SITRONIX ST7528

ST
Sitronix
ST7528
16 Gray Scale Dot Matrix LCD Controller/Driver
INTRODUCTION
The ST7528 is a driver & controller LSI for 16-level gray scale graphic dot-matrix liquid crystal display systems. It contains
2 Mode (160X100,132X128) for Segment and Common driver circuits. This chip is connected directly to a microprocessor,
accepts Serial Peripheral Interface (SPI), IIC or 8-bit parallel display data and stores in an on-chip display data RAM of 160
x 129 x 4 bits. It performs display data RAM read/write operation with no external operating clock to minimize power
consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a
display system with the fewest components.
FEATURES
16-level (White Mode ~ Dark Mode) Gray Scale Display with PWM and FRC Methods
DDRAM data [ 4n : 4n+3 ]
Gray Scale
4n
4n + 1
4n + 2
4n+ 3
0
0
0
0
White Mode
0
0
0
1
Gray Level 1
0
0
1
0
Gray Level 2
:
:
:
:
:
:
:
:
:
:
1
1
0
1
Gray Level 13
1
1
1
0
Gray Level 14
1
1
1
1
Dark
(Mode0: Accessible column address, n = 0, 1, 2, ……, 129, 130, 131)
(Mode1: Accessible column address, n = 0, 1, 2, ……, 157, 158, 159)
Driver Output Circuits
−Mode 0 : 132 segment outputs / 128+1 common outputs (16-level gray scale)
−Mode 1: 160 segment outputs / 100+1 common outputs (16-level gray scale)
Applicable Display Ratios
− Various partial display
− Partial window moving & data scrolling
On-chip Display Data RAM
− Capacity: 129 × 160 × 4 = 82,560 bits
−16-Gray Level display dot is illuminated by 4 bit data control
Ver2.3
1/97
2007/1/3
ST7528
Microprocessor Interface
− 8-bit parallel bi-directional interface with 6800-series or 8080-series
− 4-line serial interface (4-line-SIF)
− 3-line serial interface (3-line-SIF)
− IIC serial interface
On-chip Low Power Analog Circuit
− On-chip oscillator circuit
− Voltage converter (x3, x4, x5 or x6)
− Voltage regulator (temperature coefficient: -0.125%/°C, or external input)
− On-chip electronic contrast control function (64 steps X 8 )
− Voltage follower (LCD bias: 1/5 to 1/12)
Operating Voltage Range
− Supply voltage (VDD): 1.8 to 3.3V
(VDD2): 2.4 to 3.3V
− LCD driving voltage (VLCD = V0 - VSS): 3.5 to 15.0 V
Package Type
− Application for COG
ST7528
6800 , 8080 ,
4-Line , 3-Line interface
(without IIC interface)
ST7528i
IIC interface
Note1: we would like to recommend to use the external VOUT when the panel is large than 1.8 inch
Note2: we would like to recommend to set lower VOP than 12 voltage, when the panel size is large like 1.6 inch
Ver2.3
2/97
2007/1/3
ST7528
ST7528 Pad Arrangement (COG)
Chip Size: 12,575 um × 1,220 um
Bump Pitch:
PAD NO 1 ~ 229, 353 ~ 385: 55 um (COM/SEG), PAD NO 230 ~ 338: 75 um (I/O) ,PAD NO 339 ~ 352: 75 um (I/O) ,
PAD 338~339: 81um.
Bump Size:
PAD NO 1 ~ 196, 218 ~ 229, 353 ~ 364 : 35(x) um ×96(y) um
PAD NO 197 ~ 217, 365 ~ 385 : 96(x) um ×35(y) um
PAD NO 230 ~ 352 : 55(x)um ×60(y) um
Bump Height: 17 um (Typical)
Chip Thickness: 635 um
Ver2.3
3/97
2007/1/3
ST7528
Pad Center Coordinates
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
1
COM30
COM16
5095
556
2
COM29
COM15
5040
556
3
COM28
COM14
4985
556
4
COM27
COM13
4930
556
5
COM26
COM12
4875
556
6
COM25
COM11
4820
556
7
COM24
COM10
4765
556
8
COM23
COM9
4710
556
9
COM22
COM8
4655
556
10
COM21
COM7
4600
556
11
COM20
COM6
4545
556
12
COM19
COM5
4490
556
13
COM18
COM4
4435
556
14
COM17
COM3
4380
556
15
COM16
COM2
4325
556
16
COM15
COM1
4270
556
17
COM14
COM0
4215
556
18
COM13
COMS1
4160
556
19
COM12
SEG0
4105
556
20
COM11
SEG1
4050
556
21
COM10
SEG2
3995
556
22
COM9
SEG3
3940
556
23
COM8
SEG4
3885
556
24
COM7
SEG5
3830
556
25
COM6
SEG6
3775
556
26
COM5
SEG7
3720
556
27
COM4
SEG8
3665
556
28
COM3
SEG9
3610
556
29
COM2
SEG10
3555
556
30
COM1
SEG11
3500
556
31
COM0
SEG12
3445
556
32
COMS1
SEG13
3390
556
33
SEG0
SEG14
3335
556
Ver2.3
4/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
34
SEG1
SEG15
3280
556
35
SEG2
SEG16
3225
556
36
SEG3
SEG17
3170
556
37
SEG4
SEG18
3115
556
38
SEG5
SEG19
3060
556
39
SEG6
SEG20
3005
556
40
SEG7
SEG21
2950
556
41
SEG8
SEG22
2895
556
42
SEG9
SEG23
2840
556
43
SEG10
SEG24
2785
556
44
SEG11
SEG25
2730
556
45
SEG12
SEG26
2675
556
46
SEG13
SEG27
2620
556
47
SEG14
SEG28
2565
556
48
SEG15
SEG29
2510
556
49
SEG16
SEG30
2455
556
50
SEG17
SEG31
2400
556
51
SEG18
SEG32
2345
556
52
SEG19
SEG33
2290
556
53
SEG20
SEG34
2235
556
54
SEG21
SEG35
2180
556
55
SEG22
SEG36
2125
556
56
SEG23
SEG37
2070
556
57
SEG24
SEG38
2015
556
58
SEG25
SEG39
1960
556
59
SEG26
SEG40
1905
556
60
SEG27
SEG41
1850
556
61
SEG28
SEG42
1795
556
62
SEG29
SEG43
1740
556
63
SEG30
SEG44
1685
556
64
SEG31
SEG45
1630
556
65
SEG32
SEG46
1575
556
66
SEG33
SEG47
1520
556
67
SEG34
SEG48
1465
556
68
SEG35
SEG49
1410
556
Ver2.3
5/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
69
SEG36
SEG50
1355
556
70
SEG37
SEG51
1300
556
71
SEG38
SEG52
1245
556
72
SEG39
SEG53
1190
556
73
SEG40
SEG54
1135
556
74
SEG41
SEG55
1080
556
75
SEG42
SEG56
1025
556
76
SEG43
SEG57
970
556
77
SEG44
SEG58
915
556
78
SEG45
SEG59
860
556
79
SEG46
SEG60
805
556
80
SEG47
SEG61
750
556
81
SEG48
SEG62
695
556
82
SEG49
SEG63
640
556
83
SEG50
SEG64
585
556
84
SEG51
SEG65
530
556
85
SEG52
SEG66
475
556
86
SEG53
SEG67
420
556
87
SEG54
SEG68
365
556
88
SEG55
SEG69
310
556
89
SEG56
SEG70
255
556
90
SEG57
SEG71
200
556
91
SEG58
SEG72
145
556
92
SEG59
SEG73
90
556
93
SEG60
SEG74
35
556
94
SEG61
SEG75
-19
556
95
SEG62
SEG76
-74
556
96
SEG63
SEG77
-129
556
97
SEG64
SEG78
-184
556
98
SEG65
SEG79
-239
556
99
SEG66
SEG80
-294
556
100
SEG67
SEG81
-349
556
101
SEG68
SEG82
-404
556
102
SEG69
SEG83
-459
556
103
SEG70
SEG84
-514
556
Ver2.3
6/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
104
SEG71
SEG85
-569
556
105
SEG72
SEG86
-624
556
106
SEG73
SEG87
-679
556
107
SEG74
SEG88
-734
556
108
SEG75
SEG89
-789
556
109
SEG76
SEG90
-844
556
110
SEG77
SEG91
-899
556
111
SEG78
SEG92
-954
556
112
SEG79
SEG93
-1009
556
113
SEG80
SEG94
-1064
556
114
SEG81
SEG95
-1119
556
115
SEG82
SEG96
-1174
556
116
SEG83
SEG97
-1229
556
117
SEG84
SEG98
-1284
556
118
SEG85
SEG99
-1339
556
119
SEG86
SEG100
-1394
556
120
SEG87
SEG101
-1449
556
121
SEG88
SEG102
-1504
556
122
SEG89
SEG103
-1559
556
123
SEG90
SEG104
-1614
556
124
SEG91
SEG105
-1669
556
125
SEG92
SEG106
-1724
556
126
SEG93
SEG107
-1779
556
127
SEG94
SEG108
-1834
556
128
SEG95
SEG109
-1889
556
129
SEG96
SEG110
-1944
556
130
SEG97
SEG111
-1999
556
131
SEG98
SEG112
-2054
556
132
SEG99
SEG113
-2109
556
133
SEG100
SEG114
-2164
556
134
SEG101
SEG115
-2219
556
135
SEG102
SEG116
-2274
556
136
SEG103
SEG117
-2329
556
137
SEG104
SEG118
-2384
556
138
SEG105
SEG119
-2439
556
Ver2.3
7/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
139
SEG106
SEG120
-2494
556
140
SEG107
SEG121
-2549
556
141
SEG108
SEG122
-2604
556
142
SEG109
SEG123
-2659
556
143
SEG110
SEG124
-2714
556
144
SEG111
SEG125
-2769
556
145
SEG112
SEG126
-2824
556
146
SEG113
SEG127
-2879
556
147
SEG114
SEG128
-2934
556
148
SEG115
SEG129
-2989
556
149
SEG116
SEG130
-3044
556
150
SEG117
SEG131
-3099
556
151
SEG118
SEG132
-3154
556
152
SEG119
SEG133
-3209
556
153
SEG120
SEG134
-3264
556
154
SEG121
SEG135
-3319
556
155
SEG122
SEG136
-3374
556
156
SEG123
SEG137
-3429
556
157
SEG124
SEG138
-3484
556
158
SEG125
SEG139
-3539
556
159
SEG126
SEG140
-3594
556
160
SEG127
SEG141
-3649
556
161
SEG128
SEG142
-3704
556
162
SEG129
SEG143
-3759
556
163
SEG130
SEG144
-3814
556
164
SEG131
SEG145
-3869
556
165
COM64
SEG146
-3924
556
166
COM65
SEG147
-3979
556
167
COM66
SEG148
-4034
556
168
COM67
SEG149
-4089
556
169
COM68
SEG150
-4144
556
170
COM69
SEG151
-4199
556
171
COM70
SEG152
-4254
556
172
COM71
SEG153
-4309
556
173
COM72
SEG154
-4364
556
Ver2.3
8/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
174
COM73
SEG155
-4419
556
175
COM74
SEG156
-4474
556
176
COM75
SEG157
-4529
556
177
COM76
SEG158
-4584
556
178
COM77
SEG159
-4639
556
179
COM78
COM50
-4694
556
180
COM79
COM51
-4749
556
181
COM80
COM52
-4804
556
182
COM81
COM53
-4859
556
183
COM82
COM54
-4914
556
184
COM83
COM55
-4969
556
185
COM84
COM56
-5024
556
186
COM85
COM57
-5079
556
187
COM86
COM58
-5134
556
188
COM87
COM59
-5189
556
189
COM88
COM60
-5244
556
190
COM89
COM61
-5299
556
191
COM90
COM62
-5354
556
192
COM91
COM63
-5409
556
193
COM92
COM64
-5464
556
194
COM93
COM65
-5519
556
195
COM94
COM66
-5574
556
196
COM95
COM67
-5629
556
197
COM96
COM68
-6233
550
198
COM97
COM69
-6233
495
199
COM98
COM70
-6233
440
200
COM99
COM71
-6233
385
201
COM100
COM72
-6233
330
202
COM101
COM73
-6233
275
203
COM102
COM74
-6233
220
204
COM103
COM75
-6233
165
205
COM104
COM76
-6233
110
206
COM105
COM77
-6233
55
207
COM106
COM78
-6233
0
208
COM107
COM79
-6233
-55
Ver2.3
9/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
209
COM108
COM80
-6233
-110
210
COM109
COM81
-6233
-165
211
COM110
COM82
-6233
-220
212
COM111
COM83
-6233
-275
213
COM112
COM84
-6233
-330
214
COM113
COM85
-6233
-385
215
COM114
COM86
-6233
-440
216
COM115
COM87
-6233
-495
217
COM116
COM88
-6233
-550
218
COM117
COM89
-5417
-556
219
COM118
COM90
-5362
-556
220
COM119
COM91
-5307
-556
221
COM120
COM92
-5252
-556
222
COM121
COM93
-5197
-556
223
COM122
COM94
-5142
-556
224
COM123
COM95
-5087
-556
225
COM124
COM96
-5032
-556
226
COM125
COM97
-4977
-556
227
COM126
COM98
-4922
-556
228
COM127
COM99
-4867
-556
229
COMS2
COMS2
-4812
-556
230
T9
T9
-4728
-574
231
VDD
VDD
-4653
-574
232
PS0
PS0
-4578
-574
233
PS1
PS1
-4503
-574
234
PS2
PS2
-4428
-574
235
VSS
VSS
-4353
-574
236
CSB
CSB
-4278
-574
237
CSB
CSB
-4203
-574
238
RST
RST
-4128
-574
239
RST
RST
-4053
-574
240
A0
A0
-3978
-574
241
A0
A0
-3903
-574
242
RW_WR
RW_WR
-3828
-574
243
RW_WR
RW_WR
-3753
-574
Ver2.3
10/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
244
E_RD
E_RD
-3678
-574
245
E_RD
E_RD
-3603
-574
246
D0
D0
-3528
-574
247
D0
D0
-3453
-574
248
D1
D1
-3378
-574
249
D1
D1
-3303
-574
250
D2
D2
-3228
-574
251
D2
D2
-3153
-574
252
D3
D3
-3078
-574
253
D3
D3
-3003
-574
254
D4
D4
-2928
-574
255
D4
D4
-2853
-574
256
D5
D5
-2778
-574
257
D5
D5
-2703
-574
258
D6
D6
-2628
-574
259
D6
D6
-2553
-574
260
D7
D7
-2478
-574
261
D7
D7
-2403
-574
262
VDD
VDD
-2328
-574
263
VDD
VDD
-2253
-574
264
VDD
VDD
-2178
-574
265
VDD
VDD
-2103
-574
266
VDD
VDD
-2028
-574
267
VDD
VDD
-1953
-574
268
VDD2
VDD2
-1878
-574
269
VDD2
VDD2
-1803
-574
270
VDD2
VDD2
-1728
-574
271
VDD2
VDD2
-1653
-574
272
VDD2
VDD2
-1578
-574
273
VDD2
VDD2
-1503
-574
274
VDD2
VDD2
-1428
-574
275
VDD2
VDD2
-1353
-574
276
VDD2
VDD2
-1278
-574
277
VDD2
VDD2
-1203
-574
278
VDD2
VDD2
-1128
-574
Ver2.3
11/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
279
VDD2
VDD2
-1053
-574
280
VDD2
VDD2
-978
-574
281
VDD2
VDD2
-903
-574
282
VDD2
VDD2
-828
-574
283
VDD2
VDD2
-753
-574
284
VSS2
VSS2
-678
-574
285
VSS2
VSS2
-603
-574
286
VSS2
VSS2
-528
-574
287
VSS2
VSS2
-453
-574
288
VSS2
VSS2
-378
-574
289
VSS2
VSS2
-303
-574
290
VSS2
VSS2
-228
-574
291
VSS2
VSS2
-153
-574
292
VSS2
VSS2
-78
-574
293
VSS2
VSS2
-3
-574
294
VSS2
VSS2
71
-574
295
VSS2
VSS2
146
-574
296
VSS2
VSS2
221
-574
297
VSS2
VSS2
296
-574
298
VSS2
VSS2
371
-574
299
VSS2
VSS2
446
-574
300
VSS
VSS
521
-574
301
VSS
VSS
596
-574
302
VSS
VSS
671
-574
303
VSS
VSS
746
-574
304
VSS
VSS
821
-574
305
VSS
VSS
896
-574
306
MODE
MODE
971
-574
307
TA
TA
1046
-574
308
MF2
MF2
1121
-574
309
MF1
MF1
1196
-574
310
MF0
MF0
1271
-574
311
DS0
DS0
1346
-574
312
DS1
DS1
1421
-574
313
VDD
VDD
1496
-574
Ver2.3
12/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
314
VOUT_OUT
VOUT_OUT
1571
-574
315
VOUT_OUT
VOUT_OUT
1646
-574
316
VOUT_OUT
VOUT_OUT
1721
-574
317
VOUT_OUT
VOUT_OUT
1796
-574
318
VOUT_OUT
VOUT_OUT
1871
-574
319
VOUT_OUT
VOUT_OUT
1946
-574
320
VOUT_IN
VOUT_IN
2021
-574
321
VOUT_IN
VOUT_IN
2096
-574
322
VOUT_IN
VOUT_IN
2171
-574
323
VOUT_IN
VOUT_IN
2246
-574
324
VOUT_IN
VOUT_IN
2321
-574
325
VOUT_IN
VOUT_IN
2396
-574
326
T[8]
T[8]
2471
-574
327
T[7]
T[7]
2546
-574
328
T[6]
T[6]
2621
-574
329
T[5]
T[5]
2696
-574
330
T[4]
T[4]
2771
-574
331
T[3]
T[3]
2846
-574
332
T[2]
T[2]
2921
-574
333
T[1]
T[1]
2996
-574
334
T[0]
T[0]
3071
-574
335
VDD
VDD
3146
-574
336
REF
REF
3221
-574
337
VSS
VSS
3296
-574
338
VEXT
VEXT
3371
-574
339
VDD
VDD
3452
-574
340
INTRS
INTRS
3527
-574
341
VSS
VSS
3602
-574
342
OSC1
OSC1
3677
-574
343
OSC1
OSC1
3752
-574
344
VDD
VDD
3827
-574
345
VR
VR
3902
-574
346
VR
VR
3977
-574
347
V4
V4
4052
-574
348
V3
V3
4127
-574
Ver2.3
13/97
2007/1/3
ST7528
Pad No.
