TI SN74ALVCH16825

SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
D
D
D
D
D
D
DGG OR DL PACKAGE
(TOP VIEW)
Member of the Texas Instruments
Widebus Family
EPIC  (Enhanced-Performance Implanted
CMOS) Submicron Process
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Latch-Up Performance Exceeds 250 mA Per
JESD 17
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Package Options Include Plastic 300-mil
Shrink Small-Outline (DL) and Thin Shrink
Small-Outline (DGG) Packages
1OE1
1Y1
1Y2
GND
1Y3
1Y4
VCC
1Y5
1Y6
1Y7
GND
1Y8
1Y9
GND
GND
2Y1
2Y2
GND
2Y3
2Y4
2Y5
VCC
2Y6
2Y7
GND
2Y8
2Y9
2OE1
description
This 18-bit buffer and line driver is designed for
1.65-V to 3.6-V VCC operation.
This
SN74ALVCH16825
improves
the
performance and density of 3-state memory
address drivers, clock drivers, and bus-oriented
receivers and transmitters.
The device can be used as two 9-bit buffers or one
18-bit buffer. It provides true data.
The 3-state control gate is a 2-input AND gate with
active-low inputs so that if either output-enable
(OE1 or OE2) input is high, all nine affected
outputs are in the high-impedance state.
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
1OE2
1A1
1A2
GND
1A3
1A4
VCC
1A5
1A6
1A7
GND
1A8
1A9
GND
GND
2A1
2A2
GND
2A3
2A4
2A5
VCC
2A6
2A7
GND
2A8
2A9
2OE2
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level.
The SN74ALVCH16825 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE
(each 9-bit section)
INPUTS
A
OUTPUT
Y
OE1
OE2
L
L
L
L
L
L
H
H
H
X
X
Z
X
H
X
Z
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
EPIC and Widebus are trademarks of Texas Instruments Incorporated.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
logic symbol†
1
&
1OE1
EN1
56
1OE2
2OE1
2OE2
1A1
1A2
1A3
1A4
1A5
1A6
1A7
1A8
1A9
2A1
2A2
2A2
2A3
2A4
2A5
2A6
2A7
2A8
28
&
29
EN2
55
2
1
54
3
52
5
51
6
49
8
48
9
47
10
45
12
44
13
41
16
2
40
17
38
19
37
20
36
21
34
23
33
24
31
26
30
27
1Y1
1Y2
1Y3
1Y4
1Y5
1Y6
1Y7
1Y8
1Y9
2Y1
2Y2
2Y3
2Y4
2Y5
2Y6
2Y7
2Y8
2Y9
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
1OE1
1OE2
1A1
1
2OE1
56
2OE2
55
2
1Y1
To Eight Other Channels
2
POST OFFICE BOX 655303
2A1
28
29
41
16
To Eight Other Channels
• DALLAS, TEXAS 75265
2Y1
SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Output voltage range, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through each VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA
Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 4.6 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 4)
VCC
VIH
Supply voltage
VCC = 1.65 V to 1.95 V
VCC = 2.3 V to 2.7 V
High-level input voltage
VCC = 2.7 V to 3.6 V
VCC = 1.65 V to 1.95 V
VIL
VI
VO
IOH
Low-level input voltage
MIN
MAX
1.65
3.6
2
0.35 × VCC
0.7
0
0
IOL
Low level output current
Low-level
∆t/∆v
Input transition rise or fall rate
VCC = 1.65 V
VCC = 2.3 V
VCC = 2.7 V
VCC = 3 V
V
0.8
Output voltage
VCC = 2.7 V
VCC = 3 V
V
1.7
Input voltage
High level output current
High-level
