUT (V) 5V 10V 2.0 1.5 5V 1.0 VIN= 3.4V 0.5 7V 8V 3.0 VOUT (V) 2.0 6V 6V VIN=5.4V 1.0 0.0 0.0 0 50 100 150 200 250 300 0 IOUT (mA) 50 100 150 200 250 300 IOUT (mA) Seiko Instruments Inc. 13 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 (2) OUTPUT VOLTAGE versus INPUT VOLTAGE S-817A11A/S-817B11A(Ta=25°C) S-817A20A/S-817B20A(Ta=25°C) 2.5 1.5 IOUT =1µA IOUT =1µA 2.0 1.0 50mA 1.5 V OUT (V) 0.5 V OUT (V) 1.0 1mA 10mA 20mA 10mA 0.5 20mA 0.0 1mA 0.0 0 2 4 6 8 10 0 2 4 VIN (V) 6 8 10 VIN (V) S-817A30A/S-817B30A(Ta=25°C) S-817A50A/S-817B50A(Ta=25°C) 3.5 5.0 20mA 3.0 2.5 4.0 50mA 10mA 2.0 V OUT (V) 1.5 V OUT (V) 2.0 1mA 1.0 0.5 20mA 1mA 1.0 IOUT =1µA 0.0 IOUT =1µA 0.0 0 2 4 6 8 10 0 VIN (V) 14 50mA 10mA 3.0 2 4 6 VIN (V) Seiko Instruments Inc. 8 10 Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Be sure that input voltage and load current do not exceed the power dissipation level of the package. (3) MAXIMUM OUTPUT CURRENT versus INPUT VOLTAGE S-817A11A S-817A20A 100 120 25°C Ta=-40°C 80 Ta=-40°C 100 80 60 I OUT max.(mA) 40 I OUT max.(mA) 60 85°C 25°C 40 20 20 0 0 0 2 4 6 8 85°C 10 1 3 5 VIN (V) S-817A30A 9 S-817A50A 250 180 25°C 150 I OUT 90 max.(mA) 60 30 50 0 0 4 6 Ta=-40°C I OUT 150 max.(mA)100 85°C 2 25°C 200 Ta=-40°C 120 8 85°C 10 4 6 8 VIN (V) 10 VIN (V) S-817B20A S-817B11A 300 300 250 IOUT 7 VIN (V) 250 Ta=-40°C 200 Ta=-40°C 200 25°C 25°C IOUT 150 max.(mA) 150 max.(mA) 100 100 85°C 50 85°C 50 0 0 0 2 4 6 8 0 10 2 4 V). (V) 6 8 10 V). (V) S-817B30A S-817B50A 300 300 250 250 Ta=-40°C 200 IOUT 25°C IOUT 150 max.(mA) Ta=-40°C 25°C 200 150 max.(mA) 85°C 100 100 85°C 50 50 0 0 2 4 6 8 10 4 V). (V) 6 8 10 V). (V) Seiko Instruments Inc. 15 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 (4) DROPOUT VOLTAGE versus OUTPUT CURRENT S-817A11A/S-817B11A S-817A20A/S-817B20A 2000 2000 25°C 25°C 1500 1500 85°C 85°C Vdrop 1000 (mV) Vdrop 1000 (mV) 500 500 Ta=-40°C Ta=-40°C 0 0 0 5 10 15 20 0 10 20 IOUT (mA) 30 40 IOUT (mA) S-817A30A/S-817B30A S-817A50A/S-817B50A 1600 1000 85°C 1200 Vdrop (mV) 85°C 800 25°C Vdrop (mV) 800 25°C 600 400 400 200 Ta=-40°C 0 Ta=-40°C 0 0 10 20 30 40 50 0 10 20 (5) OUTPUT VOLTAGE versus AMBIENT TEMPERATURE VIN =3.1V,IOUT =10mA S-817A11A/S-817B11A S-817A20A/S-817B20A 1.12 2.04 1.11 2.02 1.10 (V) 1.09 VIN =4V,IOUT =10mA 2.00 1.96 -50 0 50 100 -50 0 50 Ta(°C) 100 Ta(°C) VIN =5V,IOUT =10mA S-817A30A/S-817B30A S-817A50A/S-817B50A 3.06 5.10 3.03 5.05 VIN =7V,IOUT =10mA VOUT VOUT 3.00 (V) 2.97 5.00 4.95 2.94 4.90 -50 0 50 100 Ta(°C) 16 50 1.98 1.08 (V) 40 VOUT VOUT (V) 30 I OUT (mA) IOUT (mA) -50 0 50 Ta(°C) Seiko Instruments Inc. 100 Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series (6) LINE REGULATION 1 versus AMBIENT TEMPERATURE S-817A11/20/30/50A S-817B11/20/30/50A VIN=VOUT (S)+1V↔10V,I OUT=1mA (7) LINE REGULATION 2 versus AMBIENT