Name for Mode0
Name for Mode1
(132seg x 128com) (160seg x 100com)
X(um)
Y(um)
349
V2
V2
4202
-574
350
V1
V1
4277
-574
351
V0
V0
4352
-574
352
V0
V0
4427
-574
353
COM63
COM49
5339
-556
354
COM62
COM48
5394
-556
355
COM61
COM47
5449
-556
356
COM60
COM46
5504
-556
357
COM59
COM45
5559
-556
358
COM58
COM44
5614
-556
359
COM57
COM43
5669
-556
360
COM56
COM42
5724
-556
361
COM55
COM41
5779
-556
362
COM54
COM40
5834
-556
363
COM53
COM39
5889
-556
364
COM52
COM38
5944
-556
365
COM51
COM37
6233
-550
366
COM50
COM36
6233
-495
367
COM49
COM35
6233
-440
368
COM48
COM34
6233
-385
369
COM47
COM33
6233
-330
370
COM46
COM32
6233
-275
371
COM45
COM31
6233
-220
372
COM44
COM30
6233
-165
373
COM43
COM29
6233
-110
374
COM42
COM28
6233
-55
375
COM41
COM27
6233
0
376
COM40
COM26
6233
55
377
COM39
COM25
6233
110
378
COM38
COM24
6233
165
379
COM37
COM23
6233
220
380
COM36
COM22
6233
275
381
COM35
COM21
6233
330
382
COM34
COM20
6233
385
383
COM33
COM19
6233
440
384
COM32
COM18
6233
495
385
COM31
COM17
6233
550
The tolerance is around +/- 1um. The number under floating point is truncated.
Ver2.3
14/97
2007/1/3
ST7528
BLOCK DIAGRAM
SEG0 TO SEG159
COM0 TO COM128
VDD
V0
V1
V2
V3
V4
SEGMENT DRIVERS
COMMON DRIVERS
VSS
DATA LATCHES
COMMON
OUTPUT
CONTROLLER
CIRCUIT
V/F
Circuit
V0
VR
INTRS
VEXT
REF
FRC/PWM FUNCTION CIRCUIT
RESET
V/R
Circuit
OSC1
OSCILLATOR
DISPLAY DATA RAM
(DDRAM)
[160X129X4]
TIMING
GENERATOR
DISPLAY
ADDRESS
COUNTER
V/C
Circuit
ADDRESS COUNTER
VOUT_IN
VOUT_OUT
VDD2
VSS2
DATA
REGISTER
INSTRUCTION
REGISTER
BUS
HOLDER
INSTRUCTION
DECODER
MPU INTERFACE(PARALLEL & SERIAL)
MODE
DB0
DB1
DB2
DB3
DB4
DB5
15/97
DB6(SI)
DB7(SCL)
E_RD
RW_WR
A0
CSB
/RST
PS0
PS1
PS2
DS0
DS1
MF0
MF1
MF2
Ver2.3
2007/1/3
ST7528
PIN DESCRIPTION
POWER SUPPLY
Power Supply Pin Description
Name
I/O
Description
VDD
Supply
Power supply
VSS
Supply
Ground
VSS2
Supply
Ground
VDD2
Supply
Power supply
VOUT_OUT
Supply
If the internal Vout voltage generator is used, the VOUT_IN & VOUT_OUT must be connected
together. If an external supply is used, this pin must be left open.
An external Vout supply voltage can be supplied using the VOUT_IN pad. In this case,
VOUT_OUT has to be left open, and the internal voltage generator has to be programmed to zero.
(SET register VC=0)
Supply
VOUT_IN
V0
I/O
LCD driver supply voltages
V1
The voltage determined by LCD pixel is impedance-converted by an operational amplifier for
V2
application. V1,V2,V3,V4 need the capacitor between with VSS Voltages should have the
V3
following relationship;
V4
V0 ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS
When the internal power circuit is active, these voltages are generated as following table
according to the state of LCD bias.
LCD bias
V1
V2
V3
V4
1/N bias
(N-1) / N x V0
(N-2) / N x V0
(2/N) x V0
(1/N) x V0
NOTE: N = 5 to 12
LCD DRIVER SUPPLY
LCD Driver Supply Pin Description
Name
I/O
Description
VR
I
V0 voltage adjustment pin
It is valid only when on-chip resistors are not used (INTRS = "L")
When using internal resistors (INTRS = "H"), open this pin
REF
I
Selects the external VREF voltage via the VEXT pin
− REF = “H”: using the internal VREF
− REF = “L”: using the external VREF
VEXT
I
Externally input reference voltage (VREF) for the internal voltage regulator
It is valid only when REF is "L"
When using internal voltage regulator, this pin must be open
OSC1
Ver2.3
I
External OSC input pin, when using internal clock oscillator, connect OSC1 to VDD.
16/97
2007/1/3
ST7528
SYSTEM CONTROL
System Control Pin Description
Name
I/O
Description
INTRS
I
Internal resistor select pin
This pin selects the resistors for adjusting V0 voltage level
− INTRS = "H": use the internal resistors.
− INTRS = "L": use the external resistors
VR pin and external resistive divider control V0 voltage
T[0] ~ T[9]
O
Test pins
Don’ t use these pins.
Please Open these pins.
TA
I
Test pin
TA must connect to VDD.
Reserve
X
This pin must be OPEN
MODE
I
MODE = 0
: 129 com X 132 SEG
MODE = 1
: 101 com X 160 SEG
MF[2:0]
I
Manufacturer ID code for reference, suggestion setting [ MF2.MF1.MF0 = 0.0.0 ]
DS[1:0]
I
Display size ID code for reference, suggestion setting [ DS1.DS0 = 1.0 or DS1.DS0 = 0.0]
Ver2.3
17/97
2007/1/3
ST7528
MICROPROCESSOR INTERFACE
Microprocessor Interface Pin Description
Name
I/O
Description
RST
I
Reset input pin
When RESETB is “L”, initialization is executed.
PS[2:0]
I
Parallel / Serial data input select input
PS2
PS1
PS0
Interface
Data /
mode
Command
Data
Read/Write
Serial clock
L
L
H
Parallel 80
A0
DB0 to DB7
RD / WR
-
L
H
H
Parallel 68
A0
DB0 to DB7
E / RW
-
L
L
L
3Line Serial
-
SID (DB7)
Write only
SCLK (DB6)
L
H
L
4Line Serial
A0
SID (DB7)
Write only
SCLK (DB6)
H
L
L
IIC Serial
-
SDA
Read/Write
SCL
*NOTE: In 4-Line, 3-Line and IIC serial mode, it is impossible to read data from the on-chip RAM.
In 3-Line or 4-Line interface:
DB0 to DB5, E_RD and RW_WR must be fixed to “H” or “L”.
In IIC and 3-Line interface:
A0 must be fixed to “H” or “L”
Microprocessor interface select input pin
− PS[2:0]=001: 8080-series parallel MPU interface
− PS[2:0]=011: 68000-series parallel MPU interface
− PS[2:0]=000: 3-Line-SPI MPU interface
− PS[2:0]=010: 4-Line-SPI MPU interface
− PS[2:0]=100: IIC-SPI MPU interface
CSB
I
Chip select input pins
Data/instruction I/O is enabled only when CSB is "L". When chip select is non-active, DB0 to DB7
may be high impedance.
A0
I
Register select input pin
− A0 = "H": DB0 to DB7 are display data
− A0 = "L": DB0 to DB7 are control data
RW_WR
I
Read / Write execution control pin
PS1
MPU type
RW_WR
Description
H
6800-series
RW
Read / Write control input pin
RW = “H” : read
RW = “L” : write
L
8080-series
/WR
Write enable clock input pin
The data on DB0 to DB7 are latched at the rising edge of
the /WR signal.
Ver2.3
18/97
2007/1/3
ST7528
Microprocessor Interface Pin Description (Continued)
Name
I/O
Description
E_RD
I
Read / Write execution control pin
PS1
MPU Type
E_RD
Description
H
6800-series
E
Read / Write control input pin
When RW = “H”: E is “H”, DB0 to DB7 are in an
output status.
When RW = “L”: The data on DB0 to DB7 are
latched at the falling edge of the E signal.
L
8080-series
/RD
Read enable clock input pin
When /RD is “L”, DB0 to DB7 are in an output status.
DB0
I/O
8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus.
to
When chip select is not active (CSB=H), DB0 to DB7 may be high impedance.
DB7
When the 3-Line/4-Line serial interface selected (PS[2:0] = "000" or “010”);
− DB0 to DB5: high impedance
− DB6: serial input clock (SCLK)
− DB7: serial input data (SID)
When chip select is not active, D0 to D7 is high impedance.
When the IIC serial interface selected (PS[2:0] = "100");
D7: serial clock input (SCL)
D6 , D5 , D4: serial input data (SDA_IN)
D3, D2: (SDA_OUT) serial data acknowledge for the IIC interface. By connecting SDA_OUT to
SDA_IN externally, the SDA line becomes fully IIC interface compatible. Having the acknowledge
output separated from the serial data line is advantageous in chip on glass (COG) applications. In
COG application where the track resistance from the SDA_OUT pad to the system SDA line can be
significant, a potential divider is generated by the bus pull-up resistor and the ITO track resistance. It
is possible during the acknowledge cycle the ST7528 will not be able to create a valid logic 0 level.
By splitting the SDA_IN input from the SDA_OUT output the device could be used in a mode that
ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is
necessary to minimize the track resistance from the SDA_OUT pad to the system SDA line to
guarantee a valid low level.
D6, D5, ….D2 must be connected together (SDA)
D1, D0: Is slave address (SA) bit1, 0, must connect to Vdd or Vss.
When chip select is not active, D0 to D7 is high impedance.
Ver2.3
19/97
2007/1/3
ST7528
LCD DRIVER OUTPUTS
LCD Driver Output Pin Description
Name
I/O
Description
SEG0
O
LCD segment driver outputs
to
The display data and the M signal control the output voltage of segment driver.
SEG159
Display data
M (Internal)
H
Normal display
Reverse display
H
V0
V2
H
L
VSS
V3
L
H
V2
V0
L
L
V3
VSS
VSS
VSS
Power save mode
COM0
O
to
Segment driver output voltage
LCD common driver outputs
The internal scanning data and M signal control the output voltage of common driver.
COM127
Scan data
M (Internal)
Common driver output voltage
H
H
VSS
H
L
V0
L
H
V1
L
L
V4
Power save mode
COMS
O
(COMS1)
VSS
Common output for the icons
The output signals of two pins are same. When not used, these pins should be left open.
ST7528 I/O PIN ITO Resister Limitation
PIN Name
ITO Resister
PS2,PS1,PS0,REF,OCS1,INTRS,Mode, TA
No Limitation
T0…9 , VR(No used) , VEXT(No used)
Floating
Vdd, Vdd2, Vss, Vss2, VOUT_IN , VOUT_OUT,
<100Ω
VR(used) , VEXT(used)
<500Ω
CSB , E , R/W , A0 , D0 …D7
<1KΩ
V1 , V2 , V3 , V4
<500Ω
RST
<10KΩ
In IIC interface: SDA , SCL ITO resister recommend to less than 100 ohm
Ver2.3
20/97
2007/1/3
ST7528
FUNCTIONAL DESCRIPTION
MICROPROCESSOR INTERFACE
Chip Select Input
There is CSB pin for chip selection. The ST7528 can interface with an MPU when CSB is "L". When these pins are set to
any other combination, A0, E_RD, and RW_WR inputs are disabled and DB0 to DB7 are to be high impedance. And, in
case of serial interface, the internal shift register and the counter are reset.
Parallel / Serial Interface
ST7528 has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial
interface is determined by PS pin as shown in Table 1.
Table 1 Parallel / Serial Interface Mode
Type
Parallel
Serial
PS2
PS1
PS0
CSB
L
H
L
L
L
Interface mode
H
CSB
L
L
CSB
3-Line SPI mode
L
H
L
CSB
4-Line SPI mode
H
L
L
CSB
IIC SPI mode
6800-series MPU mode
8080-series MPU mode
Parallel Interface (PS0 = "H")
The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS1 as shown in Table 2.
The type of data transfer is determined by signals at A0, E_RD and RW_WR as shown in Table 3.
Table 2 Microprocessor Selection for Parallel Interface
PS1
CSB
A0
E_RD
RW_WR
DB0 to DB7
MPU bus
H
CSB
A0
E
RW
DB0 to DB7
6800-series
L
CSB
A0
/RD
/WR
DB0 to DB7
8080-series
Table 3 Parallel Data Transfer
Common
6800-series
8080-series
Description
E_RD
RW_WR
E_RD
RW_WR
(E)
(RW)
(/RD)
(/WR)
H
H
H
L
H
Display data read out
H
H
L
H
L
Display data write
L
H
H
L
H
Register status read
L
H
L
H
L
Writes to internal register (instruction)
A0
NOTE: When E_RD pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case,
interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, RW_WR as
in case of 6800-series mode.
Ver2.3
21/97
2007/1/3
ST7528
Serial Interface
3-Line / 4-Line (PS[2:0] = "000" or “010”)
When the ST7528 is active (CSB=”L”), serial data (DB7) and serial clock (DB6) inputs are enabled. And not active, the
internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via
software or the Register Select (A0) Pin, based on the setting of PS1. When the A0 pin is used (PS1 = “H”), data is display
data when A0 is high, and command data when A0 is low. When A0 is not used (PS1 =“L”), the LCD Driver will receive
command from MCU by default. If messages on the data pin are data rather than command, MCU should send Data
Direction command (11101000) to control the data direction and then one more command to define the number of data
bytes will be write. After these two continuous commands are sent, the following messages will be data rather than
command. Serial data can be read on the rising edge of serial clock going into DB6 and processed as 8-bit parallel data on
the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes
after the display data string is handled as command data.
