SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data Cool MOS™ Power Transistor Feature VDS @ Tjmax 560 V RDS(on) 0.95 Ω ID 4.5 A • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated P-TO220-3-31 P-TO263-3-2 P-TO220-3-1 • Extreme dv/dt rated • Ultra low effective capacitances 1 • Improved transconductance 2 3 P-TO220-3-31 • P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute) Type Package Ordering Code Marking SPP04N50C3 P-TO220-3-1 Q67040-S4575 04N50C3 SPB04N50C3 P-TO263-3-2 Q67040-S4573 04N50C3 SPA04N50C3 P-TO220-3-31 Q67040-S4572 04N50C3 Maximum Ratings Symbol Parameter Value SPP_B Continuous drain current Unit SPA ID A TC = 25 °C 4.5 4.51) TC = 100 °C 2.8 2.81) ID puls 13.5 13.5 A EAS 130 130 mJ EAR 0.4 0.4 Avalanche current, repetitive tAR limited by Tjmax IAR 4.5 4.5 A Gate source voltage VGS ±20 ±20 V Gate source voltage AC (f >1Hz) VGS ±30 ±30 Power dissipation, TC = 25°C Ptot 50 31 Operating and storage temperature Tj , Tstg Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse ID=3.4A, VDD =50V Avalanche energy, repetitive tAR limited by Tjmax2) ID=4.5A, VDD =50V Page 1 -55...+150 W °C 2003-10-07 Final data SPP04N50C3, SPB04N50C3 SPA04N50C3 Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 50 V/ns Values Unit V DS = 400 V, I D = 4.5 A, Tj = 125 °C Thermal Characteristics Parameter Symbol min. typ. max. Thermal resistance, junction - case RthJC - - 2.5 Thermal resistance, junction - case, FullPAK RthJC_FP - - 4 Thermal resistance, junction - ambient, leaded RthJA - - 62 Thermal resistance, junction - ambient, FullPAK RthJA_FP - - 80 SMD version, device on PCB: RthJA @ min. footprint - - 62 @ 6 cm 2 cooling area 3) - 35 - - - 260 Soldering temperature, Tsold K/W °C 1.6 mm (0.063 in.) from case for 10s 4) Electrical Characteristics, at T j=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS V GS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS V GS=0V, ID=4.5A Values Unit min. typ. max. 500 - - - 600 - 2.1 3 3.9 V breakdown voltage Gate threshold voltage VGS(th) ID=200µA, VGS=VDS Zero gate voltage drain current I DSS V DS=500V, VGS=0V, Gate-source leakage current I GSS Drain-source on-state resistance RDS(on) Gate input resistance RG µA Tj=25°C - 0.1 1 Tj=150°C - - 100 V GS=20V, VDS=0V - - 100 Ω V GS=10V, ID=2.8A Tj=25°C - 0.85 0.95 Tj=150°C - 2.3 - f=1MHz, open drain - 1.4 - Page 2 nA 2003-10-07 Final data SPP04N50C3, SPB04N50C3 SPA04N50C3 Electrical Characteristics Parameter Transconductance Symbol g fs Conditions V DS≥2*I D*RDS(on)max, Values Unit min. typ. max. - 4.4 - S pF ID=2.8A Input capacitance Ciss V GS=0V, V DS=25V, - 470 - Output capacitance Coss f=1MHz - 160 - Reverse transfer capacitance Crss - 15 - - 27 - - 44 - Effective output capacitance, 5) Co(er) V GS=0V, energy related V DS=0V to 400V Effective output capacitance, 6) Co(tr) time related Turn-on delay time td(on) V DD=350V, V GS=0/10V, - 10 - Rise time tr ID=4.5A, - 5 - Turn-off delay time td(off) RG=18Ω - 70 - Fall time tf - 10 - - 2.2 - - 10 - - 22 - - 5 - ns Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Qgd Gate charge total Qg V DD=400V, ID=4.5A V DD=400V, ID=4.5A, nC V GS=0 to 10V Gate plateau voltage V(plateau) V DD=400V, ID=4.5A V 1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f. 3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4Soldering temperature for TO-263: 220°C, reflow 5C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 6C o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS. Page 3 2003-10-07 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data Electrical Characteristics Parameter Symbol Inverse diode continuous IS Conditions Values Unit min. typ. max. - - 4.5 - - 13.5 TC=25°C A forward current Inverse diode direct current, I SM pulsed Inverse diode forward voltage VSD VGS =0V, I F=IS - 1 1.2 V Reverse recovery time t rr VR =400V, IF=IS , - 280 - ns Reverse recovery charge Q rr diF/dt=100A/µs - 2.3 - µC Peak reverse recovery current I rrm - 16 - A Peak rate of fall of reverse di rr/dt - 860 - A/µs Tj=25°C recovery current Typical Transient Thermal Characteristics Symbol Value Unit SPP_B SPA Rth1 0.039 0.039 Rth2 0.074 Rth3 Symbol Value SPP_B SPA Cth1 0.00007347 0.00007347 Ws/K 0.074 Cth2 0.0002831 0.0002831 0.132 0.132 Cth3 0.0004062 0.0004062 Rth4 0.555 0.272 Cth4 0.001215 0.001215 Rth5 0.529 0.559 Cth5 0.00276 0.005633 Rth6 0.169 2.523 Cth6 0.029 0.412 Tj K/W Unit R th1 R th,n T case E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Page 4 2003-10-07 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data 1 Power dissipation 2 Power dissipation FullPAK Ptot = f (TC) Ptot = f (TC) 55 SPP04N50C3 35 W W 45 25 Ptot Ptot 40 35 20 30 25 15 20 10 15 10 5 5 0 0 20 40 60 80 100 120 °C 0 0 160 20 40 60 80 100 120 TC 3 Safe operating area 4 Safe operating area FullPAK ID = f ( V DS ) ID = f (VDS) parameter : D = 0 , TC =25°C parameter: D = 0, TC = 25°C 10 2 °C 160 TC 10 2 10 1 10 1 ID A ID A 10 0 10 -1 10 -2 0 10 10 0 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC 10 1 10 -1 10 2 V VDS 10 3 Page 5 10 -2 0 10 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC 10 1 10 2 10 V VDS 2003-10-07 3 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data 5 Transient thermal impedance 6 Transient thermal impedance FullPAK ZthJC = f (t p) ZthJC = f (t p) parameter: D = tp/T parameter: D = tp/t 1 10 10 1 K/W K/W ZthJC 10 0 ZthJC 10 0 10 -1 10 -1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -2 10 -3 -7 10 10 -6 10 -5 10 -4 10 -3 s tp D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -2 10 10 -3 -7 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 10 -1 tp 7 Typ. output characteristic 8 Typ. output characteristic ID = f (VDS); Tj=25°C ID = f (VDS); Tj=150°C parameter: tp = 10 µs, VGS parameter: tp = 10 µs, VGS 16 9 A 20V 8V 7V 6.5V A 20V 10V 7V 6.5V 12 7 6V 6 10 ID ID 1 s 10 6V 5.5V 5 8 4 5.5V 5V 6 3 4 5V 2 4.5V 4.5V 2 1 4V 4V 0 0 5 10 15 V 25 VDS 0 0 5 10 15 V 25 VDS Page 6 2003-10-07 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data 9 Typ. drain-source on resistance 10 Drain-source on-state resistance RDS(on)=f(ID) RDS(on) = f (Tj) parameter: Tj=150°C, VGS parameter : ID = 2.8 A, VGS = 10 V 10 5.5 Ω 4V 20V 8V 7V 6.5V 6V 8 RDS(on) 4.5V 7 5V 4.5 RDS(on) Ω SPP04N50C3 4 3.5 6 3 5 2.5 5.5V 2 4 1.5 98% 3 1 2 1 0 typ 0.5 1 2 3 4 5 6 A 7 0 -60 9 -20 20 60 °C 100 ID 180 Tj 11 Typ. transfer characteristics 12 Typ. gate charge ID= f ( VGS ); VDS≥ 2 x ID x RDS(on)max VGS = f (Q Gate) parameter: ID = 4.5 A pulsed parameter: tp = 10 µs 16 16 A V SPP04N50C3 25°C 12 10 VGS ID 12 150°C 8 8 6 6 4 4 2 2 0 0 1 2 3 4 5 6 7 8 V 10 0,2 VDS max 10 0 0 4 8 12 16 0,8 VDS max 20 24 nC 32 Q Gate VGS Page 7 2003-10-07 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data 13 Forward characteristics of body diode 14 Avalanche SOA IF = f (VSD) IAR = f (tAR) parameter: Tj , tp = 10 µs par.: Tj ≤ 150 °C 2 SPP04N50C3 10 5 A A 4 T j(START)=25°C 3.5 IF IAR 10 1 3 2.5 2 10 T j(START)=125°C 0 1.5 Tj = 25 °C typ Tj = 150 °C typ 1 Tj = 25 °C (98%) Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 0.5 2.4 V 0 -3 10 3 10 -2 10 -1 10 0 10 1 10 2 µs 10 t AR VSD 15 Avalanche energy 16 Drain-source breakdown voltage EAS = f (Tj) V(BR)DSS = f (Tj) 4 par.: ID = 3.4 A, V DD = 50 V 160 600 SPP04N50C3 V V(BR)DSS mJ EAS 120 100 570 560 550 540 530 80 520 510 60 500 490 40 480 470 20 460 0 20 40 60 80 100 120 °C 160 Tj 450 -60 -20 20 60 100 °C 180 Tj Page 8 2003-10-07 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data 17 Avalanche power losses 18 Typ. capacitances PAR = f (f ) C = f (VDS) parameter: E AR=0.4mJ parameter: V GS=0V, f=1 MHz 10 4 200 pF W 10 3 Ciss 125 C PAR 150 10 2 Coss 100 10 1 75 Crss 50 10 0 25 0 4 10 10 5 Hz 10 6 10 -1 0 100 200 300 V 500 VDS f 19 Typ. Coss stored energy Eoss=f(VDS) 3.5 µJ Eoss 2.5 2 1.5 1 0.5 0 0 100 200 300 V 500 VDS Page 9 2003-10-07 Final data SPP04N50C3, SPB04N50C3 SPA04N50C3 Definition of diodes switching characteristics Page 10 2003-10-07 SPP04N50C3, SPB04N50C3 SPA04N50C3 Final data P-TO-220-3-1 B 4.44 0.05 9.98 ±0.48 2.8 ±0.2 1.27±0.13 13.5 ±0.5 C A 5.23 ±0.9 15.38 ±0.6 10 ±0.4 3.7 ±0.2 0.5 ±0.1 3x 0.75 ±0.1 2.51±0.2 1.17 ±0.22 2x 2.54 0.25 M A B C All metal surfaces tin plated, except area of cut. Metal surface min. x=7.25, y=12.3 P-TO-263-3-2 (D 2-PAK) Page 11 2003-10-07 Final data SPP04N50C3, SPB04N50C3 SPA04N50C3 P-TO-220-3-31 (FullPAK) Please refer to mounting instructions (application note AN-TO220-3-31-01) Page 12 2003-10-07 Final data SPP04N50C3, SPB04N50C3 SPA04N50C3 Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 13 2003-10-07