TEMPERATURE S-817A11/20/30/50A S-817B11/20/30/50A VIN =VOUT (S)+1V↔10V,I OUT=1µA 30 30 25 25 20 20 ∆ VOUT1 15 (mV) VOUT =1.1V 10 2V 3V ∆ VOUT2 15 (mV) 10 5V 5 5 0 0 -50 -25 0 25 50 Ta(°C) 75 100 2V VOUT=1.1V -50 -25 0 3V 25 Ta(°C) 5V 50 75 100 (8) LOAD REGULATION versus AMBIENT TEMPERATURE S-817A11/20/30/50A S-817B11/20/30/50A VIN=VOUT(S)+2V,IOUT=1µA ↔I OUT 80 70 60 50 ∆ VOUT3 (mV) VOUT=1.1V(I OUT=10mA) 2V(I OUT =20mA) 3V(I OUT =30mA) 5V(I OUT=50mA) 40 30 20 10 0 -50 -25 0 25 50 75 100 Ta(°C) (9) CURRENT CONSUMPTION versus INPUT VOLTAGE S-817A11A/S-817B11A S-817A20A/S-817B20A 1.6 1.6 85°C 85°C 1.2 1.2 25°C ISS1 (µ A) 0.8 25°C ISS1 (µ A) 0.8 Ta=-40°C 0.4 Ta=-40°C 0.4 0 0 2 4 6 8 10 0 0 VIN (V) 2 4 6 8 10 VIN (V) S-817A30A/S-817B30A S-817A50A/S-817B50A 1.6 1.6 85°C 85°C 1.2 1.2 25°C ISS1 (µ A) 0.8 ISS1 (µ A) 0.8 Ta=-40°C 0.4 25°C Ta=-40°C 0.4 0 0 0 2 4 6 8 10 0 VIN (V) 2 4 6 8 10 VIN (V) Seiko Instruments Inc. 17 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 REFERENCE DATA TRANSIENT RESPONSE CHARACTERISTICS (Typical data: Ta=25°C) INPUT VOLTAGE or LOAD CURRENT Overshoot OUTPUT VOLTAGE Undershoot (1) At powering on S-817A30A (when using a ceramic capacitor, CL=1µF) VIN =0→10V,I OUT =10mA, CL=1µF 10V 0V 3V V OUT (0.5V/div) TIME(100 µsec/div) Load dependencies of overshoot at powering on CL dependencies of overshoot at powering on VIN =0→V OUT (S)+2V,CL=1 µ F 0.05 VIN =0→VOUT (S)+2V,I OUT =10mA 0.05 0.04 0.04 5V Over 0.03 Shoot (V) 0.02 2V 0.03 3V Over Shoot 0.02 (V) 2V 3V 5V 0.01 0.01 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0 0.01 0.1 IOUT (A) 1 10 CL(µF) VDD dependencies of overshoot at powering on “Ta” dependencies of overshoot at powering on VIN =0→VOUT(S)+2V IOUT =10mA,CL=1µF VIN =0→VDDIOUT =10mA,CL=1µF 0.05 0.05 0.04 0.04 5V Over 0.03 Shoot (V) 0.02 Over 0.03 Shoot (V) 0.02 3V 2V 0.01 0.01 0 0 0 2 4 6 8 10 3V 2V -50 0 50 Ta(°C) VDD(V) 18 5V Seiko Instruments Inc. 100 Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series (2) At powering on S-817B30A (when using a ceramic capacitor, CL=1µF) VIN=0→10V, IOUT=10mA, CL=1µF 10V 0V 3V VOUT (0.5V/div) TIME(100 µsec/div) Load dependencies of overshoot at powering on CL dependencies of overshoot at powering on VIN=0→VOUT(S)+2V,CL=1µF 0.05 VIN=0→VOUT(S)+2V,IOUT=10mA 0.05 0.04 0.04 5V Over 0.03 Shoot (V) 0.02 Over 0.03 Shoot (V) 0.02 2V 3V 0.01 3V 2V 5V 0.01 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0 0.01 0.1 1 10 CL(µF) IOUT(A) VDD dependencies of overshoot at powering on “Ta” dependencies of overshoot at powering on VIN=0→ VDD, IOUT=10mA,CL=1µF VIN=0→VOUT(S)+2V,IOUT=10mA,CL=1µF 0.05 0.05 0.04 0.04 Over0.03 Shoot (V) 0.02 Over 0.03 Shoot 0.02 (V) 5V 3V 2V 0.01 2V 3V 5V 0.01 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(°C) VDD(V) Seiko Instruments Inc. 19 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 (3) Power fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1µF) VIN=4→10V,IOUT=1mA, CL=1µF 10V 4V V OUT (0.2V/div) 3V TIME(200 µsec/div) Load dependencies of overshoot at power fluctuation CL dependencies of overshoot at power fluctuation VIN=VOUT(S)+1V→ VOUT(S)+2V,CL=1µF VIN=VOUT(S)+1V→VOUT(S)+2V,IOUT=1mA 0.5 1 Over 0.4 Shoot (V) 0.3 0.8 2V 5V 3V Over 0.6 Shoot (V) 0.4 3V 0.2 2V 5V 0.2 0.1 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0 0.01 0.1 IOUT (A) 1 10 CL(µF) VDD dependencies of overshoot at power fluctuation "Ta” dependencies of overshoot at power fluctuation VIN=VOUT(S)+1V→VOUT(S)+2V IOUT=1mA,CL=1µF VIN=VOUT(S)+1V→VDD, IOUT=1mA,CL=1µF 1 1 0.8 0.8 5V Over 0.6 Shoot (V) 0.4 Over 0.6 Shoot (V) 0.4 3V 2V 0.2 5V 3V 2V 0.2 0 0 0 2 4 6 8 10 -50 VDD(V) 20 0 50 Ta(°C) Seiko Instruments Inc. 100 Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series VIN =10→4V,IOUT =1mA, CL=1µF 10V 4V VOUT 3V (0.02V/div) TIME(50 µsec/div) Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation VIN =VOUT(S)+2V→VOUT (S)+1V,CL=1µF 0.5 VIN =VOUT(S)+2V→VOUT(S)+1V,IOUT =1mA 1 0.4 Under Shoot 0.3 (V) 3V 5V Under 0.6 3V Shoot (V) 0.4 2V 0.2 2V 0.8 5V 0.2 0.1 0 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 0 0.01 0.1 1 IOUT (A) 10 CL(µF) VDD dependencies of undershoot at power fluctuation "Ta” dependencies of undershoot at power fluctuation VIN =VOUT (S)+2V→VOUT(S)+1V I OUT=1mA,CL=1µF VIN =VDD→VOUT(S)+1V, IOUT=1mA,CL=1 µ F 0.1 0.1 0.08 Under 0.06 Shoot (V) 0.04 3V 2V 0.02 0 0 2 4 6 8 3V Under 0.06 Shoot 0.04 (V) 0.02 0 2V 0.08 5V 10 5V -50 0 50 100 Ta(°C) VDD(V) Seiko Instruments Inc. 21 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series Rev.2.3 (4) Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1µF) IOUT =30mA→10µA, V IN =5V, CL=1µF 30mA 10µA V OUT (0.2V/div) 3V TIME(20msec/div) Load current dependencies of overshoot at load fluctuation CL dependencies of overshoot at load fluctuation VIN =VOUT(S)+2V,I OUT=IL→10µA,CL=1µ F 2 VIN =VOUT (S)+2V,I OUT =10mA →10µA 1 5V Over Shoot 1 (V) 2V 0.8 1.5 2V 3V Over 0.6 Shoot (V) 0.4 3V 0.5 5V 0.2 0 1.E-05 0 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 0.01 0.1 10 CL(µF) IOUT (A) VDD dependencies of overshoot at load fluctuation "Ta” dependencies of overshoot at load fluctuation VIN =VDD, I OUT=10mA→10 µA,CL=1µ F VIN =VOUT (S)+2V I OUT =10mA → 10µ A,CL=1µF 0.2 0.2 5V 2V 0.15 5V 0.15 Over Shoot 0.1 (V) Over Shoot 0.1 (V) 3V 2V 0.05 3V 0.05 0 0 0 2 4 6 8 10 -50 0 50 Ta(°C) VDD(V) 22 1 Seiko Instruments Inc. 100 Rev.2.3 ULTRA COMPACT CMOS VOLTAGE REGULATOR S-817 Series IOUT =10µA→30mA, VIN =5V, CL=1µF 30mA 10µA 3V V OUT (0.2V/div) TIME(50µsec/div) Load current dependencies of undershoot at load fluctuation CL dependencies of undershoot at load fluctuation VIN =VOUT (S)+2V,IOUT=10µA→ IL,CL=1 µA 2 VIN =VOUT (S)+2V,IOUT =10µ A→10mA 1.4 3V 1.2 5V 1.5 5V 1 Under Shoot 1 (V) Under Shoot 0.8 (V) 0.6 3V 0.5 0.4 2V 2V 0.2 0 1.E-05 1.E-04 1.E-03 0 1.E-02 1.E-01 1.E+00 0.01 0.1 IOUT(A) 1 10 CL(µF) VDD dependencies of undershoot at load fluctuation "Ta” dependencies of undershoot at load fluctuation VIN =VDDIOUT =10µA →10mA,CL=1µF VIN =VOUT (S)+2V IOUT=10µA→10mA,CL=1µF 0.5 0.5 0.4 0.4 5V 3V Under 0.3 Shoot (V) 0.2 3V Under 0.3 Shoot (V) 0.2 2V 0.1 5V 2V 0.1 0 0 0 2 4 6 8 10 -50 0 50 100 Ta(°C) VDD(V) Seiko Instruments Inc. 23 n SOT-23-5 MP005-A l Dimensions 010907 Unit : mm 2.9±0.2 1.9±0.2 4 5 1 2 +0.1 0.16 -0.06 3 0.95±0.1 0.4±0.1 No. MP005-A-P-SD-1.1 l Tape Specifications l Reel Specifications 4.0±0.1(10-pitches total: 40.0±0.2) +0.1 2.0±0.05 ø1.5-0 3000 pcs./reel 0.27±0.05 12.5max. 3°max. ø1.0 +0.1 -0 4.0±0.1 1.4±0.2 ø60 +0 ø180 -3 +1 -0 3.25±0.15 T2 9.0±0.3 Winding core 3 21 ø13±0.2 4 5 2±0.2 Feed direction No. : MP005-A-C-SD-1.0 (60°) (60°) No. MP005-A-R-SD-1 0 NP004-A n SC-82AB Rev.1.0 020109 Unit:mm lDimensions 2.0±0.2 1.3±0.2 4 3 0.05 1 0.3 +0.1 -0.05 0.16 2 0.4 +0.1 -0.06 +0.1 -0.05 No. NP004-A-P-SD-1.0 lReel Specifications lTaping Specifications 1.5 +0.1 -0.05 4.0±0.1 2.0±0.05 4.0±0.1 0.2±0.05 1.1±0.1 3000 pcs / reel 12.5max. 1.05±0.1 (0.7) 2.2±0.2 T2 2 1 3 4 9.0±0.3 Winding core Feed direction ø13±0.2 (60°) (60°) No. NP004-A-C-SD-1.0 No. NP004-A-R-SD-1.0 UP003-A n SOT-89-3 Rev.1.0 020109 Unit:mm lDimensions 4.5±0.1 1.6±0.2 1 2 1.5±0.1 3 1.5±0.11.5±0.1 0.4±0.1 0.4±0.05 0.4±0.1 45 0.45±0.1 No. UP003-A-P-SD-1.0 lReel Specifications lTaping Specifications 1 reel holds 1000 ICs. 4.0±0.1(10 pitches:40.0±0.2) +0.1 ø1.5 -0 16.5max. 2.0±0.05 ø1.5 +0.1 -0 5 8.0±0.1 max. 0.3±0.05 2.0±0.1 4.75±0.1 T2 Feed direction No. UP003-A-C-SD-1.0 13.0±0.3 Winding core (60°) (60°) No. UP003-A-R-SD-1.0 Y003-A n TO-92 011220 Unit:mm (2) Leadforming for tape (reel/zigzag) lDimensions (1) Bulk 4.2max. 5.2max. 4.2max. 5.2max . Marked side Rev.1.0 Marked side 5.0±0.2 5.0±0.2 0.6max. 0.6max. 0.8max. 2.3max. 0.8max. 2.3max. 10.0min. 12.7min. 0.45±0.1 0.45±0.1 0.45±0.1 0.45±0.1 +0.4 2.5 -0.1 1.27 No. YF003-A-P-SD-1.0 No. YS003-B-P-SD-1.0 1.27 lReel lZigzag 1 reel holds 2000 ICs. [Type Z] Side spacer 165 45±0.5 320 Spacer 60 2±0.5 320 5±0.5 43±0.5 53±0.5 ø358±2 lTape 12.7±1.0 1.0max. 40 No. YF003-A-R-SD-2.0 1.0max. Marked side Side Spacer placed in front side Space more than 4 strokes 24.7max. 0.5max 2.5min. . 16.0±0.5 19.0±0.5 # 1 pin 1.45max. 9.0±0.5 6.0±0.5 +1.0 18.0 -0.5 ø4.0±0.2 6.35±0.4 0.7±0.2 262 12.7±0.3 (20-pitch total:254.0±1.0) 330 Feed direction [Type F] [Type T] Marked side No. YZ003-C-Z-SD-2.0 1 box holds 2500 ICs. Feed direction Feed direction No. YF003-A-C-SD-1.0 Feed direction No. YZ003-C-C-SD-1.0 47 • • • • • • The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.