In 3-Line mode, default message from MCU is command, the 2 bytes command of Set Data Direction & Display Data
Length must be set before display data send from MCU, after the display data is sent over, the next message is turned to
be command.
Serial mode
PS0
PS1
PS2
CSB
A0
3-Line SPI mode
L
L
L
CSB
No used
4-Line SPI mode
L
H
L
CSB
Used
IIC SPI mode
L
L
H
CSB
No Used
If A0 is not used it must be fixed either “H” or “L”
4-Line SPI Mode (PS0 = "L", PS1 = "H" , PS2 = "L")
/CB
SI
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
SCL
A0
Figure 1 4-line SPI Timing
Ver2.3
22/97
2007/1/3
ST7528
3-Line SPI Mode (PS0 = "L", PS1 = "L",PS2= "L")
To write data to the DDRAM, send Data Direction Command in 3-Line SPI mode. Data is latched at the rising edge of
SCLK. And the DDRAM column address pointer will be increased by one automatically.
(1) Set Page and Column Address.
Set Page Address
:1
0
1
1
P3 P2 P1 P0
Set Column Address MSB
:0
0
0
1
0 Y7 Y6 Y5
Set Column Address LSB
:0
0
0
0
Y4 Y3 Y2 Y1
(2) Set DDC (Data Direction Command) and No. of Data Bytes.
Set Data Direction Command (For SPI mode Only):
1 1
Set No. of Data Bytes
1
0
1
0
0
0
: D7 D6 D5 D4 D3 D2 D1 D0
(3) This figure is example for 104 Data bytes to be transferred.
Figure 2 3-pin SPI Timing (RS is not used)
This command is used in 3-Line SPI mode only. It will be two continuous commands, the first byte controls the data
direction and informs the LCD driver the second byte will be number of data bytes will be write. After these two commands
sending out, the following messages will be data. If data is stopped in transmitting, it is not valid data.
New data will be transferred serially with most significant bit first.
NOTE: In spite of transmission of data, if CSB is disabling, state terminates abnormally. Next state is initialized.
Ver2.3
23/97
2007/1/3
ST7528
IIC Interface (PS0 = "L", PS1 = "L", PS2= "H")
The IIC interface receives and executes the commands sent via the IIC Interface. It also receives RAM data and sends it to
the RAM.
The IIC Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial
Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data
transfer may be initiated only when the bus is not busy.
BIT TRANSFER
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of
the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated
in Figure 3.
START AND STOP CONDITIONS
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock
is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined
as the STOP condition (P). The START and STOP conditions are illustrated in Figure 4.
SYSTEM CONFIGURATION
The system configuration is illustrated in Figure 5.
· Transmitter: the device, which sends the data to the bus.
· Receiver: the device, which receives the data from the bus.
· Master: the device, which initiates a transfer, generates clock signals and terminates a transfer.
· Slave: the device addressed by a master.
· Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message.
· Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed
to do so and the message is not corrupted.
· Synchronization: procedure to synchronize the clock signals of two or more devices.
ACKNOWLEDGE
Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the
transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is
addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an
acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that
acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during
the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master
receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been
clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a
STOP condition. Acknowledgement on the IIC Interface is illustrated in Figure 5.
Ver2.3
24/97
2007/1/3
ST7528
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 3 Bit transfer
SDA
SCL
S
P
START condition
STOP condition
Figure 4 Definition of START and STOP conditions
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL FROM
MASTER
1
2
S
8
9
clock pulse for
acknowledge ment
START
condition
Figure 5 Acknowledgement on the 2-line Interface
Ver2.3
25/97
2007/1/3
ST7528
IIC Interface protocol
The ST7528 supports command, data write addressed slaves on the bus.
Before any data is transmitted on the IIC Interface, the device, which should respond, is addressed first. Four 7-bit slave
addresses (0111100, 0111101, 0111110 and 0111111) are reserved for the ST7528. The least significant bit of the slave
address is set by connecting the input SA0 and SA1 to either logic 0 (VSS) or logic 1 (VDD).
The IIC Interface protocol is illustrated in Figure 6.
Note: ST7528 IIC interface can not use with other slaver IIC device
The sequence is initiated with a START condition (S) from the IIC Interface master, which is followed by the slave address.
All slaves with the corresponding address acknowledge in parallel, all the others will ignore the IIC Interface transfer. After
acknowledgement, one or more command words follow which define the status of the addressed slaves.
A command word consists of a control byte, which defines Co and A0, plus a data byte.
The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a
cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command
or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte,
depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set
to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer
is automatically updated and the data is directed to the intended ST7528 device. If the A0 bit of the last control byte is set to
logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received
commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the IIC
INTERFACE-bus master issues a STOP condition (P).If the R/W bit is set to logic 1 the chip will output data immediately
after the slave address if the A0 bit, which was sent during the last write access, is set to logic 0. If no acknowledge is
generated by the master after a byte, the driver stops transferring data to the master.
Write mode
acknowledgement
from ST7528
S 0 1 1 1 1
slave address
S
A
1
S
A
0
0 A 1
A
0
acknowledgement
from ST7528
control byte
A
acknowledgement
from ST7528
data byte
A 0
A
0
acknowledgement
from ST7528
control byte
2n>=0bytes
command word
Co
data byte
A
1 byte
R/W
acknowledgement
from ST7528
A P
n>=0bytes
MSB.......................LSB
Co
0 1 1 1 1
S
A
1
S
A
0
R
/
W
Co
slave address
A
0
0 0 0 0 0 0 A
control byte
Figure 6 2-line Interface protocol
Co
0
1
Ver2.3
Last control byte to be sent. Only a stream of data bytes is allowed to follow.
This stream may only be terminated by s STOP or RE-START condition.
Another control byte will follow the data byte unless a STOP or RE-START condition is received.
26/97
2007/1/3
ST7528
Busy Flag
The Busy Flag indicates whether the ST7528 is operating or not. When DB7 is "H" in read status operation, this device is in
busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check
this flag before each instruction, which improves the MPU performance.
Data Transfer
The ST7528 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to
on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in Figure 7. And when reading
data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU
reads this stored data from bus holder for the next data read cycle as shown in Figure 8. This means that a dummy read
cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the
data of the specified address cannot be output with the read display data instruction right after the address sets, but can be
output at the second read of data.
M P U s ig n a l
A0
/W R
D 0 to D 7
N
D (N )
D (N + 1 )
D (N + 2 )
D (N + 3 )
N
D (N )
D (N + 1 )
D (N + 2 )
D (N + 3 )
N
N+1
N+2
In t e r n a l s ig n a ls
/W R
B U S H O LD E R
C O LU M N AD D R E S S
N+3
Figure 7 Write Timing
M P U s ig n a l
A 0
/W R
/R D
D 0 to D 7
N
D u m m y
D (N )
D (N + 1 )
I n t e r n a l s ig n a ls
/W R
/R D
B U S
H O LD E R
C O LU M N A D D R E S S
N
N + 1
D (N )
D (N + 1 )
D (N + 2 )
D (N )
D (N + 1 )
D (N + 2 )
Figure 8 Read Timing
Ver2.3
27/97
2007/1/3
ST7528
DISPLAY DATA RAM (DDRAM)
When Mode 0 is selected
The Display Data RAM stores pixel data for the LCD. It is 129-row (17 pages by 8 bits) by 132-column addressable array.
Each pixel can be selected when the page and column addresses are specified. The 129 rows are divided into 16 pages of
8 lines and the 17th page with a single line (DB0 only). Data is read from or written to the 8 lines of each page directly
through DB0 to DB7. The display data of DB0 to DB7 from the microprocessor correspond to the LCD common lines. The
microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently,
data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.
When Mode 1 is selected
The Display Data RAM stores pixel data for the LCD. It is 101-row (13 pages by 8 bits) by 160-column addressable array.
Each pixel can be selected when the page and column addresses are specified. The 101 rows are divided into 12 pages of
8 lines and the 13th page with 4 lines; the Page Address 16 (17th page) is for Icon page with a single line (DB0 only). Data
is read from or written to the 8 lines of each page directly through DB0 to DB7. The display data of DB0 to DB7 from the
microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O
buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being
displayed without causing the LCD flicker.
Page Address Circuit
In mode 0
It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 16 is a special RAM
area for the icons and display data DB0 is only valid. The page address is set from 0 to 15, and Page 16 is for Icon page.
In mode 1
It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 16 is a special RAM
area for the icons and display data DB0 is only valid. The page address is set from 0 to 12, and Page 16 is for Icon page.
Line Address Circuit
In mode 0
This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line
Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of
on-chip RAM. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter
circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL
signal and generates the line address for transferring the 128-bit RAM data to the display data latch circuit. When icon is
enabled by setting icon control register, display data of icons are not scrolled because the MPU can not access Line
Address of icons.
In mode 1
The 7-bit Line Address register is set from 0 ~ 99, If the register is set from 100 ~ 127, It will be no operation. The register
value will be kept in last value.
Ver2.3
28/97
2007/1/3
ST7528
Column Address Circuit
In Mode 0, 1
Column Address Circuit has a 10-bit preset counter that provides Column Address to the Display Data RAM. When set
Column Address MSB / LSB instruction is issued, 8-bit [Y9:Y2] are set and lowest 2 bit, Y[1:0] is set to “00”. Since this
address is increased by 1 each a read or write data instruction, microprocessor can access the display data continuously.
However, the counter is not increased and locked if a non-existing address above 9FH. It is unlocked if a column address is
set again by set Column Address MSB / LSB instruction. And the column address counter is independent of page address
register.
ADC select instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It
is necessary to rewrite the display data on built-in RAM after issuing ADC select instruction. Refer to the following Figure 9
and Figure 10.
(Note: in mode read or write in fourth, the column address will turn to next column address)
MODE 0
SEG
output
Column
address
[Y9:Y2]
Internal
column
address
[Y9:Y0]
Display
data
(ADC=0)
LCD panel
display
Display
data
(ADC=1)
LCD panel
display
SEG
0
SEG
1
SEG
2
SEG
3
…
SEG
128
SEG
129
SEG
130
SEG
131
00H
01H
02H
03H
…
80H
81H
82H
83H
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
…
1
…
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
200 201 202 203 204 205 206 207 208 209 20A 20B 20C 20D 20E 20F
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
…
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
…
…
Figure 9. The Relationship between the Column Address and the Segment Outputs
Ver2.3
29/97
2007/1/3
ST7528
MODE 1
SEG
output
Column
address
[Y9:Y2]
Internal
column
address
[Y9:Y0]
Display
data
(ADC=0)
LCD panel
display
Display
data
(ADC=1)
LCD panel
display
SEG
0
SEG
1
SEG
2
SEG
3
…
SEG
156
SEG
157
SEG
158
SEG
159
00H
01H
02H
03H
…
9CH
9DH
9EH
9FH
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
…
1
…
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
270 271 272 273 274 275 276 277 278 279 27A 27B 27C 27D 27E 27F
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
…
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
…
…
Figure 10. The Relationship between the Column Address and the Segment Outputs
Segment Control Circuit
This circuit controls the display data by the display ON / OFF, reverse display ON / OFF and entire display ON / OFF
instructions without changing the data in the display data RAM.
Ver2.3
30/97
2007/1/3
ST7528
ST7528 Mode-0 Display RAM Mapping diagram
Page Address
Data
D3 D2 D1 D0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
0
1
1
1
1
0
1
1
1
1
ICON
Page 1
Page 2
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
Page 13
Page 14
Page 15
D0
Page 16
COM
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH
COM104
COM105
COM106
COM107
COM108
COM109
COM110
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
80H
COMS
ADC
SEG
0 1
83 00 SEG131
82 01 SEG130
81 02 SEG129
80 03 SEG128
7F 04 SEG127
7E 05 SEG126
7D 06 SEG125
7C 07 SEG124
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
Ver2.3
Page 0
07 7C
06 7D
05 7E
04 7F
03 80
02 81
01 82
00 83
ICON address just
can set by
ICON ON instruction
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
Line
Address
31/97
2007/1/3
ST7528
ST7528 Mode-1 Display RAM Mapping diagram
Page Address
Data
D3 D2 D1 D0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
1
1
1
1
0
0
ICON
Page 1
Page 2
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
Page 10
Page 11
Page 12
D0
Page 16
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H
COM80
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COM96
COM97
COM98
COM99
80H
COMS
SEG
SEG159
SEG158
SEG157
SEG156
SEG155
SEG154
SEG153
SEG152
0 1
00
01
02
03
04
05
06
07
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
32/97
COM
ADC
9F
9E
9D
9C
9B
9A
99
98
98
99
9A
9B
9C
9D
9E
9F
Ver2.3
Page 0
07
06
05
04
03
02
01
00
ICON address just
can set by
ICON ON instruction
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
Line
Address
2007/1/3
ST7528
LCD DISPLAY CIRCUITS
FRC (Frame Rate Control) and PWM (Pulse Width Modulation) Function Circuit
The ST7528 incorporates an FRC function and a PWM function circuit to display a 16-level gray scale. The FRC function
and PWM utilize liquid crystal characteristics whose transmittance is changed by an effective value of applied voltage. The
ST7528 provides palette-registers to assign the desired gray level. These registers are set by the instructions and the
RESETB.
ST7528-- 4FRC & 3FRC / 45PWM, 60PWM
− Gray Scale Table of 4 FRC (Frame Rate Control)
4 FRC setting
(DB7 to DB0)
1st FR (FR1)
Set 1 Frame Pulse Width Modulation Instruction
1st FR (FR1)
Set 1 Frame Pulse Width Modulation Data
2nd FR (FR2)
Set 2
nd
Frame Pulse Width Modulation Instruction
2nd FR (FR2)
Set 2
nd
Frame Pulse Width Modulation Data
st
st
rd
3rd FR (FR3)
Set 3 Frame Pulse Width Modulation Instruction
3rd FR (FR3)
Set 3 Frame Pulse Width Modulation Data
4th FR (FR4)
Set 4 Frame Pulse Width Modulation Instruction
4th FR (FR4)
Set 4 Frame Pulse Width Modulation Data
rd
th
th
− Gray Scale Table of 3 FRC (Frame Rate Control)
3 FRC setting
(DB7 to DB0)
1st FR (FR1)
Set 1 Frame Pulse Width Modulation Instruction
1st FR (FR1)
Set 1 Frame Pulse Width Modulation Data
2nd FR (FR2)
Set 2
nd
Frame Pulse Width Modulation Instruction
2nd FR (FR2)
Set 2
nd
Frame Pulse Width Modulation Data
st
st
rd
3rd FR (FR3)
Set 3 Frame Pulse Width Modulation Instruction
3rd FR (FR3)
Set 3 Frame Pulse Width Modulation Data
4th FR (FR4)
No used
4th FR (FR4)
No used
Ver2.3
rd
33/97
2007/1/3
ST7528
-Gray Scale Table of 45 PWM (Pulse Width Modulation)
Dec
0
1
2
3
4
…
…
…
…
42
43
44
45
…
…
61
62
63
Hex
00
01
02
03
04
…
…
…
…
2A
2B
2C
2D
…
…
3D
3E
3F
6-bits
000000
000001
000010
000011
000100
…
…
…
…
101010
101011
101100
101101
…
…
111101
111110
111111
PWM (on width)
0(0/45)
1/45
2/45
3/45
4/45
…
…
…
…
42/45
43/45
44/45
1(45/45)
…
…
0/45
0/45
0/45
Note
Brighter
Darker
This area is
selected to OFF
level (0/45 level)
-Gray Scale Table of 60 PWM (Pulse Width Modulation)
Dec
0
1
2
3
4
…
…
…
…
…
…
56
57
58
59
60
61
62
63
Hex
00
01
02
03
04
…
…
…
…
…
…
39
3A
3B
3C
39
3D
3E
3F
6-bits
000000
000001
000010
000011
000100
…
…
…
…
…
…
111001
111010
111011
111100
111001
111101
111110
111111
PWM (on width)
0(0/60)
1/60
2/60
3/60
4/60
…
…
…
…
…
…
56/60
57/60
58/60
59/60
1 (60/60)
0/60
0/60
0/60
Note
Brighter
Darker
This area is
selected to OFF
level (0/60 level)
Oscillator
This is on-chip Oscillator without external resistor. When the internal oscillator is used, this pin must connect to VDD; when
the external oscillator is used, this pin could be input pin. This oscillator signal is used in the voltage converter and display
timing generation circuit.
Ver2.3
34/97
2007/1/3
ST7528
Display Timing Generator Circuit
This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation
clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is
generated in synchronization with the display clock and the display data latch circuit latches the128-bit display data in
synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the
access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which
enables the LCD driver to make an AC drive waveform, and also generates an internal common timing signal and start
signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving
waveform and internal timing signal are shown in Figure 11.
128 129
1
2
3
4
5
6
7
8
9
10
11
12
121 122 123 124 125 126 127 128 129 1
2
3
4
5
CL(Internal)
FR(Internal)
M(Internal)
COM0
V0
V1
V2
V3
V4
VSS
COM1
V0
V1
V2
V3
V4
VSS
SEGn
V0
V1
V2
V3
V4
VSS
Figure 11 2-frame AC Driving Waveform (Duty Ratio: 1/129 in mode-0)
128
129
1
2
3
4
5
6
7
8
9
10
11
12
120
121
122
123
124
125
126
127
128
129
1
2
3
4
CL(Internal)
FR(Internal)
M(Internal)
V0
V1
V2
V3
V4
Vss
COM0
V0
V1
V2
V3
V4
Vss
COM1
V0
V1
V2
V3
V4
Vss
SEGn
Figure 12 N-Line Inversion Driving Waveform (N=5, Duty Ratio=1/129 in mode-0)
Ver2.3
35/97
2007/1/3
ST7528
LCD DRIVER CIRCUIT
This driver circuit is configured by 129-channel common drivers and 160-channel segment drivers. This LCD panel driver
voltage depends on the combination of display data and M signal.
V DD
V SS
M
COM0
V0
COM1
V1
V2
COM0
COM2
V3
V4
VSS
COM3
COM4
V0
COM5
V1
COM6
V2
COM1
V3
COM7
V4
VSS
COM8
V0
COM9
V1
V2
COM2
COM10
V3
COM11
V4
VSS
COM12
V0
COM13
V1
COM14
V2
SEG0
SEG 0
1
2
3
V3
V4
VSS
4
V0
V1
V2
SEG1
V3
V4
VSS
V0
V1
V2
V3
V4
VSS
COM0 to SEG0
-V4
-V3
-V2
-V1
-V0
V0
V1
V2
V3
V4
VSS
COM0 to SEG1
-V4
-V3
-V2
-V1
-V0
Ver2.3
36/97
2007/1/3
ST7528
Partial Display on LCD
The ST7528 realizes the Partial Display function on LCD with low-ratio driving for saving power consumption and showing
the various display ratio. To show the various display ratio on LCD, LCD driving ratio and bias are programmable via the
instruction. And, built-in power supply circuits are controlled by the instruction for adjusting the LCD driving voltages.
In mode 0 the partial display ratio could be set from 16 ~ 128.
In mode 1 could be set from 16 ~ 100.
If the partial display region is out of the Max. Display range, it would be no operation.
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 13 Reference Example for Partial Display
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 14 Partial Display (Partial Display ratio=16,initial COM0=0)
Ver2.3
37/97
2007/1/3
ST7528
-COM0
-COM1
-COM2
-COM3
-COM4
-COM5
-COM6
-COM7
-COM8
-COM9
-COM10
-COM11
-COM12
-COM13
-COM14
-COM15
-COM16
-COM17
-COM18
-COM19
-COM20
-COM21
-COM22
-COM23
Figure 15 Moving Display (Partial Display ratio=16,Initial COM0=8)
Ver2.3
38/97
2007/1/3
ST7528
POWER SUPPLY CIRCUITS
The Power Supply circuits generate the voltage levels necessary to drive liquid crystal driver circuits with low power
consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage
follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 4
shows the referenced combinations in using Power Supply circuits.
Table 4 Recommended Power Supply Combinations
Power
User setup
V/C
V/R
V/F
circuits
circuits
circuits
111
ON
ON
ON
011
OFF
ON
ON
001
OFF
OFF
ON
OPEN
000
OFF
OFF
OFF
OPEN
control
(VC VR VF)
Only the internal power
supply circuits are used
VOUT_IN
V0
V1 to V4
Without
With
capacitor
capacitor
External
Without
With
input
capacitor
capacitor
External
With
input
capacitor
External
External
input
input
Internal
Only the voltage
regulator circuits and
voltage follower circuits
are used
Only the voltage
follower
circuits are used
Only the external power
supply circuits are used
Ver2.3
39/97
2007/1/3
ST7528
Voltage Converter Circuits
These circuits boost up the electric potential between VDD2 and Vss to 3, 4, 5 or 6 times toward positive side and boosted
voltage is outputted from VOUT pin. It is possible to select the lower boosting level in any boosting circuit by “Set DC-DC
Step-up” instruction. When the higher level is selected by instruction, VOUT voltage is not valid.
Note: we would like to recommend to use the external VOUT when the panel is large than 1.8 inch
Voltage Regulator Circuits
The function of the internal Voltage Regulator circuits is to determine liquid crystal operating voltage, V0, by adjusting
resistors, Ra and Rb, within the range of |V0| < |VOUT|. Because VOUT is the operating voltage of operational-amplifier
circuits shown in Figure 16, it is necessary to be applied internally or externally.
For the Eq. 1, we determine V0 by Ra, Rb and VEV. The Ra and Rb are connected internally or externally by INTRS pin.
And VEV called the voltage of electronic volume is determined by Eq. 2, where the parameter α is the value selected by
instruction, "Set Reference Voltage Register", within the range 0 to 63. VREF voltage at Ta= 25°C is shown in Table 5.
Rb
V0 = (1 +  ) x VEV [V] ------ (Eq. 1)
Ra
(63 - α)
VEV = (1 -  ) x VREF [V] ------ (Eq. 2)
210
Table 5 VREF Voltage at Ta = 25°C
REF
Temp. coefficient
VREF [ V ]
1
-0.125% / °C
2.1
0
External input
VEXT
VOUT
+
V0
_
Rb
VEV
VR
Ra
VSS
GND
Figure 16 Internal Voltage Regulator Circuit
Ver2.3
40/97
2007/1/3
ST7528
In Case of Using Internal Resistors, Ra and Rb (INTRS = "H”)
When INTRS pin is "H", resistor Ra is connected internally between VR pin and VSS, and Rb is connected between V0
and VR. We determine V0 by two instructions, "Regulator Resistor Select" and "Set Reference Voltage".
Table 6 Internal Rb / Ra Ratio depending on 3-bit Data (R2 R1 R0)
3-bit data settings (R2 R1 R0)
1 + (Rb / Ra)
000
001
010
011
100
101
110
111
2.3
3.0
3.7
4.4
5.1
5.8
6.5
7.2
Figure 17 shows V0 voltage measured by adjusting internal regulator register ratio (Rb / Ra) and 6-bit electronic volume
registers for each temperature coefficient at Ta = 25 °C.
16.000
14.000
12.000
000
001
010
011
100
101
110
111
10.000
8.000
6.000
4.000
2.000
63
60
57
54
51
48
45
42
39
36
33
30
27
24
21
18
15
12
9
6
3
0
0.000
Figure 17 Electronic volume register (0 to 63)
Ver2.3
41/97
2007/1/3
ST7528
In Case of Using External Resistors, Ra and Rb (INTRS = "L")
When INTRS pin is "L", it is necessary to connect external regulator resistor Ra between VR and VSS, and Rb between V0
and VR.
Example: For the following requirements
1. LCD driver voltage, V0 = 10V
2. 6-bit reference voltage register = (1, 0, 0, 0, 0, 0)
3. Maximum current flowing Ra, Rb = 1 uA
From Eq. 1
Rb
10 = (1 +  ) x VEV [V] ------ (Eq. 3)
Ra
From Eq. 1
(63 - 32)
VEV = (1 -  ) x 2.1 = 1.79 [V] ------ (Eq. 4)
210
From requirement 3.
10
 = 1 [uA] ------ (Eq. 5)
Ra + Rb
From equations Eq. 3, 4 and 5
Ra = 1.79 [MΩ]
Rb = 8.21 [MΩ]
Table 7 Shows the Range of V0 depending on the above Requirements.
Table 7 The Range of V0
Electronic volume level
V0
0
.......
32
.......
63
8.21
.......
10.00
.......
11.73
Voltage Follower Circuits
VLCD voltage (V0) is resistively divided into four voltage levels (V1, V2, V3 and V4), and those output impedance are
converted by the Voltage Follower for increasing drive capability. Table 8 shows the relationship between V1 to V4 level
and each duty ratio.
Table 8 The Relationship between V1 to V4 Level and Each Duty Ratio
LCD bias
V1
V2
V3
V4
Remarks
1/N
(N-1)/N x V0
(N-2)/N x V0
2/N x V0
1/N x V0
N = 5 to 12
Ver2.3
42/97
2007/1/3
ST7528
Bias Power Save circuit:
When we set the Instruction of Bias Power Save, the bias also could be working, and the IC current consumption will be
lower about 100uA to 200uA (according to the panel loading)
Follower voltage reference circuit (Internal Booster & Regulator)
VSS2
VSS
VSS2
C1
VSS
C1
VOUT
VDD
VOUT
VSS
INTR
INTR
VSS
V0
VR
VSS
Ra
VSS
VSS
V0
C2
C2
C2
C2
ST7528
ST7528
Rb
V0
C2
V1
V1
C2
V2
V2
C2
V3
V3
C2
V4
V4
Left is using internal Resister
Right is using External Resister
C1= 1u F ~ 4.7u F, C2 = 0.1u F ~ 1u F
(suggestion value: C1=1uF, C2=0.1uF)
Follower voltage reference circuit (External Vout & Internal Regulator)
VOUT
External
VDD
VOUT
External
VSS
INTR
INTR
VSS
V0
VR
VSS
Ra
VSS
VSS
V0
C2
C2
C2
C2
V1
V2
V3
V4
ST7528
ST7528
Rb
V0
C2
C2
C2
C2
V1
V2
V3
V4
Left is using internal Resister
Right is using External Resister
C1= 1u F ~ 4.7u F, C2 = 0.1u F ~ 1u F (suggestion value: C1=1uF , C2=0.1uF)
Ver2.3
43/97
2007/1/3
ST7528
Booster Efficiency
By Booster Stages (3X, 4X, 5X, 6X) and Booster Efficiency (Level1~2) commands, we could easily set the best Booster
performance with suitable current consumption. If the Booster Efficiency is set to higher level (level2 is higher than level1),
The Boost Efficiency is better than lower level, and it just need few more power consumption current. It could be applied to
each multiple voltage Condition.
When the LCD Panel loading is heavier, then the Performance of Booster will be not in a good working condition. We could
set the BE level to be higher. We do not need to change to higher Booster Stage, and just need few more current.
The Booster Efficiency Command could be used together with Booster Stage Command to choose one best Boost output
condition. We could see the Boost Stage Command as a large scale operation, and see the Booster Efficiency Command
as a small scale operation. These commands are very convenient for using.
Vout Voltage
Level1
Level2
5X boost
VSS Current
Loading
Level1
Level2
5X Current
Loading
Ver2.3
44/97
2007/1/3
ST7528
RESET CIRCUIT
Setting RESETB to “L” or Reset instruction can initialize internal function.
When RESETB becomes “L”, following procedure is occurred.
Page address: 0
Column address: 0
Read-modify-write: OFF
Display ON / OFF: OFF
Initial display line: 0 (first)
Initial COM0 register: 0 (COM0)
Partial display ratio: 1/128
Reverse display ON / OFF: OFF (normal)
N-line inversion register: 0 (disable)
Entire Display ON/OFF: OFF
ICON Control register ON/OFF: OFF (ICON disable)
Power control register (VC, VR, VF) = (0, 0, 0)
DC-DC converter circuit = (0, 0)
Booster Efficiency BE = (1)
Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)
Contrast Level: 32
LCD bias ratio: 1/12
COM Scan Direction: 0
ADC Select: 0
Oscillator: OFF
Power Save Mode: Release
Display Data Length register: 0 (for SPI mode)
All Gray Level Set : OFF
In Level0, 2, 4, 6, 8, 10, 12, 14 , the Gray Level palette register (GA5, GA4, GA3, GA2, GA1, GA0) = (0,0,0,0,0)
All Gray Level Set : OFF
In Level1, 3, 5, 7, 9, 11, 13, 15, the Gray Level palette register (GA5, GA4, GA3, GA2, GA1, GA0) = (1,1,1,1,1)
FRC, PWM mode: 4FRC, 45PWM
When RESET instruction is issued, following procedure is occurred.
Page address: 0
Column address: 0
Read-modify-write: OFF
Initial display line: 0 (First)
Regulator resistor select register: (R2, R1, R0) = (0, 0, 0)
Contrast Level: 32
Display Data Length register: 0 (for SPI mode)
All Gray Level Set : OFF
In Level0, 2, 4, 6, 8, 10, 12, 14 , the Gray Level palette register (GA5, GA4, GA3, GA2, GA1, GA0) = (0,0,0,0,0)
All Gray Level Set : OFF
In Level1, 3, 5, 7, 9, 11, 13, 15, the Gray Level palette register (GA5, GA4, GA3, GA2, GA1, GA0) = (1,1,1,1,1)
FRC, PWM mode: 4FRC, 45PWM
While RESETB is “L” or reset instruction is executed, no instruction except read status can be accepted. Reset status
appears at DB4. After DB4 becomes ”L”, any instruction can be accepted. RESETB must be connected to the reset pin of
the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESETB is essential before used.
Ver2.3
45/97
2007/1/3
ST7528
Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
Description
0
0
0
0
1
1
1
0
0
0
0
FR3
FR0
0
BE
x'
Read display data
1
1
Read data
Read data into DDRAM
Write display data
1
0
Write data
Write data into DDRAM
Read status
0
1
EXT=0 or 1
Mode Set
FR2 FR1
2-byte instruction to set
Mode and
EXT FR( Frame frequency control)
BE( Booster efficiency control)
0
EXT=0
BUSY
ON
RES
MF2
MF1
MF0
DS1
DS0
Read the internal status
ICON=0:
ICON disable(default)
ICON ICON=1:
ICON enable & set the
page address to 16
ICON control register ON/OFF
0
0
1
0
1
0
0
0
1
Set page address
0
0
1
0
1
1
P3
P2
P1
P0
Set page address
Set column address MSB
0
0
0
0
0
1
Y9
Y8
Y7
Y6
Set column address MSB
Set column address LSB
0
0
0
0
0
0
Y5
Y4
Y3
Y2
Set column address LSB
Set modify-read
0
0
1
1
1
0
0
0
0
0
Set modify-read mode
Reset modify-read
0
0
1
1
1
0
1
1
1
0
release modify-read mode
Display ON/OFF
0
0
1
0
1
0
1
1
1
D
D=0: Display OFF
D=1: Display ON
0
0
0
1
0
0
0
0
x'
x'
0
0
x'
S6
S5
S4
S3
S2
S1
S0
0
0
0
1
0
0
0
1
x'
x'
0
0
x'
C6
C5
C4
C3
C2
C1
C0
0
0
0
1
0
0
1
0
x'
x'
0
0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1
0
0
1
1
x'
x'
0
0
x'
x'
x'
N4
N3
N2
N1
N0
Release N-line inversion
0
0
1
1
1
0
0
1
0
0
Release N-line inversion
mode
Reverse display ON/OFF
0
0
1
0
1
0
0
1
1
REV
REV=0: normal display
REV=1: reverse display
Entire display ON/OFF
0
0
1
0
1
0
0
1
0
EON
EON=0: normal display
EON=1: entire display ON
Set initial display line register
Set initial COM0 register
Select partial display line
Set N-line inversion
Ver2.3
46/97
2-byte instruction to specify
the initial display line to realize
vertical scrolling
2-byte instruction to specify
the initial COM0 to realize
window scrolling
2-byte instruction to set partial
display ratio
2-byte instruction to set N-line
inversion register
2007/1/3
ST7528
Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
Description
Power control
0
0
0
0
1
0
1
VC
VR
VF
Select DC-DC step-up
0
0
0
1
1
0
0
1
DC1
DC0
Select the step-up of internal
voltage converter
Select regulator register
0
0
0
0
1
0
0
R2
R1
R0
Select the internal resistance
ratio of the regulator resistor
Select electronic volumn
0
0
1
0
0
0
0
0
0
1
register
0
0
x'
x'
EV5
EV4
EV3
EV2
EV1
EV0
Select LCD bias
0
0
0
1
0
1
0
B2
B1
B0
0
0
1
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
Release Bias Power Save
0
0
1
1
1
1
0
0
1
1
Mode
0
0
0
0
0
0
0
1
0
0
SHL select
0
0
1
1
0
0
SHL
x'
x'
x'
ADC select
0
0
1
0
1
0
0
0
0
ADC
SEG bi-direction selection
ADC=0: normal direction
ADC=1: reverse direction
Oscillator on start
0
0
1
0
1
0
1
0
1
1
Start the built-in oscillator
Set power save mode
0
0
1
0
1
0
1
0
0
P
P=0: normal mode
P=1: sleep mode
Release power save mode
0
0
1
1
1
0
0
0
0
1
release power save mode
Reset
0
0
1
1
1
0
0
0
1
0
initial the internal function
Set data direction &
x'
x'
1
1
1
0
1
0
0
0
display data length(DDL)
x'
x'
D7
D6
D5
D4
D3
D2
D1
D0
2-byte instruction to specify
the number of data bytes.
(SPI mode)
Ext=0
Set Bias Power Save Mode
Select FRC and PWM mode
Control power circuit
operation
2-byte instruction to specify
the reference voltage
Select LCD bias
Bias Power save
Save the Bias
current consumption
Bias Power save release
set the Bias power to normal
COM bi-directional selection
SHL=0: normal direction
SHL=1: reverse direction
FRC(1:3FRC, 0:4FRC)
PWM1 PWM0
0
0 45PWM
PWM0
0
1 45 PWM
1
0 60PWM
1
1
---
0
0
1
0
0
1
0
FRC
PWM1
NOP
0
0
1
1
1
0
0
0
1
1
No operation
Test Instruction
0
0
1
1
1
1
x'
x'
x'
x'
Don't use this instruction
Ver2.3
47/97
2007/1/3
ST7528
ST7528
Instruction
A0 RW
DB7 DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
Description
EXT=1
Set white mode and 1st frame, 0
0
1
0
0
set pulse width
0
0
X'
X'
GA05 GA04 GA03 GA02
Set white mode and 2nd frame, 0
0
1
0
set pulse width
0
0
X'
X'
Set white mode and 3rd frame, 0
0
1
0
set pulse width
0
0
X'
X'
Set white mode and 4 frame, 0
0
1
0
set pulse width
0
0
X'
X'
Set gray level 1 mode
0
0
84H~87H (4 bytes)
Set gray level1
Set gray level 2 mode
0
0
88H~8BH (4 bytes)
Set gray level2
Set gray level 3 mode
0
0
8CH~8FH (4bytes)
Set gray level3
Set gray level 4 mode
0
0
90H~93H (4bytes)
Set gray level4
Set gray level 5 mode
0
0
94H~97H (4bytes)
Set gray level5
Set gray level 6 mode
0
0
98H~9BH (4 bytes)
Set gray level6
Set gray level 7 mode
0
0
9CH~9FH (4 bytes)
Set gray level7
Set gray level 8 mode
0
0
A0H~A3H (4 bytes)
Set gray level8
Set gray level 9 mode
0
0
A4H~A7H (4 bytes)
Set gray level9
Set gray level 10 mode
0
0
A8H~ABH (4 bytes)
Set gray level10
Set gray level 11mode
0
0
ACH~AFH (4 bytes)
Set gray level11
Set gray level 12 mode
0
0
B0H~B3H (4 bytes)
Set gray level12
Set gray level 13 mode
0
0
B4H~B7H (4 bytes)
Set gray level13
Set gray level 14 mode
0
0
B8H~BBH (4 bytes)
Set gray level14
Set white mode and 1st frame
th
0
0
0
GA05 GA04 GA03 GA02
0
0
0
0
GA05 GA04 GA03 GA02
0
0
0
0
GA05 GA04 GA03 GA02
Set Dark mode and 1st frame,
0
0
1
0
set pulse width
0
0
X'
X'
Set Dark mode and 2nd frame,
0
0
1
0
set pulse width
0
0
X'
X'
Set Dark mode and 3rd frame,
0
0
1
0
set pulse width
0
0
X'
X'
Set Dark mode and 4th frame,
0
0
1
0
set pulse width
0
0
X'
X'
Ver2.3
0
1
1
1
1
GA01
GA00
0
1
GA01
1
GA01
1
GA01
0
GAF5 GAF4 GAF3 GAF2 GAF1
1
1
1
1
0
GAF5 GAF4 GAF3 GAF2 GAF1
1
1
1
1
1
GAF5 GAF4 GAF3 GAF2 GAF1
1
1
1
1
1
GAF5 GAF4 GAF3 GAF2 GAF1
48/97
Set white mode and 2nd
GA00 frame
0
Set white mode and 3rd
GA00 frame
1
Set white mode and 4th
GA00 frame
0
Set Dark mode and 1st
GAF0
frame, set pulse width
1
GAF0
0
Set Dark mode and 2nd
frame, set pulse width
Set Dark mode and 3rd
GAF0
frame, set pulse width
1
Set Dark mode and 4th
GAF0
frame, set pulse width
2007/1/3
ST7528
Set Mode Register
2-byte instruction to set Mode (EXT) and FR (Frame frequency control), BE (Booster efficiency control).
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
1
1
1
0
0
0
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
FR3
FR2
FR1
FR0
0
BE
x'
EXT
Frame frequency
This command is used to set the frame frequency. This table is suitable for no partial display
FR3
FR2
FR1
FR0
FR frequency
0
0
0
0
77 Hz ±5%
0
0
0
1
51 Hz ±20%
0
0
1
0
55 Hz ±20%
0
0
1
1
58 Hz ±20%
0
1
0
0
63 Hz ±20%
0
1
0
1
67 Hz ±20%
0
1
1
0
68 Hz ±20%
0
1
1
1
70 Hz ±20%
1
0
0
0
73 Hz ±20%
1
0
0
1
75 Hz ±20%
1
0
1
0
80 Hz ±20%
1
0
1
1
85 Hz ±20%
1
1
0
0
91 Hz ±20%
1
1
0
1
102 Hz ±20%
1
1
1
0
113 Hz ±20%
1
1
1
1
123 Hz ±20%
Booster Efficiency
The ST7528 incorporates software configurable Booster Efficiency Command. It could be used with Voltage
multiplier to get the suitable Vout and Power consumption. Default setting is Level 2
Flag
BE
Description
0
Booster Efficiency Level 1
1
Booster Efficiency Level 2
Mode Set
Flag
EXT
Ver2.3
Description
Default
EXT=0
EXT=0
EXT=1
The Instruction of EXT=0 Mode is available
The Instruction of EXT=1 Mode is available
49/97
2007/1/3
ST7528
Read Display Data
8-bit data from Display Data RAM specified by the column address and page address can be read by this instruction. As
the column address is increased by 1 automatically after each this instruction, the microprocessor can continuously read
data from the addressed page. A dummy read is required after loading an address into the column address register.
Display Data cannot be read through the serial interface.
A0
RW
1
1
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
Read data
Write Display Data
8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and
page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data
to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.
A0
RW
1
1
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
Write data
Set Page Address
Set Page Address
Set Column Address
Set Column Address
Data Write
Dummy Data Read
Column = Column + 1
Column = Column + 1
YES
Data Read
Data Write Continue ?
Column = Column + 1
NO
Optional Status
YES
Data Read Continue ?
NO
Optional Status
Figure 18 Sequence for Writing Display Data (Left) and Sequence for Reading Display Data (Right)
Ver2.3
50/97
2007/1/3
ST7528
Read Status
Indicates the internal status of the ST7528
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
1
BUSY
ON
RES
MF2
MF1
MF0
DS1
DS0
Flag
Description
BUSY
The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes Low.
0: chip is active, 1: chip is being busy
ON
Indicates display ON / OFF status
0: display OFF, 1: display ON
RESET
Indicates the initialization is in progress by RESET signal.
0: chip is active, 1: chip is being reset
MF
Manufacturer ID; suggest value: MF2 MF1 MF0 = [0 0 0]
The value of MF2, MF1 and MF0 will follow the hardware selection.
DS
Display size ID; suggest value: DS1 DS0 = [1 0]
The value of DS1 and DS2 will follow the hardware selection.
ICON Control Register ON/OFF
This instruction makes ICON enable or disable. By default, ICON display is disabled (ICON= 0). When ICON control
register is set to “1”, ICON display is enabled and page address is set to “16”. Then user can write data for icons. It is
impossible to set the page address to “16” by Set Page Address instruction. Therefore, when writing data for icons, ICON
control register ON instruction would be used to set the page address to “16”. When ICON control register is set to “0”,
ICON display is disabled.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
0
0
1
ICON
ICON=0: ICON disable (default)
ICON=1: ICON enable & set the page address to 16
Ver2.3
51/97
2007/1/3
ST7528
Set Page Address
Sets the Page Address of display data RAM from the microprocessor into the page address register. Any RAM data bit can
be accessed when its Page Address and column address are specified. Along with the column address, the Page Address
defines the address of the display RAM to write or read display data. Changing the Page Address doesn't affect the display
status. Set Page Address instruction can not be used to set the page address to “16”. Use ICON control register ON/OFF
instruction to set the page address to “16”.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
1
P3
P2
P1
P0
P3
P2
P1
P0
Page
0
0
0
0
0
0
0
0
1
1
:
:
:
:
:
1
1
1
0
14
1
1
1
1
15
Set Column Address
Sets the Column Address of display RAM from the microprocessor into the column address register. Along with the Column
Address, the Column Address defines the address of the display RAM to write or read display data.
When the microprocessor reads or writes display data to or from display RAM, Column Addresses are automatically
increased.
Set Column Address MSB
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
1
Y9
Y8
Y7
Y6
Set Column Address LSB
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
Y5
Y4
Y3
Y2
Y9
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Column address
[Y9:Y2]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
:
:
:
:
:
:
:
:
:
0
1
1
1
1
1
1
0
126
0
1
1
1
1
1
1
1
127
:
:
:
:
:
:
:
:
:
1
0
0
1
1
1
1
0
158
1
0
0
1
1
1
1
1
159
Ver2.3
52/97
2007/1/3
ST7528
Set Modify-Read
This instruction stops the automatic increment of the column address by the read display data instruction, but the column
address is still increased by the write display data instruction. And it reduces the load of microprocessor when the data of a
specific area is repeatedly changed during cursor blinking or others. This mode is canceled by the reset Modify-Read
instruction.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
0
0
0
0
Reset Modify-Read
This instruction cancels the Modify-Read mode, and makes the column address return to its initial value just before the set
Modify-Read instruction is started.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
1
1
1
0
Set Page Address
Set Column Address (N)
Set Modify-Read
Dummy Read
Data Read
Data
Process
Data Write
NO
Change Completed?
YES
Read Modify-read
Return Column Address (N)
Figure 19 Sequence for Cursor Display
Ver2.3
53/97
2007/1/3
ST7528
Display ON / OFF
Turns the display ON or OFF.
This command has priority over Entire Display On/Off and Reverse Display On/Off. Commands are accepted while the
display is off, but the visual state of the display does not change.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
1
1
1
DON
DON = 1: display ON
DON = 0: display OFF
Set Initial Display Line Register
Sets the line address of display RAM to determine the initial display line using 2-byte instruction. The RAM display data is
displayed at the top of row (COM0) of LCD panel.
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
1
0
0
0
0
x
x
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
x
S6
S5
S4
S3
S2
S1
S0
S6
S5
S4
S3
S2
S1
S0
Line address
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
2
0
0
0
0
0
1
1
3
:
:
:
:
:
:
:
:
1
1
1
1
1
0
0
124
1
1
1
1
1
0
1
125
1
1
1
1
1
1
0
126
1
1
1
1
1
1
1
127
S e ttin g In itia l D is p la y L in e S ta rt
1 st I n s tr u c tio n f o r M o d e s e ttin g
2 nd In s tru c tio n fo r In itia l D is p la y L in e s e ttin g
S e ttin g In itia l D is p la y L in e E n d
Figure 20 Sequence For Setting Initial Display Line
Ver2.3
54/97
2007/1/3
ST7528
Set Initial COM0 Register
Sets the initial row (COM) of the LCD panel using the 2-byte instruction. By using this instruction, it is possible to realize the
window moving without the change of display data.
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
1
0
0
0
1
x
x
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
x
C6
C5
C4
C3
C2
C1
C0
C6
C5
C4
C3
C2
C1
C0
0
0
0
0
0
0
0
COM0
0
0
0
0
0
0
1
COM1
0
0
0
0
0
1
0
COM2
0
0
0
0
0
1
1
COM3
:
:
:
:
:
:
:
:
1
1
1
1
1
0
0
COM124
1
1
1
1
1
0
1
COM125
1
1
1
1
1
1
0
COM126
1
1
1
1
1
1
1
COM127
Initial COM0
S e tt in g I n itia l C O M 0 S ta r t
1 s t I n s tr u c ti o n f o r M o d e s e tt in g
2 n d I n s t r u c ti o n f o r I n i ti a l C O M 0 s e ttin g
S e ttin g I n it ia l C O M 0 E n d
Figure 21 Sequence For Setting Initial COM0
Ver2.3
55/97
2007/1/3
ST7528
Select partial display line
Sets the ratio within range of 16 to 128 (ICON disabled) or 17 to 129 (ICON enabled) to realize partial display by using the
2-byte instruction.
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
1
0
0
1
0
x
x
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
0
:
0
0
0
:
0
:
0
1
1
:
0
:
0
0
0
:
1
:
1
0
0
:
0
:
0
0
0
:
1
:
1
0
0
:
0
:
0
1
1
:
0
:
1
0
0
:
0
:
1
0
0
:
0
:
1
0
0
:
0
:
1
0
0
:
1
:
1
0
0
:
0
:
1
0
0
:
0
:
1
0
0
:
0
:
1
0
1
:
0
:
1
0
1
:
1
1
1
1
1
1
1
1
Selected partial
Display line
mode 0
Selected partial
Display line
mode 1
No operation
No operation
1/16
1/17
:
1/100
:
1/127
1/128
1/16
1/17
:
1/100
1/100
1/100
1/100
No Operation
No Operation
S e ttin g P a rtia l D is p la y S ta rt
1 s t I n s tr u c tio n fo r M o d e s e ttin g
2 n d I n s tr u c tio n f o r P a rtia l D is p la y D u ty s e ttin g
S e ttin g P a rtia l D is p la y E n d
Figure 22 Sequence For Setting Partial Display
Ver2.3
56/97
2007/1/3
ST7528
Set N-line Inversion Register
Sets the inverted line number within range of 3 to 33 to improve the display quality by controlling the phase of the internal
LCD AC signal (M) by using the 2-byte instruction.
The DC-bias problem could be occurred if K is even number. So, we recommend customers to set K to be odd number. K :
D/N
D : The number of display ratio (D is selectable by customers)
N : N for N-line inversion (N is selectable by customers).
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
1
0
0
1
1
x
x
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
x
x
x
N4
N3
N2
N1
N0
N4
N3
N2
N1
N0
Selected n-line inversion
0
0
0
0
0
0-line inversion (frame inversion)
0
0
0
0
1
3-line inversion
0
0
0
1
0
4-line inversion
0
0
0
1
1
5-line inversion
:
:
:
:
:
:
1
1
1
0
1
31-line inversion
1
1
1
1
0
32-line inversion
1
1
1
1
1
33-line inversion
Setting N-line Inversion Start
1 st Instruction for M ode setting
2 nd Instruction for N -line Inversion setting
Setting N -line Inversion End
Figure 23 Sequence For N-line Inversion
Ver2.3
57/97
2007/1/3
ST7528
Release N-line Inversion
Returns to the frame inversion condition from the n-line inversion condition.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
0
1
0
0
Reverse Display ON / OFF
Reverses the display status on LCD panel without rewriting the contents of the display data RAM.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
0
1
1
REV
REV
White
Gray level 1
…..
Gray level 14
– Dark
0 (normal)
White (“0000”)
Gray 1 (“0001”)
…..
Gray 14 (“1110”)
Dark (“1111”)
1 (reverse)
Dark (“1111”)
Gray 14 (“1110”)
…..
Gray 1 (“0001”)
White (“0000”)
Entire Display ON / OFF
Forces the whole LCD points to be turned on regardless of the contents of the display data RAM. At this time, the contents
of the display data RAM are held. This instruction has priority over the Reverse Display ON / OFF instruction.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
0
1
0
EON
Entire
White
Gray level 1
…..
Gray level 14
– Dark
0 (normal)
White (“0000”)
Gray 1 (“0001”)
…..
Gray 14 (“1110”)
Dark (“1111”)
1 (Entire)
Dark (“1111”)
Dark (“1111”)
Dark (“1111”)
Dark (“1111”)
Dark (“1111”)
Power Control
Selects one of eight power circuit functions by using 3-bit register. An external power supply and part of internal power
supply functions can be used simultaneously.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
1
0
1
VC
VR
VF
VC
VR
VF
Status of internal power supply circuits
0
Internal voltage converter circuit is OFF
1
Internal voltage converter circuit is ON
Ver2.3
0
Internal voltage regulator circuit is OFF
1
Internal voltage regulator circuit is ON
0
Internal voltage follower circuit is OFF
1
Internal voltage follower circuit is ON
58/97
2007/1/3
ST7528
Set Bias Power Save Mode
Consist of 2-byte Instructions
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
1
0
0
1
1
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
0
0
0
This command is for saving the IC current consumption by Bias Power Saving
After this Instruction is set, Bias function is also working
Release Bias Power Save Mode
Consist of 2-byte Instructions
The 1st Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
1
0
0
1
1
The 2nd Instruction
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
1
0
0
This command is for release Bias Power Save
Select DC-DC Step-up
Selects one of 4 DC-DC step-up to reduce the power consumption by this instruction. It is very useful to realize the partial
display function.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
1
1
0
0
1
DC1
DC0
Ver2.3
DC1
DC0
Selected DC-DC converter circuit
0
0
3 times boosting circuit
0
1
4 times boosting circuit
1
0
5 times boosting circuit
1
1
6 times boosting circuit
59/97
2007/1/3
ST7528
Select Regulator Resistor
Selects resistance ratio of the internal resistor used in the internal voltage regulator. See voltage regulator section in power
supply circuit. Refer to the Table 6.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
1
0
0
R2
R1
R0
R2
0
0
0
0
1
1
1
1
R1
0
0
1
1
0
0
1
1
R0
0
1
0
1
0
1
0
1
1+ (Rb / Ra)
2.3
3.0
3.7
4.4
5.1
5.8
6.5
7.2
Set Electronic Volume Register
Consist of 2-byte Instructions
The 1st instruction set Reference Voltage mode, the 2nd one updates the contents of reference voltage register.
After second instruction, Reference Voltage mode is released.
The 1st Instruction: Set Reference Voltage Select Mode
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
0
0
0
0
0
1
The 2nd Instruction: Set Reference Voltage Register
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
x
x
EV5
EV4
EV3
EV2
EV1
EV0
EV5
EV4
EV3
EV2
EV1
EV0
Reference voltage parameter (a)
0
0
0
0
0
0
0
0
0
0
0
0
1
1
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1
1
1
1
1
0
62
1
1
1
1
1
1
63
Ver2.3
60/97
2007/1/3
ST7528
S e ttin g R e f e r e n c e V o lta g e S ta r t
1 s t I n s tr u c tio n fo r M o d e s e ttin g
2 n d I n s tr u c tio n f o r R e g is te r s e ttin g
S e ttin g R e f e re n c e V o lta g e E n d
Figure 24 Sequence For Setting the Electronic Volume
Select LCD Bias
Selects LCD bias ratio of the voltage required for driving the LCD.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
1
0
1
0
B2
B1
B0
B2
B1
B0
LCD bias
0
0
0
1/5
0
0
1
1/6
0
1
0
1/7
0
1
1
1/8
1
0
0
1/9
1
0
1
1/10
1
1
0
1/11
1
1
1
1/12
SHL Select
COM output scanning direction is selected by this instruction which determines the LCD driver output status.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
0
0
SHL
x
x
x
In Mode 0
SHL = 0: normal direction (COM0 → COM127)
SHL = 1: reverse direction (COM127 → COM0)
In Mode 1
Ver2.3
61/97
2007/1/3
ST7528
SHL = 0: normal direction (COM0 → COM99)
SHL = 1: reverse direction (COM99 → COM0)
ADC Select
Changes the relationship between RAM column address and segment driver. The direction of segment driver output pins
could be reversed by software. This makes IC layout flexible in LCD module assembly.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
0
0
0
ADC
In Mode 0
ADC = 0: normal direction (SEG0 → SEG127)
ADC = 1: reverse direction (SEG127 → SEG0)
In Mode 1
ADC = 0: normal direction (SEG0 → SEG159)
ADC = 1: reverse direction (SEG159 → SEG)
Oscillator ON Start
This instruction enables the built-in oscillator circuit.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
1
0
1
1
Power Save
The ST7528 enters the Power Save status to reduce the power consumption to the static power consumption value and
returns to the normal operation status by the following instructions.
Set Power Save Mode
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
1
0
1
0
0
P
P = 0: normal mode
P = 1: sleep mode
Release Power Save Mode
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
0
0
0
1
Ver2.3
62/97
2007/1/3
ST7528
Set Power Save Mode (Sleep Mode)
Sleep Mode
Oscillator Circuit: OFF
LCD Power Supply Circuit: OFF
All COM / SEG Output Level: VSS
Consumption Current < 2uA
Release Power Save Mode (Sleep Mode)
Figure 25 Power Save Routine
Reset
This instruction Resets initial display line, column address, page address, and common output status select to their initial
status, but dose not affect the contents of display data RAM. This instruction cannot initialize the LCD power supply, which
is initialized by the RESETB pin.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
0
0
1
0
Set Data Direction & Display Data Length (3-Line SPI Mode)
Consists of 2 bytes instruction.
This command is used in 3-Line SPI mode only (PS0 = ”L” and PS1 = ”L” ). It will be two continuous commands, the first
byte control the data direction(write mode only) and inform the LCD driver the second byte will be number of data bytes will
be write. When A0 is not used, the Display Data Length instruction is used to indicate that a specified number of display
data bytes are to be transmitted. The next byte after the display data string is handled as command data.
The 1st Instruction: Set Data Direction (Only Write Mode)
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
x
x
1
1
1
0
1
0
0
0
Ver2.3
63/97
2007/1/3
ST7528
The 2nd Instruction: Set Display Data Length (DDL) Register
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
x
x
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
Display Data Length
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
1
0
3
:
:
:
:
:
:
:
:
:
1
1
1
1
1
1
0
1
254
1
1
1
1
1
1
1
0
255
1
1
1
1
1
1
1
1
256
NOP
No operation
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
0
0
0
1
1
Ver2.3
64/97
2007/1/3
ST7528
Test Instruction
This instruction is for testing IC. Please do not use it.
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
1
1
1
x
x
x
x
Set FRC & PWM mode
Selects 3/4 FRC and 45 / 60 PWM
FRC
PWM1
PWM0
Status of PWM & FRC
0
4FRC
1
3FRC
0
0
45PWM
0
1
45PWM
1
0
60PWM
1
1
---
NOTE: the value of register could not set [PWM1:PWM0]=[1:1]
Set Gray Scale Mode & Register
Consists of 2 bytes instruction. The first byte sets grayscale mode and the second byte updates the contents of gray scale
register without issuing any other instruction.
− Set Gray Scale Mode
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
1
0
GRAY3
GRAY2
GRAY1
GRAY0
FRAMX1
FRAMX0
Description
GRAY3 GRAY2 GRAY1 GRAY0 FRAMX1 FRAMX0
st
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
In case of setting whit mode and 1 frame
nd
In case of setting whit mode and 2 frame
rd
In case of setting whit mode and 3 frame
th
In case of setting whit mode and 4 frame
st
In case of setting GRAY LEVEL 1 mode and 1 frame
rd
In case of setting GRAY LEVEL 1 mode and 2 frame
rd
In case of setting GRAY LEVEL 1 mode and 3 frame
:
:
:
:
:
:
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
In case of setting GRAY LEVEL 14 mode and 2 frame
rd
In case of setting GRAY LEVEL 14 mode and 3 frame
th
In case of setting GRAY LEVEL 14 mode and 4 frame
st
In case of setting dark mode and 1 frame
nd
In case of setting dark mode and 2 frame
rd
In case of setting dark mode and 3 frame
th
In case of setting dark mode and 4 frame
Ver2.3
nd
65/97
2007/1/3
ST7528
--Set Gray Scale Register
A0
RW
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
X
X
GAX5
GAX4
GAX3
GAX2
GAX1
GAX0
0
1
0
1
0
Pulse width
(45 PWM)
0/45
1/45
2/45
3/45
4/45
Pulse width
(60 PWM)
0/60
1/60
2/60
3/60
4/60
:
:
:
:
1
0
0
1
1
:
1
0
0
:
1
1
0
1
0
1
:
1
0
1
:
1
43/45
44/45
45/45
0/45
0/45
:
0/45
0/45
0/45
:
0/45
43/60
44/60
45/60
46/60
47/60
:
59/60
60/60
0/60
:
0/60
GAX5
GAX4
GAX3
GAX2
GAX1
GAX0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
:
:
:
:
1
1
1
1
1
:
1
1
1
:
1
0
0
0
0
0
:
1
1
1
:
1
1
1
1
1
1
:
1
1
1
:
1
0
1
1
1
1
:
0
1
1
:
1
Ver2.3
66/97
2007/1/3
ST7528
COMMAND DESCRIPTION
Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits
User System Setup by External Pins
Start of Initialization
Power ON(VDD-VSS) Keeping the /RES Pin="L"
Waiting for Stabilizing the Power
/RES Pin="H"
User Application Setup by Internal Instructions
[Display Duty Select]
[ADC Select]
[SHL Select]
[COM0 Register Select]
User LCD Power Setup by Internal Instructions
[Oscillator ON]
[Regulator Resistor]
[Electronic Volume Register Select]
[LCD Bias Register Select]
[ DC-DC Step-up Register Select]
[ (DC[1:0]=00) booster 3 X ]
Delay - 200m SEC
[Power Control VC,VR,VF=1,0,0]
[ DC-DC Step-up Register Select]
[ (DC[1:0]=11) booster 6 X ]
Delay - 200m SEC
[Power Control VC,VR,VF=1,1,0]
Delay - 10m SEC
[Power Control VC,VR,VF=1,1,1]
End of Initialization
Figure 26 Initializing with the Built-in Power Supply Circuits
Ver2.3
67/97
2007/1/3
ST7528
Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits
User System Setup by External Pins
Start of Initialization
Power ON(VDD-VSS) Keeping the /RES Pin="L"
Waiting for Stabilizing the Power
/RES Pin="H"
Set Power Save
User Application Setup by Internal Instructions
[Display Duty Select]
[ADC Select]
[SHL Select]
[COM0 Register Select]
User LCD Power Setup by Internal Instructions
[Oscillator ON]
[Regulator Resistor]
[Electronic Volume Register Select]
[LCD Bias Register Select]
[ DC-DC Step-up Register Select]
[ (DC[1:0]=00) booster 3 X ]
Delay - 200m SEC
[Power Control VC,VR,VF=1,0,0]
[ DC-DC Step-up Register Select]
[ (DC[1:0]=11) booster 6 X ]
Delay - 200m SEC
[Power Control VC,VR,VF=1,1,0]
Delay - 10m SEC
[Power Control VC,VR,VF=1,1,1]
Release Power Save
Waiting for Stabilizing the LCD Power Levels
End of Initialization
Figure 27 Initializing without Built-in Power Supply Circuits
Ver2.3
68/97
2007/1/3
ST7528
Referential Instruction Setup Flow: Data Displaying
End of Initialization
Display Data RAM Addressing by Instruction
[Initial Display Line]
[Set Page Address]
[Set Column Address]
Write Display Data by Instruction
[Display Data Write]
Turn Display ON/OFF Instruction
[Display ON/OFF]
End of Data Display
Figure 28 Data Displaying
Referential Instruction Setup Flow: Power OFF
Optional Status
Set Power Save by Instruction
Power OFF(VDD-VSS)
End of Power OFF
Figure 29 Power OFF
Ver2.3
69/97
2007/1/3
ST7528
LIMITING VALUES
In accordance with the Absolute Maximum Rating System; see notes 1 and 2.
Parameter
Symbol
Conditions
Unit
Power Supply Voltage
VDD
–0.5 ~ +3.6
V
Power Supply Voltage
VDD2
–0.5 ~ +3.6
V
External Reference Voltage
VEXT
2.0 ~ 3.3
V
Power supply voltage
V0
3.5~15
V
Power supply voltage
VOUT_IN
–0.5 ~ +20
V
Power supply voltage
V1, V2, V3, V4
0.3 to VOUT_IN
V
Input voltage
VIN
–0.5 to VDD+0.5
V
Output voltage
VO
–0.5 to VDD+0.5
V
Operating temperature
TOPR
–30 to +85
°C
Storage temperature
TSTR
–65 to +150
°C
VLCD
V1 to V4
VDD
VDD
VSS
VSS
System (MPU) side
VSS
ST7528 chip side
Notes
1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise noted.
3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that
VOUT_IN ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss
Ver2.3
70/97
2007/1/3
ST7528
DC CHARACTERISTICS
VDD = 1.8 V to 3.3V; VSS = 0 V; VLCD = 3.0 to 13.0V; Tamb = -30℃ to +85℃; unless otherwise specified.
Item
Symbol Condition
Operating Voltage (1)
VDD
Operating Voltage (2)
VDD2
High-level Input Voltage
VIHC
Low-level Input Voltage
VILC
High-level Output Voltage
VOHC
IOH=1mA
Low-level Output Voltage
VOLC
Input leakage current
Output leakage current
Liquid Crystal Driver ON
Resistance
Rating
External
Frequency
Input
Max OSC under FR=1,1,1,1
Mode 10 Default Frame
frequency
Item
Internal Power
Input voltage
Supply Step-up output
voltage Circuit
Pin
Typ.
Max.
1.8
—
3.3
V
Vss*1
2.4
—
3.3
V
VSS2
0.7 x VDD —
VDD
V
*2
VSS
0.3 x VDD V
*2
0.7 x VDD —
VDD
V
*3
IOL=-1mA
VSS
—
0.3 x VDD V
*3
ILI
VIN = VDD or VSS
–1.0
—
1.0
μA
*4
ILO
VIN = VDD or VSS
–3.0
—
3.0
μA
*5
—
2.0
3.5
RON
(Relative to VSS)
Ta =
VOUT_IN =
25°C
15.0 V
(Relative VOUT_IN =
—
KΩ
SEGn
COMn *6
—
3.2
570.57
600.6 630.63
kHz
*7
570.57
600.6 630.63
kHz
OSC
fOSC
767.52
959.4 1151.28
kHz
fFRAME
73.15
77
Hz
Internal Oscillator fOSC
Oscillator
Applicable
Min.
To VSS) 8.0 V
Default
Units
fCL
Mode0
Ta = 25°C
128 line
60 PWM
Symbol
Condition
VDD
5.4
80.85
Rating
Units
Applicable Pin
Min.
Typ.
Max.
(Relative To VSS)
1.8
—
3.3
V
VOUT_OUT
(Relative To VSS)
—
—
18
V
VOUT_OUT
VOUT_IN
(Relative To VSS)
—
—
18
V
VOUT_IN
Voltage regulator
Circuit Operating
Voltage
Ver2.3
71/97
2007/1/3
ST7528
Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an
external power supply(VDD,VDD2) is used .
Test pattern
Symbol
Rating
Condition
Units
Notes
650
μA
*8
2
μA
*9
Min.
Typ.
Max.
—
550
—
0.01
VDD = 3.3 V,
Display Pattern
SNOW
ISS
V0 – VSS = 10.7 V
5X booster
1/11 bias
Power Down
ISS
Ta = 25°C
Notes to the DC characteristics
1. The maximum possible VOUT voltage that may be generated is dependent on voltage, temperature and (display) load.
2. Internal clock
3. Power-down mode. During power down all static currents are switched off.
4. If external VLCD, the display load current is not transmitted to I DD.
5. VOUT external voltage applied to VOUT_IN pin; VOUT_IN disconnected from VOUT_OUT
References for items market with *
*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden
fluctuations to the voltage while the MPU is being accessed.
*2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals.
*3 The D0 to D7, and OSC terminals.
*4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals.
*5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state.
*6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the
various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.
RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)
*7 The relationship between the oscillator frequency and the frame rate frequency.
*8,9 It indicates the current consumed on bare dice when the internal oscillator circuit and display are turned on.
Ver2.3
72/97
2007/1/3
ST7528
TIMING CHARACTERISTICS
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
/CS
tCYC8
tF
tCCLR,tCCLW
tR
WR,RD
tCCHR,tCCHW
tDS8
tDH8
D0 to D7
(Write)
tACC8
tOH8
D0 to D7
(Read)
Figure 26.
(VDD = 3.3V , Ta =-30~85°C)
Item
Signal
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
Enable H pulse width (WRITE)
Enable L pulse width (READ)
Enable H pulse width (READ)
WR
RD
WRITE Data setup time
WRITE Data hold time
READ access time
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH8
0
—
tAW8
0
—
tCYC8
240
—
tCCLW
80
—
tCCHW
80
—
tCCLR
140
—
tCCHR
80
tDS8
40
—
tDH8
10
—
ns
tACC8
CL = 100 pF
—
70
tOH8
CL = 100 pF
5
50
tF
—
10
tR
—
10
READ Output disable time
Ver2.3
73/97
Units
2007/1/3
ST7528
(VDD = 2.7 V , Ta = -30~85°C )
Item
Signal
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
Enable H pulse width (WRITE)
Enable L pulse width (READ)
Enable H pulse width (READ)
WR
RD
WRITE Data setup time
WRITE Data hold time
READ access time
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH8
0
—
tAW8
0
—
tCYC8
400
—
tCCLW
220
—
tCCHW
180
—
tCCLR
220
—
tCCHR
180
—
tDS8
40
—
tDH8
15
—
tACC8
CL = 100 pF
—
140
tOH8
CL = 100 pF
10
100
tF
—
10
tR
—
10
READ Output disable time
Units
ns
(VDD = 1.8V , Ta = -30~85°C )
Item
Signal
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
Enable H pulse width (WRITE)
Enable L pulse width (READ)
Enable H pulse width (READ)
WR
RD
WRITE Data setup time
WRITE Data hold time
READ access time
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH8
0
—
tAW8
0
—
tCYC8
640
—
tCCLW
360
—
tCCHW
280
—
tCCLR
360
—
tCCHR
280
tDS8
80
—
tDH8
30
—
ns
tACC8
CL = 100 pF
—
240
tOH8
CL = 100 pF
10
200
tF
—
10
tR
—
10
READ Output disable time
Units
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level.
Ver2.3
74/97
2007/1/3
ST7528
System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)
A0
R/W
tAW6
tAH6
CS1
(CS2="1")
tCYC6
tewLR ,tewLW
tR
tF
E
tewHR,tewHW
tDH6
tDS6
D0 to D7
(Write)
tACC6
tOH6
D0 to D7
(Read)
Figure 30
(VDD = 3.3 V,Ta = -30~85°C )
Item
Signal
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
Enable H pulse width (WRITE)
Enable L pulse width (READ)
Enable H pulse width (READ)
E_WR
E_RD
WRITE Data setup time
WRITE Data hold time
READ access time
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH6
0
—
tAW6
0
—
tCYC6
240
—
tEWLW
80
—
tEWHW
80
—
tEWLR
80
—
tEWHR
140
tDS6
40
—
tDH6
10
—
ns
tACC6
CL = 100 pF
—
70
tOH6
CL = 100 pF
5
50
tF
—
10
tR
—
10
READ Output disable time
Ver2.3
75/97
Units
2007/1/3
ST7528
(VDD = 2.7V,Ta =-30~85°C )
Item
Signal
Address hold time
A0
Address setup time
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
RD
Enable H pulse width (READ)
WRITE Data setup time
WRITE Data hold time
READ access time
D0 to D7
Symbol
Rating
Condition
Min.
Max.
tAH6
0
—
tAW6
0
—
tCYC6
400
—
tEWLW
220
—
tEWHW
180
—
tEWLR
220
—
tEWHR
180
—
tDS6
40
—
tDH6
15
—
tACC6
CL = 100 pF
—
140
tOH6
CL = 100 pF
10
100
tF
—
10
tR
—
10
READ Output disable time
Units
ns
(VDD =1.8V,Ta =-30~85°C )
Item
Signal
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
Enable H pulse width (WRITE)
Enable L pulse width (READ)
Enable H pulse width (READ)
WR
RD
WRITE Data setup time
WRITE Data hold time
READ access time
READ Output disable time
D0 to D7
Symbol
Condition
Rating
Min.
Max.
tAH6
0
—
tAW6
0
—
tCYC6
640
—
tEWLW
360
—
tEWHW
280
—
tEWLR
360
—
tEWHR
280
—
tDS6
80
—
tDH6
30
—
tACC6
CL = 100 pF
—
240
tOH6
CL = 100 pF
10
200
Units
ns
tF
—
10
tR
—
10
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E.
Ver2.3
76/97
2007/1/3
ST7528
SERIAL INTERFACE (4-Line Interface)
tCCSS
tCSH
/CS1
(CS2="1")
tSAS
tSAH
A0
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Figure 31
(VDD=3.3V,Ta=-30~85℃)
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
A0
SI
Data hold time
CS-SCL time
CSB
CS-SCL time
Symbol
Condition
Rating
Min.
Max.
tSCYC
50
—
tSHW
25
—
tSLW
25
—
tSAS
20
—
tSAH
10
—
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
40
—
Units
ns
(VDD=2.7V,Ta=-30~85℃)
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Ver2.3
A0
SI
CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
100
—
tSHW
50
—
tSLW
50
—
tSAS
30
—
tSAH
20
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
60
—
77/97
Units
ns
2007/1/3
ST7528
(VDD=1.8V,Ta=-30~85℃)
Item
Signal
Serial Clock Period
SCL
SCL “H” pulse width
SCL “L” pulse width
Address setup time
A0
Address hold time
Data setup time
SI
Data hold time
CS-SCL time
CSB
CS-SCL time
Symbol
Condition
Rating
Min.
Max.
tSCYC
200
—
tSHW
80
—
tSLW
80
—
tSAS
60
—
tSAH
30
—
tSDS
60
—
tSDH
30
—
tCSS
40
—
tCSH
100
—
Units
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
SERIAL INTERFACE(3-Line Interface)
tCCSS
tCSH
/CS1
(CS2="1")
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Figure 32
(VDD=3.3V,Ta=-30~85℃)
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
SI
CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
50
—
tSHW
25
—
tSLW
25
—
tSDS
20
—
tSDH
10
—
tCSS
20
—
tCSH
40
—
Units
ns
(VDD=2.7V,Ta=-30~85℃)
Ver2.3
78/97
2007/1/3
ST7528
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
SI
Data hold time
CS-SCL time
CSB
CS-SCL time
Symbol
Condition
Rating
Min.
Max.
tSCYC
100
—
tSHW
50
—
tSLW
50
—
tSDS
30
—
tSDH
20
—
tCSS
30
—
tCSH
60
—
Units
ns
(VDD=1.8V,Ta=-30~85℃)
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
SI
CSB
Symbol
Condition
Rating
Min.
Max.
tSCYC
200
—
tSHW
80
—
tSLW
80
—
tSDS
60
—
tSDH
30
—
tCSS
40
—
tCSH
100
—
Units
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Ver2.3
79/97
2007/1/3
ST7528
SERIAL INTERFACE(IIC Interface)
SDA
tBUF
tHIGH
tLOW
tSU;DAT
SCL
tDH;STA
tr
SDA
tHD;DAT
tf
tSU;STA
tSU;STO
Figure 33
(VDD=3.3V,Ta=-30~85℃)
Item
Signal Symbol
Rating
Condition
Min.
Max.
Units
SCL clock frequency
SCL
FSCLK
-
400
kHZ
SCL clock low period
SCL
TLOW
1.3
-
us
SCL clock high period
SCL
THIGH
0.6
-
us
Data set-up time
SI
TSU;Data
100
-
ns
Data hold time
SI
THD;Data
0
0.9
us
SCL,SDA rise time
SCL
TR
20+0.1Cb 300
ns
SCL,SDA fall time
SCL
TF
20+0.1Cb 300
ns
Cb
-
400
pF
Capacitive load represented by each bus line
Setup time for a repeated START condition
SI
TSU;SUA
0.6
-
us
Start condition hold time
SI
THD;STA
0.6
-
us
Setup time for STOP ondition
TSU;STO
0.6
-
us
Tolerable spike width on bus
TSW
-
50
ns
TBUF
1.3
BUS free time between a STOP and StART condition
Ver2.3
SCL
80/97
us
2007/1/3
ST7528
RESET TIMING
tRW
/RES
tR
Internal
status
During reset
Reset complete
Figure 34
(VDD = 3.3V , Ta = –30 to 85°C )
Item
Signal
Reset time
Reset “L” pulse width
RESB
Symbol
Condition
Rating
Units
Min.
Typ.
Max.
tR
—
—
1
us
tRW
1
—
—
us
(VDD = 2.7V , Ta = –30 to 85°C )
Item
Signal
Reset time
Reset “L” pulse width
RESB
Symbol
Condition
Rating
Units
Min.
Typ.
Max.
tR
—
—
1.5
us
tRW
1.5
—
—
us
(VDD = 1.8V , Ta = –30 to 85°C )
Item
Signal
Reset time
Reset “L” pulse width
Ver2.3
RESB
Symbol
Condition
Rating
Units
Min.
Typ.
Max.
tR
—
—
2.0
us
tRW
2.0
—
—
us
81/97
2007/1/3
ST7528
POWER PAD CONNECT
The pinning of the ST7528 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 160 X
100 pixels or 132 X 128 pixels.
Display 160 X 100 pixels
Display 132 X 128 pixels
COM
COM
VOUT_OUT
VOUT_IN
SEG
VSS1
VSS2
VDD2
VDD
ST7528
*6 if external oscillator
Cvout
I/O
CVDD VSS
VDD
Figure 35 Application diagram: internal charge pump is used and s single V DD
Display 160 X 100 pixels
Display 132 X 128 pixels
SEG
COM
VOUT_OUY
VOUT_IN
COM
*6 if external oscillator
VSS1
VSS2
VDD2
VDD
ST7528
VDD CVDD1
Cvout
I/O VDD2
CVDD2 VSS
Figure 36 Application diagram: Internal charge pump is used and two separate
VDD(VDD2)
Ver2.3
82/97
2007/1/3
ST7528
Display 160 X 100 pixels
Display 132 X 128 pixels
SEG
COM
VSS1
VSS2
VDD2
VDD
ST7528
*6 if external oscillator
VOUT_OUT
VOUT_IN
COM
VL2
I/O VDD2
CVDD VSS
Figure 37 application diagram : External high voltage generation is used
The required minimum value for the external capacitors in an application with the ST7528 are:
CVLCD = min. 100nF
CVDD,2= min. 1.0 μF
Higher capacitor values are recommended for ripple reduction.
Ver2.3
83/97
2007/1/3
ST7528
THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7528 Series can be connected to either60X86 Series MPUs or to 6800Series MPUs. Moreover, using the serial
interface it is possible to operate the ST7528 series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7528 Series chips. When this is done, the chip select signal can be
used to select the individual ICs to access.
(1) 8080 Series MPUs
VDD
VCC
VDD
A0
A0
MPU
D0 to D7
E (/RD)
R/W (/WR)
/RES
DO to D7
RD
WR
RES
GND
ST7528
CS1
CS1
VSS
RESET
VSS
(2) 6800 Series MPUs
V DD
A0
A0
CS1
CS1
DO to D7
E
R/W
RES
GND
V DD
IM S
ST7541
MPU
V CC
D0 to D7
/RD (E)
/W R (R/W )
/RES
PS
V SS
RESET
V SS
(3) Using the Serial Interface (4-line interface)
V DD
V CC
CS1
CS1
MPU
A0
ST7528
V DD
A0
Port 1
Port 2
RES
GND
SI
SCL
/RES
V SS
RESET
V SS
Ver2.3
84/97
2007/1/3
ST7528
(4) Using the Serial Interface (3-line interface)
V DD
V DD
V CC
MPU
ST7528
CS1
CS1
Port 1
Port 2
RES
SI
SCL
/RES
GND
V SS
RESET
V SS
(5) Using the Serial Interface (IIC interface)
V DD
V DD
V CC
R
Port 1
Port 2
RES
ST7528
MPU
R
SDA
SCL
/RES
RESET
V SS
GND
V SS
Ver2.3
85/97
2007/1/3
ST7528
APPLICATION Program Example
16-Gray programming example for ST7528
SERIAL BUS BYTE
SETP
DISPLAY
OPERATION
0
Start
CSB IS going low.
1
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Mode Set.
0
0
0
1
1
1
0
0
0
FR[3:0] = 0000
0
0
0
0
0
0
1
x’
0
BE = 1
EXT= 0 (Normal INST. Mode)
2
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
3.a
3.b
1
0
1
0
1
0
1
OSC ON
1
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Set DC-DC Step up
0
Set Vout
0
1
1
0
0
1
DC1 DC0
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Set Ra/Rb
0
Set R[2:0]
0
0
0
1
0
R2
R1
R0
3.c A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
3.d
4.a
0
1
0
0
0
x’
x’
Ev5
0
0
Ev4
0
Ev3
0
1
Ev2
Ev1
Set EV
Set Ev[5:0]
Ev0
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Set Bias
0
Set B[2:0]
0
1
0
1
0
B2
B1
B0
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Mode Set.
0
0
0
1
1
1
0
0
EXT= 1
0
0
0
0
0
0
1
x’
0
1
(Extension INST. Mode)
4.b
SET pulse width of Gray scale
Gray-Scale Setting
4.c
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Mode Set.
0
0
0
1
1
1
0
0
EXT= 0
0
0
0
0
0
0
1
x’
5.a
0
0
(Normal INST. Mode)
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
SET Power Control
0
Booster ON
0
0
1
0
1
1
1
1
Regulator ON
Follower ON
5.b
6
Ver2.3
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Display control.
0
Display on
1
0
1
0
1
1
1
1
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Data Write.
1
0
0
1
0
0
1
1
0
Y,X are initialized to 0 by
1
0
0
1
0
0
1
1
0
default, so they aren’t set
1
0
0
1
0
0
1
1
0
here…
1
0
0
1
0
0
1
1
0
86/97
2007/1/3
ST7528
7
8
9
10
11
12
13
Ver2.3
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
0
1
0
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
Data Write.
87/97
2007/1/3
ST7528
14
15
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
Data Write.
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Display Control.
0
Set Reverse display mode
1
0
1
0
0
1
1
1
REV=1
16
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Set column address of RAM.
0
0
0
0
1
0
0
0
0
Set address to “00000000”.
0
0
0
0
0
0
0
0
0
Y[9:2]=00000000
(Y[1:0] default is 00)
17
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
Data Write.
programming example for ST7528(Use IIC Interface)
SETP
1
2
3
4
SERIAL BUS BYTE
DISPLAY
OPERATION
IIC INTERFACE Start
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Slave address for write
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Control byte with cleared Co
0
0
0
0
0
0
0
0
bit and A0 set to logic 0
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
0
1
1
1
0
0
0
0
0
0
0
1
x’
Mode Set.
0
FR[3:0] = 0000
0
BE= 1
EXT= 0 (Normal INST. Mode)
5
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
6.a
Ver2.3
0
1
0
1
1
1
1
0
0
1
Set DC-DC Step up
DC1 DC0
Set Vout
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
6.c
1
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
6.b
0
OSC ON
0
0
1
0
R2 R1
Set Ra/Rb
R0
Set R[2:0]
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Set EV
88/97
2007/1/3
ST7528
6.d
1
0
0
x’
x’
Ev5
0
Ev4
0
Ev3
0
1
Ev2
Ev1
Set Ev[5:0]
Ev0
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
7.a
0
1
0
1
0
B2
B1
Set Bias
B0
Set B[2:0]
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Mode Set.
0
0
1
1
1
0
0
0
0
0
0
0
1
x’
0
EXT= 1
1
(Extension INST. Mode)
7.b
SET pulse width of Gray scale
Gray-Scale Setting
7.c
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Mode Set.
8.a
0
0
1
1
1
0
0
0
0
0
0
0
1
x’
0
EXT= 0
0
(Normal INST. Mode)
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
0
1
0
1
1
1
SET Power Control
1
Booster ON
Regulator ON
Follower ON
8.b
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
9
10
11
0
1
0
1
1
1
Display control.
1
Display on
IIC INTERFACE Start
restart
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Slave address for write
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Control byte with clear Co bit
0
1
0
0
0
0
0
0
and A0 set to logic 1
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
12
Data Write.
0
0
1
0
0
1
1
0
Y,X are initialized to 0 by
0
0
1
0
0
1
1
0
default, so they aren’t set
0
0
1
0
0
1
1
0
here…
0
0
1
0
0
1
1
0
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
13
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
Data Write.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
14
Ver2.3
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
Data Write.
89/97
2007/1/3
ST7528
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
15
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
Data Write.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
16
0
0
1
1
0
0
1
0
0
0
1
1
0
0
1
0
0
0
1
1
0
0
1
0
0
0
1
1
0
0
1
0
Data Write.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
17
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Data Write.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
18
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
Data Write.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
19
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
Data Write.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
20
21
22
23
Ver2.3
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
Data Write.
IIC INTERFACE start
restart
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Slave address for write
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Control byte with set Co bit
1
0
0
0
0
0
0
0
and A0 set to logic 0
90/97
2007/1/3
ST7528
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
24
25
1
0
1
0
0
1
1
Display Control.
1
Set Reverse display mode
REV=1
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
0
0
0
0
0
Control byte with set Co bit
0
and A0 set to logic 0
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
26
Set column address of RAM.
0
0
0
1
0
0
0
0
Set address to “00000000”.
0
0
0
0
0
0
0
0
Y[9:2]=00000000
(Y[1:0] default is 00)
27
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
1
0
0
0
0
0
Control byte with set Co bit
0
and A0 set to logic 1
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
28
29
30
31
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Data Write.
IIC INTERFACE start
restart
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Slave address for write
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Control byte with set Co bit
1
0
0
0
0
0
0
0
and A0 set to logic 0
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
32
33
Ver2.3
1
0
0
0
0
0
0
Set X address of RAM.
0
Set address to “0000000”.
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1
0
0
0
0
0
0
Control byte with cleared Co
0
bit and A0 set to logic 0
91/97
2007/1/3
ST7528
ST7528 APPICATION NOTE
ST7528
Internal analog circuit
Mode 0, Resolution : 129(128COM+ICON)*132(SEG)
Interface:8080 series
OSC1:External for input
(the same pin shoud be connected together,
for example,pin246(D0) connect to pin247(D0)
exclude power pin)
PS0:VDD
PS1:VSS
PS2:VSS
Mode:VSS
TA:VDD
REF:VDD
INTRS:VDD
VR:OPEN
VEXT:OPEN
T0~T9:OPEN
MF[2:0]:VDD OR VSS=(0,0,0)
DS[1:0]:VDD OR VSS=(1,0)
(MF[2:0]&DS[1:0] is ID of this IC,
these pins cannot be left open)
C=1uF
365
COM52
............
364
............
353
COM63
351~352
V0
350
V1
349
V2
348
V3
347
V4
345~346
VR
344
VDD
342~343
OSC1
341
VSS
340
INTRS
COM0
339
VDD
32
COMS1
338
VEXT
33
SEG0
337
VSS
336
REF
335
VDD
326~334
T8~T0
320~325
VOUT_IN
314~319
VOUT_OUT
313
VDD
ST7528
312
DS1
311
DS0
310
MF0
309
MF1
308
MF2
307
TA
21
V0
306
Mode
20
V1
300~305
VSS
19
V2
284~299
VSS2
18
V3
268~283
VDD2
17
V4
262~267
VDD
16
VOUT
260~261
D7
15
D7
258~259
D6
14
D6
256~257
D5
13
D5
254~255
D4
12
D4
252~253
D3
11
D3
163
SEG130
250~251
D2
10
D2
164
SEG131
248~249
D1
9
D1
165
COM64
246~247
D0
8
244~245
E_RD
7
E_RD
242~243
RW_WR
6
RW_WR
240~241
A0
5
238~239
RST
4
RST
236~237
3
CSB
235
CSB
VSS
2
VSS
234
PS2
1
VDD
233
PS1
232
PS0
231
VDD
230
T9
COM127
A0
217
197
................
218
COM117
COM116
COM95
COM96
196
D0
................
COMS2
228
................
229
C C C C
.......................................................
31
C
COM51
................
..........................................
COM30
........................................................
........................................................
.......................................................
..........................................
1
COM31
385
................
................
Ver2.3
92/97
2007/1/3
ST7528
ST7528
Internal analog circuit
Mode1: Resolution : 101(100COM+ICON)*160(SEG)
Interface : 4 SPI
OSC1:External for input
(the same pin shoud be connected together,
for example,pin246(D0) connect to pin247(D0)
exclude power pin)
PS0:VSS
PS1:VDD
PS2:VSS
Mode:VDD
TA:VDD
REF:VDD
INTRS:VDD
VR:OPEN
VEXT:OPEN
T0~T9:OPEN
MF[2:0]:VDD OR VSS=(0,0,0)
DS[1:0]:VDD OR VSS=(1,0)
(MF[2:0]&DS[1:0] is ID of this IC,
these pins cannot be left open)
C=1uF
365
385
................
COM38
COM49
351~352
V0
350
V1
349
V2
348
V3
347
V4
VR
345~346
344
VDD
342~343
OSC1
341
VSS
340
INTRS
17
COM0
339
VDD
18
COMS1
338
VEXT
19
SEG0
337
VSS
VDD
T8~T0
320~325
VOUT_IN
314~319
VOUT_OUT
313
VDD
DS1
311
DS0
310
MF0
309
MF1
308
MF2
307
TA
306
Mode
300~305
VSS
VSS2
268~283
VDD2
262~267
VDD
260~261
D7
258~259
D6
256~257
D5
13
V0
254~255
D4
12
V1
252~253
D3
11
V2
V3
C
C
284~299
177
SEG158
250~251
D2
10
178
SEG159
248~249
D1
9
V4
179
COM50
246~247
D0
8
VOUT
244~245
E_RD
7
SID
242~243
RW_WR
6
SCLK
240~241
A0
5
A0
238~239
RST
4
RST
236~237
CSB
3
235
VSS
2
VSS
234
PS2
1
VDD
233
PS1
VDD
230
T9
229
COMS2
228
COM99
217
197
................
218
COM89
COM88
COM67
COM68
196
CSB
................
PS0
231
................
232
C C
ST7528
.......................................................
312
........................................................
.......................................................
REF
335
326~334
C
..........................................
..........................................
353
336
........................................................
............
364
............
COM37
COM16
COM17
................
1
................
Ver2.3
93/97
2007/1/3
ST7528
ST7528
Internal analog circuit
Mode1: Resolution : 101(100COM+ICON)*160(SEG)
Interface : 3 SPI
OSC1:External for input
(the same pin shoud be connected together,
for example,pin246(D0) connect to pin247(D0)
exclude power pin)
PS0:VSS
PS1:VSS
PS2:VSS
Mode:VDD
TA:VDD
REF:VDD
INTRS:VDD
VR:OPEN
VEXT:OPEN
T0~T9:OPEN
MF[2:0]:VDD OR VSS=(0,0,0)
DS[1:0]:VDD OR VSS=(1,0)
(MF[2:0]&DS[1:0] is ID of this IC,
these pins cannot be left open)
C=1uF
365
385
................
COM38
..........................................
..........................................
353
COM49
351~352
V0
350
V1
349
V2
348
V3
347
V4
VR
345~346
344
VDD
342~343
OSC1
341
VSS
340
INTRS
17
COM0
339
VDD
18
COMS1
338
VEXT
19
SEG0
337
VSS
336
REF
335
VDD
326~334
T8~T0
320~325
VOUT_IN
314~319
VOUT_OUT
313
VDD
312
ST7528
.......................................................
DS1
311
DS0
310
MF0
309
MF1
308
MF2
307
TA
306
Mode
300~305
VSS
284~299
VSS2
268~283
VDD2
262~267
VDD
260~261
D7
258~259
D6
256~257
D5
12
V0
254~255
D4
11
V1
252~253
D3
10
V2
V3
C
250~251
D2
9
178
SEG159
248~249
D1
8
V4
179
COM50
246~247
D0
7
VOUT
244~245
E_RD
6
SID
242~243
RW_WR
5
SCLK
240~241
A0
238~239
RST
4
RST
236~237
CSB
3
CSB
235
VSS
2
VSS
234
PS2
1
VDD
233
PS1
VDD
230
T9
229
COMS2
228
COM99
217
197
................
218
COM89
COM88
COM67
COM68
196
................
PS0
231
................
232
C C
SEG158
C
177
........................................................
........................................................
C
.......................................................
............
364
............
COM37
COM16
COM17
................
1
................
Ver2.3
94/97
2007/1/3
ST7528
ST7528
Internal analog circuit
Mode0, Resolution : 129(128COM+ICON)*132(SEG)
Interface : I2C
OSC1:External for input
(the same pin shoud be connected together,
for example,pin246(D0) connect to pin247(D0)
exclude power pin)
SA[1:0]:VDD OR VSS=(0,0)
(SA[1:0] are Slave address of I2C)
VR:OPEN
VEXT:OPEN
T0~T9:OPEN
MF[2:0]:VDD OR VSS=(0,0,0)
DS[1:0]:VDD OR VSS=(1,0)
(MF[2:0]&DS[1:0] is ID of this IC,
these pins cannot be left open)
C=1uF ; R=10K歐姆
PS0:VSS
PS1:VSS
PS2:VDD
Mode:VSS
TA:VDD
REF:VDD
INTRS:VDD
365
385
................
COM52
COM63
351~352
V0
350
V1
349
V2
348
V3
347
V4
VR
345~346
344
VDD
342~343
OSC1
341
VSS
340
INTRS
31
COM0
339
VDD
32
COMS1
338
VEXT
33
SEG0
337
VSS
320~325
VOUT_IN
314~319
VOUT_OUT
313
VDD
312
DS1
311
DS0
310
MF0
309
MF1
308
MF2
307
TA
306
Mode
VSS
284~299
VSS2
268~283
VDD2
D6(SDA_IN)
256~257
D5(SDA_IN)
254~255
D4(SDA_IN)
252~253
D3(SDA_OUT)
11
V0
163
SEG130
250~251
D2(SDA_OUT)
10
V1
164
SEG131
248~249
D1(SA1)
9
V2
165
COM64
246~247
D0(SA0)
8
244~245
E_RD
7
V4
242~243
RW_WR
6
VOUT
240~241
A0
5
SCL
238~239
RST
4
SDA
236~237
CSB
3
235
VSS
2
VSS
234
PS2
1
VDD
233
V3
RST
PS1
232
PS0
231
VDD
230
T9
COM127
................
COMS2
228
................
229
217
197
................
218
COM117
COM116
COM95
COM96
196
C
D7(SCL)
258~259
C C C
260~261
C
VDD
262~267
R
ST7528
.......................................................
VDD
T8~T0
300~305
........................................................
.......................................................
REF
335
326~334
R
..........................................
..........................................
353
336
........................................................
............
364
............
COM51
COM30
COM31
................
1
................
Ver2.3
95/97
2007/1/3
ST7528
ST7528
Internal analog circuit
Mode1: Resolution : 101(100COM+ICON)*160(SEG)
Interface : 8080 interface
OSC1:External for input
External VOUT from VOUT_IN
(the same pin shoud be connected together,
for example,pin246(D0) connect to pin247(D0)
exclude power pin)
PS0:VDD
PS1:VSS
PS2:VSS
Mode:VDD
TA:VDD
REF:VDD
INTRS:VDD
VR:OPEN
VEXT:OPEN
T0~T9:OPEN
MF[2:0]:VDD OR VSS=(0,0,0)
DS[1:0]:VDD OR VSS=(1,0)
(MF[2:0]&DS[1:0] is ID of this IC,
these pins cannot be left open)
C=1uF
365
385
................
COM38
COM49
351~352
V0
350
V1
349
V2
348
V3
347
V4
VR
345~346
344
VDD
342~343
OSC1
341
VSS
340
INTRS
17
COM0
339
VDD
18
COMS1
338
VEXT
19
SEG0
337
VSS
VDD
T8~T0
320~325
VOUT_IN
314~319
VOUT_OUT
313
VDD
DS1
DS0
21
V0
310
MF0
20
V1
309
MF1
19
V2
308
MF2
18
307
TA
17
V4
306
Mode
16
VOUT_IN
C
C
311
V3
300~305
VSS
284~299
VSS2
268~283
VDD2
262~267
VDD
260~261
D7
15
D7
258~259
D6
14
D6
256~257
D5
13
D5
254~255
D4
12
D4
252~253
D3
11
D3
177
SEG158
250~251
D2
10
D2
178
SEG159
248~249
D1
9
D1
179
COM50
246~247
D0
8
244~245
E_RD
7
RD
242~243
RW_WR
6
WR
240~241
A0
5
A0
238~239
RST
4
RST
236~237
CSB
3
235
VSS
2
VSS
234
PS2
1
VDD
233
PS1
VDD
230
T9
229
COMS2
228
COM99
CSB
217
197
................
218
COM89
COM88
COM67
COM68
196
D0
................
PS0
231
................
232
C C
ST7528
.......................................................
312
........................................................
.......................................................
REF
335
326~334
C
..........................................
..........................................
353
336
........................................................
............
364
............
COM37
COM16
COM17
................
1
................
Ver2.3
96/97
2007/1/3
ST7528
Reversion History
1.5V
2004/6/29
80,68,IIC Timing character definition
1.6V
2004/7/21
Modify Application Note VDD, VSS routing
1.7V
2004/10/12
Add Timing parameter , tF and tR
1.8V
2004/11/26
l
Modify Vout Max limitation from 15V to 18V
l
Add VEXT using range (2.0V~3.3V)
l
Modify Frame rate frequency typical and Max/Min value.
l
Modify 3FRC/4FRC setting description (page 33).
l
Add description about the Panel Size large than 1.6”, the VOP can not set
over 12 voltage.
1.9V
2005/01/18
l
Add description about IIC interface can not use with other IIC slaver device.
l
Modify page 29, 30 key error.
l
Change “partial display duty ratio” to “select partial display line”.
l
Add description on instruction of Frame Frequency to suitable for no partial
display.
l
Add release bias power save instruction.
l
Remove page-3 “PAD NO 352 ~ 353: 913 um
l
Change VDD1 to VDD.
PAD NO 229 ~ 230: 84 um“.
2.0V
2005/10/05
2.1V
2005/10/20
Modify E_RD , RW_WR , Pin description, and add VR,VEXT ITO resister limitation.
2.2V
2005/12/22
Modify PAD Coordinates.
2.3V
2005/12/27
Ver2.3
l
Add DS1.DS0 recommended setting.
l
Modify ADC description mistake.
97/97
2007/1/3