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VCC = 1.65 V
VCC = 2.3 V
UNIT
VCC
VCC
V
V
–4
–12
–12
mA
–24
4
12
12
mA
24
10
ns/V
TA
Operating free-air temperature
–40
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
1.65 V to 3.6 V
IOH = –100 µA
IOH = –4 mA
1.65 V
IOH = –6 mA
VOH
IOH = –12 mA
IOH = –24 mA
IOL = 100 µA
IOZ
ICC
∆ICC
Ci
Data inputs
2
2.3 V
1.7
UNIT
2.7 V
2.2
3V
2.4
3V
2
V
0.2
2.3 V
0.4
2.3 V
0.7
2.7 V
0.4
3V
0.55
±5
3.6 V
VI = 0.58 V
VI = 1.07 V
1.65 V
25
1.65 V
–25
VI = 0.7 V
VI = 1.7 V
2.3 V
45
2.3 V
–45
VI = 0.8 V
VI = 2 V
3V
75
3V
–75
V
µA
µA
VI = 0 to 3.6 V‡
3.6 V
±500
VO = VCC or GND
VI = VCC or GND,
3.6 V
±10
µA
3.6 V
40
µA
750
µA
IO = 0
Other inputs at VCC or GND
One input at VCC – 0.6 V,
Control inputs
2.3 V
0.45
IOL = 24 mA
VI = VCC or GND
II(hold)
(
)
MAX
VCC–0.2
1.2
1.65 V
IOL = 12 mA
II
TYP†
1.65 V to 3.6 V
IOL = 4 mA
IOL = 6 mA
VOL
MIN
3 V to 3.6 V
VI = VCC or GND
3.5
33V
3.3
pF
6
Co
Outputs
VO = VCC or GND
3.3 V
7.5
pF
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figures 1 through 3)
PARAMETER
tpd
VCC = 1.8 V
FROM
(INPUT)
TO
(OUTPUT)
A
Y
TYP
§
ten
OE
Y
§
tdis
OE
Y
§
VCC = 2.5 V
± 0.2 V
MIN
MAX
1
POST OFFICE BOX 655303
UNIT
MIN
MAX
4.1
3.9
1
3.4
ns
1
6
5.7
1
4.7
ns
1.2
5.6
4.9
1.3
4.5
ns
• DALLAS, TEXAS 75265
MIN
VCC = 3.3 V
± 0.3 V
MAX
§ This information was not available at the time of publication.
4
VCC = 2.7 V
SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
operating characteristics, TA = 25°C
PARAMETER
Outputs enabled
Power dissipation
capacitance
Cpd
d
VCC = 1.8 V
TYP
†
TEST CONDITIONS
CL = 50 pF,
pF
Outputs disabled
f = 10 MHz
VCC = 2.5 V
TYP
VCC = 3.3 V
TYP
16
18
4
6
†
UNIT
pF
† This information was not available at the time of publication.
PARAMETER MEASUREMENT INFORMATION
VCC = 1.8 V
2 × VCC
S1
1 kΩ
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
1 kΩ
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
VCC/2
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 2.5 V ± 0.2 V
2 × VCC
S1
500 Ω
From Output
Under Test
Open
GND
CL = 30 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VCC
VCC/2
VCC/2
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
VCC/2
VOH
VOH – 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74ALVCH16825
18-BIT BUFFER/DRIVER
WITH 3-STATE OUTPUTS
SCES039C – JULY 1995 – REVISED FEBRUARY 1999
PARAMETER MEASUREMENT INFORMATION
VCC = 2.7 V AND 3.3 V ± 0.3 V
6V
S1
500 Ω
From Output
Under Test
GND
CL = 50 pF
(see Note A)
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
Open
500 Ω
tw
LOAD CIRCUIT
2.7 V
2.7 V
Timing
Input
1.5 V
Input
1.5 V
0V
1.5 V
0V
tsu
VOLTAGE WAVEFORMS
PULSE DURATION
th
2.7 V
Data
Input
1.5 V
1.5 V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
Output
Control
(low-level
enabling)
1.5 V
0V
tPZL
2.7 V
Input
1.5 V
1.5 V
0V
tPLH
1.5 V
tPLZ
3V
1.5 V
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPHL
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH
VOH – 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated