ST Sitronix ST7556 65 x 102 Dot Matrix LCD Controller/Driver 1. INTRODUCTION The ST7556 is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102 segment and 65 common with 1 ICOM driver circuits. This chip is connected directly to a microprocessor, accepts 4-line serial interface (SPI) or 8-bit parallel interface, display data can store in an on-chip display data RAM of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components. 2. FEATURES Driver Output Circuits (external clock also possible) 102 segment outputs / 65+1 common outputs - Voltage converter (x4) On-chip Display Data ram - Voltage regulator (temperature gradient - Capacity: 66X102=6,732 bits -0.05%/°C) Microprocessor Interface - 8-bit parallel bi-directional interface with - Voltage follower - On-chip electronic contrast control function (128 steps) 6800-series or 8080-series - 4-line SPI (serial peripheral interface) available - Liquid crystal driving voltage : V0 -VSS = max 12 V (external power supply) (only write operation) On-chip Low Power Analog Circuit - - Generation of LCD supply voltage (externally External RESB (reset) pin Vout voltage supply is possible) Logic supply voltage range VDD -VSS Generation of intermediate LCD bias voltages - 1.8 to 3.3V Temperature range: -30 to +85 degree - Ver 2.2 Oscillator requires no external components 1/43 2005/10/05 ST7556 3. PAD Arrangement (COG) Chip Size: 10,310 um × 1,150 um Bump Pitch: PAD NO 1 ~ 148 , 250 ~ 272 : 75.5 um (com/seg) PAD NO 248 ~ 249 : 93.5 um (Reset) PAD NO 149 ~ 248 : 75 um (I/O) PAD NO 148 ~ 149 : 114 um PAD NO 249 ~ 250 : 95.9 um (Reset) Bump Size: PAD NO 1 ~ 125 , 137 ~ 248 , 250 ~ 261 : 55(x) um × 60(y) um PAD NO 126 ~ 136 PAD NO 249 : 92(x) um × 60(y) um , 262 ~ 272 : 60(x)um × 55(y) um Bump Height: 17 um Chip Thickness: 635 um 60 6 15 75 75 6 Metal area Bump area (-4766,410) unit: um 15 6 6 30 30 15 30 60 15 30 (4766,410) unit:um Mark 1 125 126 272 Y X (0,0) 136 262 137 261 248 249 250 RES 30 15 30 15 55 10 15 60 55 60 30 75 Bump Size of Top & Bottom 30 75 92 60 Bump Size of Right & Left (-4763,-410) unit:um Ver 2.2 60 Bump Size of RES unit: um 2/43 10 15 60 (4763,-410) unit:um 2005/10/05 ST7556 Pad Center Coordinates (NORMAL, TMY=0) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[42] 4681.0 389.0 36 SEG[23] 2038.5 389.0 2 COM[41] 4605.5 389.0 37 SEG[24] 1963.0 389.0 3 COM[40] 4530.0 389.0 38 SEG[25] 1887.5 389.0 4 COM[39] 4454.5 389.0 39 SEG[26] 1812.0 389.0 5 COM[38] 4379.0 389.0 40 SEG[27] 1736.5 389.0 6 COM[37] 4303.5 389.0 41 SEG[28] 1661.0 389.0 7 COM[36] 4228.0 389.0 42 SEG[29] 1585.5 389.0 8 COM[35] 4152.5 389.0 43 SEG[30] 1510.0 389.0 9 COM[34] 4077.0 389.0 44 SEG[31] 1434.5 389.0 10 COM[33] 4001.5 389.0 45 SEG[32] 1359.0 389.0 11 COM[32] 3926.0 389.0 46 SEG[33] 1283.5 389.0 12 Reserve 3850.5 389.0 47 SEG[34] 1208.0 389.0 13 SEG[0] 3775.0 389.0 48 SEG[35] 1132.5 389.0 14 SEG[1] 3699.5 389.0 49 SEG[36] 1057.0 389.0 15 SEG[2] 3624.0 389.0 50 SEG[37] 981.5 389.0 16 SEG[3] 3548.5 389.0 51 SEG[38] 906.0 389.0 17 SEG[4] 3473.0 389.0 52 SEG[39] 830.5 389.0 18 SEG[5] 3397.5 389.0 53 SEG[40] 755.0 389.0 19 SEG[6] 3322.0 389.0 54 SEG[41] 679.5 389.0 20 SEG[7] 3246.5 389.0 55 SEG[42] 604.0 389.0 21 SEG[8] 3171.0 389.0 56 SEG[43] 528.5 389.0 22 SEG[9] 3095.5 389.0 57 SEG[44] 453.0 389.0 23 SEG[10] 3020.0 389.0 58 SEG[45] 377.5 389.0 24 SEG[11] 2944.5 389.0 59 SEG[46] 302.0 389.0 25 SEG[12] 2869.0 389.0 60 SEG[47] 226.5 389.0 26 SEG[13] 2793.5 389.0 61 SEG[48] 151.0 389.0 27 SEG[14] 2718.0 389.0 62 SEG[49] 75.5 389.0 28 SEG[15] 2642.5 389.0 63 SEG[50] 0.0 389.0 29 SEG[16] 2567.0 389.0 64 SEG[51] -75.5 389.0 30 SEG[17] 2491.5 389.0 65 SEG[52] -151.0 389.0 31 SEG[18] 2416.0 389.0 66 SEG[53] -226.5 389.0 32 SEG[19] 2340.5 389.0 67 SEG[54] -302.0 389.0 33 SEG[20] 2265.0 389.0 68 SEG[55] -377.5 389.0 34 SEG[21] 2189.5 389.0 69 SEG[56] -453.0 389.0 35 SEG[22] 2114.0 389.0 70 SEG[57] -528.5 389.0 Ver 2.2 3/43 2005/10/05 ST7556 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 71 SEG[58] -604.0 389.0 107 SEG[94] -3322.0 389.0 72 SEG[59] -679.5 389.0 108 SEG[95] -3397.5 389.0 73 SEG[60] -755.0 389.0 109 SEG[96] -3473.0 389.0 74 SEG[61] -830.5 389.0 110 SEG[97] -3548.5 389.0 75 SEG[62] -906.0 389.0 111 SEG[98] -3624.0 389.0 76 SEG[63] -981.5 389.0 112 SEG[99] -3699.5 389.0 77 SEG[64] -1057.0 389.0 113 SEG[100] -3775.0 389.0 78 SEG[65] -1132.5 389.0 114 SEG[101] -3850.5 389.0 79 SEG[66] -1208.0 389.0 115 COMS1 -3926.0 389.0 80 SEG[67] -1283.5 389.0 116 COM[0] -4001.5 389.0 81 SEG[68] -1359.0 389.0 117 COM[1] -4077.0 389.0 82 SEG[69] -1434.5 389.0 118 COM[2] -4152.5 389.0 83 SEG[70] -1510.0 389.0 119 COM[3] -4228.0 389.0 84 SEG[71] -1585.5 389.0 120 COM[4] -4303.5 389.0 85 SEG[72] -1661.0 389.0 121 COM[5] -4379.0 389.0 86 SEG[73] -1736.5 389.0 122 COM[6] -4454.5 389.0 87 SEG[74] -1812.0 389.0 123 COM[7] -4530.0 389.0 88 SEG[75] -1887.5 389.0 124 COM[8] -4605.5 389.0 89 SEG[76] -1963.0 389.0 125 COM[9] -4681.0 389.0 90 SEG[77] -2038.5 389.0 126 COM[10] -4998.5 381.5 91 SEG[78] -2114.0 389.0 127 COM[11] -4998.5 306.0 92 SEG[79] -2189.5 389.0 128 COM[12] -4998.5 230.5 93 SEG[80] -2265.0 389.0 129 COM[13] -4998.5 155.0 94 SEG[81] -2340.5 389.0 130 COM[14] -4998.5 79.5 95 SEG[82] -2416.0 389.0 131 COM[15] -4998.5 4.0 96 SEG[83] -2491.5 389.0 132 COM[16] -4998.5 -71.5 97 SEG[84] -2567.0 389.0 133 COM[17] -4998.5 -147.0 98 SEG[85] -2642.5 389.0 134 COM[18] -4998.5 -222.5 99 SEG[86] -2718.0 389.0 135 COM[19] -4998.5 -298.0 100 SEG[87] -2793.5 389.0 136 COM[20] -4998.5 -373.5 101 SEG[88] -2869.0 389.0 137 COM[21] -4694.5 -389.0 102 SEG[89] -2944.5 389.0 138 COM[22] -4619.0 -389.0 103 SEG[90] -3020.0 389.0 139 COM[23] -4543.5 -389.0 104 SEG[91] -3095.5 389.0 140 COM[24] -4468.0 -389.0 105 SEG[92] -3171.0 389.0 141 COM[25] -4392.5 -389.0 106 SEG[93] -3246.5 389.0 142 COM[26] -4317.0 -389.0 Ver 2.2 4/43 2005/10/05 ST7556 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 143 COM[27] -4241.5 -389.0 179 D2 -1500.0 -389.0 144 COM[28] -4166.0 -389.0 180 D1 -1425.0 -389.0 145 COM[29] -4090.5 -389.0 181 D1 -1350.0 -389.0 146 COM[30] -4015.0 -389.0 182 D0 -1275.0 -389.0 147 COM[31] -3939.5 -389.0 183 D0 -1200.0 -389.0 148 Reserve -3864.0 -389.0 184 VDD -1125.0 -389.0 149 T9 -3750.0 -389.0 185 T0 -1050.0 -389.0 150 VDD -3675.0 -389.0 186 T1 -975.0 -389.0 151 VDD -3600.0 -389.0 187 T2 -900.0 -389.0 152 VDD -3525.0 -389.0 188 T3 -825.0 -389.0 153 VDD -3450.0 -389.0 189 T4 -750.0 -389.0 154 VDD -3375.0 -389.0 190 T5 -675.0 -389.0 155 VDD -3300.0 -389.0 191 T6 -600.0 -389.0 156 VDD2 -3225.0 -389.0 192 T7 -525.0 -389.0 157 VDD2 -3150.0 -389.0 193 T8 -450.0 -389.0 158 VDD2 -3075.0 -389.0 194 VRS -375.0 -389.0 159 VDD2 -3000.0 -389.0 195 ERD -300.0 -389.0 160 VDD2 -2925.0 -389.0 196 ERD -225.0 -389.0 161 VDD2 -2850.0 -389.0 197 RWR -150.0 -389.0 162 VDD2 -2775.0 -389.0 198 RWR -75.0 -389.0 163 VDD2 -2700.0 -389.0 199 A0 0.0 -389.0 164 VDD2 -2625.0 -389.0 200 A0 75.0 -389.0 165 VDD2 -2550.0 -389.0 201 CS 150.0 -389.0 166 VDD2 -2475.0 -389.0 202 CS 225.0 -389.0 167 VDD2 -2400.0 -389.0 203 IMS 300.0 -389.0 168 D7 -2325.0 -389.0 204 VDD 375.0 -389.0 169 D7 -2250.0 -389.0 205 PS 450.0 -389.0 170 D6 -2175.0 -389.0 206 T11 525.0 -389.0 171 D6 -2100.0 -389.0 207 T10 600.0 -389.0 172 D5 -2025.0 -389.0 208 VDD 675.0 -389.0 173 D5 -1950.0 -389.0 209 OSC 750.0 -389.0 174 D4 -1875.0 -389.0 210 OSC 825.0 -389.0 175 D4 -1800.0 -389.0 211 TMX 900.0 -389.0 176 D3 -1725.0 -389.0 212 TMY 975.0 -389.0 177 D3 -1650.0 -389.0 213 V0 1050.0 -389.0 178 D2 -1575.0 -389.0 214 V0 1125.0 -389.0 Ver 2.2 5/43 2005/10/05 ST7556 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 215 V1 1200.0 -389.0 244 VLCDOUT 3375.0 -389.0 216 V2 1275.0 -389.0 245 VLCDOUT 3450.0 -389.0 217 V3 1350.0 -389.0 246 VLCDOUT 3525.0 -389.0 218 V4 1425.0 -389.0 247 VLCDOUT 3600.0 -389.0 219 VSS2 1500.0 -389.0 248 VLCDOUT 3675.0 -389.0 220 VSS2 1575.0 -389.0 249 RES 3768.5 -389.0 221 VSS2 1650.0 -389.0 250 COMS2 3864.5 -389.0 222 VSS2 1725.0 -389.0 251 COM[64] 3940.0 -389.0 223 VSS2 1800.0 -389.0 252 COM[63] 4015.5 -389.0 224 VSS2 1875.0 -389.0 253 COM[62] 4091.0 -389.0 225 VSS2 1950.0 -389.0 254 COM[61] 4166.5 -389.0 226 VSS2 2025.0 -389.0 255 COM[60] 4242.0 -389.0 227 VSS2 2100.0 -389.0 256 COM[59] 4317.5 -389.0 228 VSS2 2175.0 -389.0 257 COM[58] 4393.0 -389.0 229 VSS2 2250.0 -389.0 258 COM[57] 4468.5 -389.0 230 VSS2 2325.0 -389.0 259 COM[56] 4544.0 -389.0 231 VSS 2400.0 -389.0 260 COM[55] 4619.5 -389.0 232 VSS 2475.0 -389.0 261 COM[54] 4695.0 -389.0 233 VSS 2550.0 -389.0 262 COM[53] 4998.5 -373.5 234 VSS 2625.0 -389.0 263 COM[52] 4998.5 -298.0 235 VSS 2700.0 -389.0 264 COM[51] 4998.5 -222.5 236 VSS 2775.0 -389.0 265 COM[50] 4998.5 -147.0 237 VLCDIN 2850.0 -389.0 266 COM[49] 4998.5 -71.5 238 VLCDIN 2925.0 -389.0 267 COM[48] 4998.5 4.0 239 VLCDIN 3000.0 -389.0 268 COM[47] 4998.5 79.5 240 VLCDIN 3075.0 -389.0 269 COM[46] 4998.5 155.0 241 VLCDIN 3150.0 -389.0 270 COM[45] 4998.5 230.5 242 VLCDIN 3225.0 -389.0 271 COM[44] 4998.5 306.0 243 VLCDOUT 3300.0 -389.0 272 COM[43] 4998.5 381.5 Ver 2.2 6/43 2005/10/05 ST7556 Pad Center Coordinates (REVERSE, TMY=1) PAD NO. PIN Name X Y PAD NO. PIN Name X Y 1 COM[22] 4681.0 389.0 36 SEG[23] 2038.5 389.0 2 COM[23] 4605.5 389.0 37 SEG[24] 1963.0 389.0 3 COM[24] 4530.0 389.0 38 SEG[25] 1887.5 389.0 4 COM[25] 4454.5 389.0 39 SEG[26] 1812.0 389.0 5 COM[26] 4379.0 389.0 40 SEG[27] 1736.5 389.0 6 COM[27] 4303.5 389.0 41 SEG[28] 1661.0 389.0 7 COM[28] 4228.0 389.0 42 SEG[29] 1585.5 389.0 8 COM[29] 4152.5 389.0 43 SEG[30] 1510.0 389.0 9 COM[30] 4077.0 389.0 44 SEG[31] 1434.5 389.0 10 COM[31] 4001.5 389.0 45 SEG[32] 1359.0 389.0 11 Reserve 3926.0 389.0 46 SEG[33] 1283.5 389.0 12 Reserve 3850.5 389.0 47 SEG[34] 1208.0 389.0 13 SEG[0] 3775.0 389.0 48 SEG[35] 1132.5 389.0 14 SEG[1] 3699.5 389.0 49 SEG[36] 1057.0 389.0 15 SEG[2] 3624.0 389.0 50 SEG[37] 981.5 389.0 16 SEG[3] 3548.5 389.0 51 SEG[38] 906.0 389.0 17 SEG[4] 3473.0 389.0 52 SEG[39] 830.5 389.0 18 SEG[5] 3397.5 389.0 53 SEG[40] 755.0 389.0 19 SEG[6] 3322.0 389.0 54 SEG[41] 679.5 389.0 20 SEG[7] 3246.5 389.0 55 SEG[42] 604.0 389.0 21 SEG[8] 3171.0 389.0 56 SEG[43] 528.5 389.0 22 SEG[9] 3095.5 389.0 57 SEG[44] 453.0 389.0 23 SEG[10] 3020.0 389.0 58 SEG[45] 377.5 389.0 24 SEG[11] 2944.5 389.0 59 SEG[46] 302.0 389.0 25 SEG[12] 2869.0 389.0 60 SEG[47] 226.5 389.0 26 SEG[13] 2793.5 389.0 61 SEG[48] 151.0 389.0 27 SEG[14] 2718.0 389.0 62 SEG[49] 75.5 389.0 28 SEG[15] 2642.5 389.0 63 SEG[50] 0.0 389.0 29 SEG[16] 2567.0 389.0 64 SEG[51] -75.5 389.0 30 SEG[17] 2491.5 389.0 65 SEG[52] -151.0 389.0 31 SEG[18] 2416.0 389.0 66 SEG[53] -226.5 389.0 32 SEG[19] 2340.5 389.0 67 SEG[54] -302.0 389.0 33 SEG[20] 2265.0 389.0 68 SEG[55] -377.5 389.0 34 SEG[21] 2189.5 389.0 69 SEG[56] -453.0 389.0 35 SEG[22] 2114.0 389.0 70 SEG[57] -528.5 389.0 Ver 2.2 7/43 2005/10/05 ST7556 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 71 SEG[58] -604.0 389.0 107 SEG[94] -3322.0 389.0 72 SEG[59] -679.5 389.0 108 SEG[95] -3397.5 389.0 73 SEG[60] -755.0 389.0 109 SEG[96] -3473.0 389.0 74 SEG[61] -830.5 389.0 110 SEG[97] -3548.5 389.0 75 SEG[62] -906.0 389.0 111 SEG[98] -3624.0 389.0 76 SEG[63] -981.5 389.0 112 SEG[99] -3699.5 389.0 77 SEG[64] -1057.0 389.0 113 SEG[100] -3775.0 389.0 78 SEG[65] -1132.5 389.0 114 SEG[101] -3850.5 389.0 79 SEG[66] -1208.0 389.0 115 COMS1 -3926.0 389.0 80 SEG[67] -1283.5 389.0 116 COM[64] -4001.5 389.0 81 SEG[68] -1359.0 389.0 117 COM[63] -4077.0 389.0 82 SEG[69] -1434.5 389.0 118 COM[62] -4152.5 389.0 83 SEG[70] -1510.0 389.0 119 COM[61] -4228.0 389.0 84 SEG[71] -1585.5 389.0 120 COM[60] -4303.5 389.0 85 SEG[72] -1661.0 389.0 121 COM[59] -4379.0 389.0 86 SEG[73] -1736.5 389.0 122 COM[58] -4454.5 389.0 87 SEG[74] -1812.0 389.0 123 COM[57] -4530.0 389.0 88 SEG[75] -1887.5 389.0 124 COM[56] -4605.5 389.0 89 SEG[76] -1963.0 389.0 125 COM[55] -4681.0 389.0 90 SEG[77] -2038.5 389.0 126 COM[54] -4998.5 381.5 91 SEG[78] -2114.0 389.0 127 COM[53] -4998.5 306.0 92 SEG[79] -2189.5 389.0 128 COM[52] -4998.5 230.5 93 SEG[80] -2265.0 389.0 129 COM[51] -4998.5 155.0 94 SEG[81] -2340.5 389.0 130 COM[50] -4998.5 79.5 95 SEG[82] -2416.0 389.0 131 COM[49] -4998.5 4.0 96 SEG[83] -2491.5 389.0 132 COM[48] -4998.5 -71.5 97 SEG[84] -2567.0 389.0 133 COM[47] -4998.5 -147.0 98 SEG[85] -2642.5 389.0 134 COM[46] -4998.5 -222.5 99 SEG[86] -2718.0 389.0 135 COM[45] -4998.5 -298.0 100 SEG[87] -2793.5 389.0 136 COM[44] -4998.5 -373.5 101 SEG[88] -2869.0 389.0 137 COM[43] -4694.5 -389.0 102 SEG[89] -2944.5 389.0 138 COM[42] -4619.0 -389.0 103 SEG[90] -3020.0 389.0 139 COM[41] -4543.5 -389.0 104 SEG[91] -3095.5 389.0 140 COM[40] -4468.0 -389.0 105 SEG[92] -3171.0 389.0 141 COM[39] -4392.5 -389.0 106 SEG[93] -3246.5 389.0 142 COM[38] -4317.0 -389.0 Ver 2.2 8/43 2005/10/05 ST7556 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 143 COM[37] -4241.5 -389.0 179 D2 -1500.0 -389.0 144 COM[36] -4166.0 -389.0 180 D1 -1425.0 -389.0 145 COM[35] -4090.5 -389.0 181 D1 -1350.0 -389.0 146 COM[34] -4015.0 -389.0 182 D0 -1275.0 -389.0 147 COM[33] -3939.5 -389.0 183 D0 -1200.0 -389.0 148 COM[32] -3864.0 -389.0 184 VDD -1125.0 -389.0 149 T9 -3750.0 -389.0 185 T0 -1050.0 -389.0 150 VDD -3675.0 -389.0 186 T1 -975.0 -389.0 151 VDD -3600.0 -389.0 187 T2 -900.0 -389.0 152 VDD -3525.0 -389.0 188 T3 -825.0 -389.0 153 VDD -3450.0 -389.0 189 T4 -750.0 -389.0 154 VDD -3375.0 -389.0 190 T5 -675.0 -389.0 155 VDD -3300.0 -389.0 191 T6 -600.0 -389.0 156 VDD2 -3225.0 -389.0 192 T7 -525.0 -389.0 157 VDD2 -3150.0 -389.0 193 T8 -450.0 -389.0 158 VDD2 -3075.0 -389.0 194 VRS -375.0 -389.0 159 VDD2 -3000.0 -389.0 195 ERD -300.0 -389.0 160 VDD2 -2925.0 -389.0 196 ERD -225.0 -389.0 161 VDD2 -2850.0 -389.0 197 RWR -150.0 -389.0 162 VDD2 -2775.0 -389.0 198 RWR -75.0 -389.0 163 VDD2 -2700.0 -389.0 199 A0 0.0 -389.0 164 VDD2 -2625.0 -389.0 200 A0 75.0 -389.0 165 VDD2 -2550.0 -389.0 201 CS 150.0 -389.0 166 VDD2 -2475.0 -389.0 202 CS 225.0 -389.0 167 VDD2 -2400.0 -389.0 203 IMS 300.0 -389.0 168 D7 -2325.0 -389.0 204 VDD 375.0 -389.0 169 D7 -2250.0 -389.0 205 PS 450.0 -389.0 170 D6 -2175.0 -389.0 206 T11 525.0 -389.0 171 D6 -2100.0 -389.0 207 T10 600.0 -389.0 172 D5 -2025.0 -389.0 208 VDD 675.0 -389.0 173 D5 -1950.0 -389.0 209 OSC 750.0 -389.0 174 D4 -1875.0 -389.0 210 OSC 825.0 -389.0 175 D4 -1800.0 -389.0 211 TMX 900.0 -389.0 176 D3 -1725.0 -389.0 212 TMY 975.0 -389.0 177 D3 -1650.0 -389.0 213 V0 1050.0 -389.0 178 D2 -1575.0 -389.0 214 V0 1125.0 -389.0 Ver 2.2 9/43 2005/10/05 ST7556 PAD NO. PIN Name X Y PAD NO. PIN Name X Y 215 V1 1200.0 -389.0 244 VLCDOUT 3375.0 -389.0 216 V2 1275.0 -389.0 245 VLCDOUT 3450.0 -389.0 217 V3 1350.0 -389.0 246 VLCDOUT 3525.0 -389.0 218 V4 1425.0 -389.0 247 VLCDOUT 3600.0 -389.0 219 VSS2 1500.0 -389.0 248 VLCDOUT 3675.0 -389.0 220 VSS2 1575.0 -389.0 249 RES 3768.5 -389.0 221 VSS2 1650.0 -389.0 250 COMS2 3864.5 -389.0 222 VSS2 1725.0 -389.0 251 COM[0] 3940.0 -389.0 223 VSS2 1800.0 -389.0 252 COM[1] 4015.5 -389.0 224 VSS2 1875.0 -389.0 253 COM[2] 4091.0 -389.0 225 VSS2 1950.0 -389.0 254 COM[3] 4166.5 -389.0 226 VSS2 2025.0 -389.0 255 COM[4] 4242.0 -389.0 227 VSS2 2100.0 -389.0 256 COM[5] 4317.5 -389.0 228 VSS2 2175.0 -389.0 257 COM[6] 4393.0 -389.0 229 VSS2 2250.0 -389.0 258 COM[7] 4468.5 -389.0 230 VSS2 2325.0 -389.0 259 COM[8] 4544.0 -389.0 231 VSS 2400.0 -389.0 260 COM[9] 4619.5 -389.0 232 VSS 2475.0 -389.0 261 COM[10] 4695.0 -389.0 233 VSS 2550.0 -389.0 262 COM[11] 4998.5 -373.5 234 VSS 2625.0 -389.0 263 COM[12] 4998.5 -298.0 235 VSS 2700.0 -389.0 264 COM[13] 4998.5 -222.5 236 VSS 2775.0 -389.0 265 COM[14] 4998.5 -147.0 237 VLCDIN 2850.0 -389.0 266 COM[15] 4998.5 -71.5 238 VLCDIN 2925.0 -389.0 267 COM[16] 4998.5 4.0 239 VLCDIN 3000.0 -389.0 268 COM[17] 4998.5 79.5 240 VLCDIN 3075.0 -389.0 269 COM[18] 4998.5 155.0 241 VLCDIN 3150.0 -389.0 270 COM[19] 4998.5 230.5 242 VLCDIN 3225.0 -389.0 271 COM[20] 4998.5 306.0 243 VLCDOUT 3300.0 -389.0 272 COM[21] 4998.5 381.5 Ver 2.2 10/43 2005/10/05 ST7556 4. BLOCK DIAGRAM DB0 DB1 DB2 DB3 DB4 DB5 DB6(SI) DB7(SCL) WR(R/W) RD(E) A0 /CS /RES Fig.1 block diagram Ver 2.2 11/43 2005/10/05 ST7556 5. PINNING DESCRIPTIONS Pin Name I/O Description No. of Pins LCD driver outputs LCD segment driver outputs This display data and the M signal control the output voltage of segment driver. Segment drover output voltage Display data M (Internal) Normal display Reverse display SEG0 to SEG101 O H H H L L H L L Power save mode COM0 to COM64 O COMS O TMX I TMY I VLCD V2 VSS V2 V3 VSS V3 VLCD VSS VSS LCD column driver outputs This internal scanning data and M signal control the output voltage of common driver. Common drover output voltage Display data M(Internal) Normal display Reverse display H H VSS H L VLCD L H V1 L L V4 Power save mode VSS Common output for the icons The output signals of two pins are same. When not used, this pin should be left open. Mirror X: SEG bi-direction selection TMX connect to VSS (MX=0):normal direction (SEG0ÆSEG101) TMX connect to VDD ( MX=1):reverse direction (SEG101ÆSEG0) Mirror Y: COM bi-direction selection TMY connect to VSS (MY=0):normal direction TMY connect to VDD (MY=1):reverse direction See pad center coordinates. 102 65 2 1 1 MICROPROCESSOR INTERFACE P/S I Microprocessor interface select input pin P/S= "H “: parallel data input. P/S= "L “: serial data input. When P/S=" L ", D0 to D5 are fixed to " H ". RD (E) and WR(R/W) are fixed to "H ". 1 Input mode select Ver 2.2 IMS I CSB I RESB I P/S IMS State "H" " H " 6800-series parallel MPU interface "H" " L " 8080-series parallel MPU interface "L" " H " 4 Pin-SPI MPU interface " L " Do not use "L" Chip select input pins Data/instruction I/O is enabled only when CSB is " L ". When chip select is non-active, DB0 to DB7 is high impedance. Reset input pin When RESET is " L ", initialization is executed. 12/43 1 2 1 2005/10/05 ST7556 A0 I It determines whether the data bits are data or a command. A0=" H “: Indicates that D0 to D7 are display data. A0=" L “: Indicates that D0 to D7 are control data. 2 Read/Write execution control pin /WR(R/W) IMS MPU type /WR(R/W) H 6800-series R/W I L 8080-series /WR Description Read/Write control input pin R/W=" H “: read R/W=" L”: write Write enable clock input pin The data on D0 to D7 are latched at the rising edge of the /WR signal 2 When in the serial interface must fixed to " H ". Read/Write execution control pin IMS /RD (E) I MPU Type /RD (E) H 6800-series E L 8080-series /RD Description Read/Write control input pin R/W=" H “: When E is " H ", D0 to D7 are in an output status. R/W=" L “: The data on D0 to D7 are latched at the falling edge of the E signal. Read enable clock input pin When /RD is " L ", D0 to D7 are in an output status. 2 When in the serial interface must fixed to " H ". D5 to D0 D6 (SI) D7 (SCL) I/O When the parallel interface selected (P/S=" H " ): 8-bit interface 8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus. When chip select is not active, D0 to D7 is high impedance. When the serial interface selected (P/S=" L " & IMS=”H”):4-line D7: serial input clock (SCL) D6: serial input data (SI) D5, D4, D3, D2, D1, D0: must fix to “H”. When chip select is not active, D0 to D7 is high impedance. 16 When the on-chip oscillator is used, this input must be connected to VDD. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock. 2 LCD DRIVER SUPPLY OSC I Power Supply Pins VSS1 VSS2 VDD VDD2 Ver 2.2 Power Supply Power Supply Power Supply Power Digital Ground. The 2 supply rails VSS1 and VSS2 must be connected together. 6 Analog Ground. The 2 supply rails VSS1 and VSS2 must be connected together. 12 Digital Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. If Digital Option pin is high, must be this level 9 Analog Supply voltage. The 2 supply rails VDD and VDD2 could be connected together. 12 13/43 2005/10/05 ST7556 Supply VLCDOUT VLCDIN V0,V1, V2, V3, V4 VRS Power Supply Power Supply Power Supply Power If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected together and series one capacitor to VSS2. If an external supply is used this pin must be left open. If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected together. An external supply voltage can be supplied using the VLCDIN pad. This pad is for external multiple voltage input. In this case, VLCDOUT has to be left open, This is a multi-level power supply for the liquid crystal. VLCDIN ≥V0 ≥V1≥V2≥V3≥V4≥VSS 6 6 8 Monitor Voltage Regulator level, must be left open. 1 Supply Test Pin Test0~Test11 T Reserve Pin To test used. Test0~Test8 must floating Test9 could be connected out for monitor the VLCD(V0) voltage Test10 must connect to VSS Test11 must connect to VDD 11 ALL Reserve Pin must floating ST7556 I/O PIN ITO Resister Limitation PIN Name ITO Resister PS,IMS,OSC No Limitation T1~T8, VRS Floating VDD, Vdd2, Vss1, Vss2 , Vlcdin , Vlcdout <100Ω V1 , V2 , V3 , V4 <500Ω A0,/WR,/RD,CSB, D0 …D7 <1KΩ RESB <10KΩ Ver 2.2 14/43 2005/10/05 ST7556 6. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE Chip Select Input There is CSB pin for chip selection. The ST7556 can interface with an MPU when CSB is "L". When CSB is “H”, these pins are set to any other combination, A0, /RD(E), and /WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset. Parallel / Serial Interface ST7556 has three types of interface with an MPU, which are one serial and two parallel interfaces. This parallel or serial interface is determined by P/S pin as shown in table 1. Type Parallel Serial Table 1. Parallel/Serial Interface Mode P/S IMS CSB Interface mode H 6800-series MPU interface H CSB L 8080-series MPU interface H CSB 4-pin SPI interface L L --Do not use Parallel Interface (P/S = "H") The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by IMS as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and /WR(R/W) as shown in table 3. IMS H L Common RS H H L L Table 2. Microprocessor Selection for Parallel Interface CSB A0 /RD (E) /WR (R/W) DB0 to DB7 MPU bus CSB A0 E R/W DB0 to DB7 6800-series CSB A0 /RD /WR DB0 to DB7 8080-series Table 3. Parallel Data Transfer 8080-series Description /RD /WR (E) (R/W) L H Display data read out H L Display data write L H Register status read H L Writes to internal register (instruction) 6800-series E R/W (/RD) (/WR) H H H L H H H L NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, /WR(R/W) as in case of 6800-series mode. Serial Interface (P/S=" L ") Serial Mode 4-line SPI interface P/S IMS CSB A0 Description L H CSB Used Write only IMS=” L “, P/S=” H “: 4-line SPI interface When the ST7556 is active (CSB=”L”), serial data (D6) and serial clock (D7) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of P/S. When the A0 pin is used (IMS = “H”), data is display data when A0 is high, and command data when A0 is low. When A0 is not used (IMS = “L”), the LCD Driver will receive command from MCU by default. If messages on the data pin are data rather than command, MCU should send Data direction command to control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are sending, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into D7 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string are handled as command data. Ver 2.2 15/43 2005/10/05 ST7556 CSB SI DB6 DB7 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 SCL A0 Fig 2. 4-line SPI Timing Busy Flag The Busy Flag indicates whether the ST7556 is operating or not. When D7 is "H" in read status operation, this device is in busy status and will accept only read status instruction. If the cycle time is correct, the microprocessor needs not to check this flag before each instruction, which improves the MPU performance. Data Transfer The ST7556 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 3. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 4. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data. MPU signal A0 /WR D0 to D7 N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 N+3 Internal signals /WR BUS HOLDER COLUMN ADDRESS Fig 3. Write Timing Ver 2.2 16/43 2005/10/05 ST7556 MPU signal A0 /W R /RD D0 to D7 N Dummy D(N) D(N+1) Internal signals /W R /RD BUS HOLDER COLUMN ADDRESS N N D(N) D(N+1) D(N+2) D(N) D(N+1) D(N+2) Fig 4. Read Timing DISPLAY DATA RAM (DDRAM) The ST7556 contains a 65X102 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 65(8 pageX8 +1) X102, and extra ICOM. There is a direct correspondence between X-address and column output number. It is 65-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines and 1 page of 1 line. Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker. Page Address Circuit This circuit is for providing a Page Address to Display Data RAM shown in figure 6. It incorporates 4-bit Page Address register changed by only the “Set Page” instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid. Column Address Circuit Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM as shown in figure 5. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. ADDRESSING Data is downloaded in bytes into the RAM matrix of ST7556 as indicated in Figs.5, 6, 7. The display RAM has a matrix of 65 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to 8 (1000). Addresses outside these ranges are not allowed. In vertical addressing mode (V=1) the Y address increments after each byte (see Fig.7). After the last Y address (Y = 8) Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V=0) the X address increments after each byte (see Fig.6). After the last X address (X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y =0) Ver 2.2 17/43 2005/10/05 ST7556 Data structure 0 1 2 3 4 5 6 7 8 9 D0 LSB D7 D0 D7 1 bit Page 8 Page 9 1 bit 0 X-address 101 ICOM D0 1 bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0 X-address 917 101 0 1 2 3 4 5 6 7 8 Y-address Fig.5 RAM format, addressing 0 1 2 102103104 204205206 306307308 408409410 510511512 612613614 714715716 816817818 0 X-address 917 101 0 1 2 3 4 5 6 7 8 Y-address Fig.6 Sequence of writing data bytes into RAM with vertical addressing (V=1) Fig.7 sequence of writing data bytes into RAM with horizontal addressing (V=0) Ver 2.2 18/43 2005/10/05 Y-address MSB D7 ST7556 Page Address Data D3 D2 D1 D0 Line Address 64 65 0 00 1 S101 D0 63 01 S100 D0 62 02 S99 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 40H COM64 43H ICON(COMS) LCD Out 61 03 S98 D7 60 1 04 0 S97 0 5F 1 Page 8 Page 9 05 D7 S96 0 5E 0 06 0 S95 1 Page 7 5D 1 07 1 08 1 S94 0 Page 6 S93 0 08 1 5D 1 S8 0 Page 5 07 1 06 0 5E 1 S7 0 Page 4 05 0 5F 0 S6 1 04 0 Page 3 60 1 S5 1 03 0 61 0 Page 2 S4 0 02 1 62 0 S3 0 Page 1 01 1 63 0 S2 0 00 0 Page 0 64 0 65 0 S1 0 S0 0 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH TMX Column address D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 COM Output Display Data RAM Map (65 COM + ICOM) Ver 2.2 19/43 2005/10/05 ST7556 Oscillator The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input. Display Timing Generator Circuit This circuit generates some signals to be used for displaying LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 102-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the microprocessor. The display clock generates an LCD AC signal (M) which enables the LCD driver to make a AC drive waveform, and also generates an internal common timing signal and start signal to the common driver. Driving waveform and internal timing signal are shown in Figure 8. 64 65 1 2 3 4 5 6 7 8 9 10 11 12 57 58 59 60 61 62 63 64 65 1 2 3 4 5 CL(Internal) FR(Internal) M(Internal) COM0 VLCD V1 V2 V3 V4 VSS COM1 VLCD V1 V2 V3 V4 VSS SEGn VLCD V1 V2 V3 V4 VSS Fig 8. 2-frame AC Driving Waveform (Duty Ratio: 1/65) Ver 2.2 20/43 2005/10/05 ST7556 7. RESET CIRCUIT Setting RESB to “L” or Reset instruction can initialize internal function. When RESB becomes “L”, following procedure is executed Page address: 0 Column address: 0 Oscillator: OFF Power down mode (PD = 1) Horizontal addressing (V = 0) normal instruction set (H = 0) Display OFF (D = E = 0) Address counter X [6:0] = 0, Y [2:0] = 0 Bias system (BS [2:0] = 0) VLCD is equal to 0; the HV generator is switched off (VOP [6:0] = 0) After power-on, RAM data are undefined While RESB is “L” or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB6. After DB6 becomes ”L”, any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used. Ver 2.2 21/43 2005/10/05 ST7556 8. INSTRUCTION TABLE COMMAND BYTE D4 D3 D2 A0 WR (R/W) D7 D6 D5 H=0 or 1 NOP Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Function set 0 0 0 0 1 0 Read status byte Read data Write data 0 1 1 1 1 0 PD D7 D7 RST D6 D6 BUSY D5 D5 D D4 D4 INSTRUCTION A0 WR (R/W) D7 D6 D5 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 X6 X5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 VOP6 INSTRUCTION H=0 Display control Set Y address of RAM Set X address of RAM H=1 S/W Internal register initial Bias system Reserved Set VOP Ver 2.2 DESCRIPTION D1 D0 0 0 0 1 0 1 0 PD V H E D3 D3 1 D2 D2 0 D1 D1 1 D0 D0 COMMAND BYTE D4 D3 D2 D1 D0 D 0 E Y3 Y2 Y1 Y0 Set display configuration Sets Y address of RAM 0≦Y≦9 X4 X3 X2 X1 X0 Sets X address of RAM 0≦X≦101 0 0 0 X 0 1 1 X 1 0 0 X VOP5 VOP4 VOP3 1 0 BS2 X VOP2 1 1 BS1 X VOP1 0 0 BS0 X VOP0 22/43 No operation Internal reset Power-down; entry mode; Extended instruction control Read status byte Read data from RAM Write data to RAM DESCRIPTION S/W Internal register initial Sets bias system (BSx) Do not use Write VOP to register 2005/10/05 ST7556 9. INSTRUCTION DESCRIPTION H=”0” or “1” Reset This instruction resets initial display line, column address, page address, and common output status select to their initial status. This instruction cannot initialize the LCD power supply, which is initialized by the RESB pin. A0 0 WR(R/W) 0 Function Set A0 WR(R/W) 0 0 D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 1 D0 1 D7 0 D6 0 D5 1 D4 0 D3 0 D2 PD D1 V D0 H Flag Description All LCD outputs at VSS (display off), bias generator and VLCD generator off, VLCD can be disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data can be written. PD PD=0:chip is active PD=1:chip is in power down mode When V = 0, the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig13. V When V = 1, the vertical addressing is selected. The data is written into the DDRAM as shown in Fig12 When H = 0 the commands ‘display control’, ‘set Y address’ and ‘set X address’ can be performed, when H = 1 the others can be executed. The commands ‘write data’ and ‘function set’ can be executed in both cases. H H=0:use basic instruction set H=1:use extended instruction set Read status byte Indicates the internal status of the ST7556 A0 0 Flag PD RST BUSY D,E D2~D0 WR(R/W) 1 D7 PD D6 RST D5 BUSY D4 D D3 E D2 1 D1 0 D0 1 Description PD=0:chip is active PD=1:chip is in power down mode Indicates the initialization is in progress by RESET signal 0: chip is active,1:chip is being reset The device is busy when internal operation or reset. Any instruction is rejected until BUSY goes LOW. 0:chip is active;1:chip is being busy D E The bits D and E select the display mode. 0 0 Display blank 0 1 All display segments on 1 0 Normal mode 1 1 Inverse video mode ST7556 will return the fix data “101” as identification bit Write data 8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written. A0 1 Ver 2.2 WR(R/W) 0 D7 D6 D5 D4 D3 Write data 23/43 D2 D1 D0 2005/10/05 ST7556 H=”0” Display Control This bits D and E selects the display mode. A0 0 Flag D,E WR(R/W) 0 D7 0 D6 0 D5 0 D4 0 D3 1 D2 D D1 0 D0 E D3 Y3 D2 Y2 D1 Y1 D0 Y0 Description D E The bits D and E select the display mode. 0 0 Display off 1 0 Normal display 0 1 All display segments on 1 1 Inverse video mode Set Y address of RAM Y [3:0] defines the Y address vector address of the display RAM. A0 0 WR(R/W) 0 X/Y Address range Y3 Y2 Y1 Y0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 D7 0 D6 1 D5 0 D4 0 CONTENT Page0 (display RAM) Page1 (display RAM) Page2 (display RAM) Page3 (display RAM) Page4 (display RAM) Page5 (display RAM) Page6 (display RAM) Page7 (display RAM) Page8 (display RAM) Page9 (display RAM) ALLOWED X-RANGE 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 0 to 101 Set X address of RAM The X address points to the columns. The range of X is 0…101. A0 0 X6 0 0 0 0 : 1 1 1 1 Ver 2.2 WR(R/W) 0 X5 0 0 0 0 : 1 1 1 1 D7 1 X4 0 0 0 0 : 0 0 0 0 D6 X6 X3 0 0 0 0 : 0 0 0 0 D5 X5 X2 0 0 0 0 : 0 0 1 1 D4 X4 D3 X3 X1 0 0 1 1 : 1 1 0 0 X0 0 1 0 1 : 0 1 0 1 24/43 D2 X2 D1 X1 D0 X0 Column address 0 1 2 3 : 98 99 100 101 2005/10/05 ST7556 H=”1” S/W initial internal register st The 1 Instruction D7 A0 WR(R/W) 0 0 0 nd The 2 Instruction D7 A0 WR(R/W) 0 0 0 D6 0 D5 0 D4 0 D3 1 D2 1 D1 1 D0 0 D6 0 D5 0 D4 1 D3 0 D2 0 D1 1 D0 0 System Bias Select LCD bias ratio of the voltage required for driving the LCD. A0 D7 D6 D5 D4 D3 WR(R/W) 0 0 0 0 0 1 0 D2 BS2 D1 BS1 D0 BS0 BS2 0 0 0 0 1 1 1 1 LCD bias voltage Symbol VLCDIN V1 V2 Ver 2.2 BS1 0 0 1 1 0 0 1 1 BS0 0 1 0 1 0 1 0 1 Bias 11 10 9 8 7 6 5 4 Bias voltage for 1/8 bias VLCDIN 7/8 X VLCDIN 6/8 X VLCDIN Recommend Duty 1:100 1:80 1:65/1:68 1:48 1/40:1/34 1/24 1:18/1:16 1:10/1:9/1:8 Symbol V3 V4 VSS 25/43 Bias voltage for 1/8 bias 2/8 X VLCDIN 1/8 X VLCDIN VSS 2005/10/05 ST7556 Set VOP value: The operation voltage VLCD can be set by software. V0=( a + VOP×b ) (1) Typical values for parameter for the HV-Generator programming SYMBOL VALUE UNIT a 6.75 V b 0.03 V VL2 b a 00 01 02 03 04 05 06 ..... 7D 7E 7F VOP [6:0](programmed) {00 hex… 7F hex} Fig 13. VOP programming of ST7556 Caution As the programming range for the internally generated VLCDIN allows values above the max allowed VLCDIN, the customer has to ensure while setting the VOP register that under all condition and including all tolerances the VLCD limit of max. 13V will never be exceeded. As VLCDIN increases with lower temperatures, care must be taken not to set a Vop generating a VLCDIN voltage that will exceed the maximum of 10.6V when operating at –30 ℃. Ver 2.2 26/43 2005/10/05 ST7556 10. COMMAND DESCRIPTION Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power Release the reset state. (/RESB pin="H") Waiting reset circuit stablized(>1ms) Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial (2-byte) SET VOP Function set PD=0 , V=0 , H=0 Display control D=1 E=0 (Normal) Set X , Y address End of Initialization Fig 14. Initializing with the Built-in Power Supply Circuits Ver 2.2 27/43 2005/10/05 ST7556 Referential Instruction Setup Flow: Initializing without the built-in Power Supply Circuits User System Setup by External Pins Start of Initialization Power ON(VDD-VSS) Keeping the /RES Pin="L" Waiting for Stabilizing the Power Release the reset state. (/RESB pin="H") Waiting reset circuit stablized(>1ms) Set Power Save Function set PD=0 ,V=0 , H=1 SET Bias system S/W Internal register initial Function set PD=0 , V=0 , H=0 Display control D=1 E=0 (Normal) Set X , Y address Waiting for Stabilizing the LCD Power Levels End of Initialization Fig 15. Initializing without Built-in Power Supply Circuits Ver 2.2 28/43 2005/10/05 ST7556 Referential Instruction Setup Flow: Data Displaying End of Initialization Display Data RAM Addressing by Instruction [Set Page Address] [Set Column Address] Write Display Data by Instruction [Display Data Write] Turn Display ON/OFF Instruction [Display ON/OFF] End of Data Display Figure 16.Data Displaying Referential Instruction Setup Flow: Power OFF Optional Status Set Power Save by Instruction Power OFF(VDD-VSS) End of Power OFF Figure 17. Power OFF Ver 2.2 29/43 2005/10/05 ST7556 11. LIMITING VALUES In accordance with the Absolute Maximum Rating System; see notes 1 and 2. Parameter Symbol Conditions Unit Power Supply Voltage VDD, VDD2 –0.3 ~ +3.6 V Power supply voltage V0 3.0 ~ 12 V Power supply voltage VLCDIN –0.3 ~ +13.5 V Power supply voltage V1, V2, V3, V4 0.3 to Vlcdin V Input voltage VIN –0.5 to VDD+0.5 V Output voltage VO –0.5 to VDD+0.5 V Operating temperature TOPR –30 to +85 °C Storage temperature TSTR –65 to +150 °C VLCD V1 to V4 VDD VDD VSS VSS System (MPU) side VSS ST7556 chip side Notes 1. Stresses above those listed under Limiting Values may cause permanent damage to the device. 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VLCD ≧ V0 ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ Vss Ver 2.2 30/43 2005/10/05 ST7556 12. DC CHARACTERISTICS VDD = 1.8 V to 3.3V; VSS = 0 V; VLCD = 3.0 to 13.0V; Tamb = -30℃ to +85℃; unless otherwise specified. Item Symbol Condition Operating Voltage (1) VDD Operating Voltage (2) VDD2 High-level Input Voltage VIHC Low-level Input Voltage Rating Units Applicable Pin Min. Typ. Max. 1.8 — 3.3 V Vss*1 1.8 — 3.3 V VSS2 0.7 x VDD — VDD V *2 VILC VSS 0.3 x VDD V *2 High-level Output Voltage VOHC 0.7 x VDD — VDD V *3 Low-level Output Voltage VOLC VSS — 0.3 x VDD V *3 Input leakage current ILI VIN = VDD or VSS –1.0 — 1.0 μA *4 Output leakage current ILO VIN = VDD or VSS –3.0 — 3.0 μA *5 — 2.0 3.5 Liquid Crystal Driver ON Resistance RON (Relative to VSS) Ta = VLCDIN = 25°C 13.0 V (Relative VLCDIN = 8.0 To VSS) V Internal Oscillator fOSC Oscillator External Frequency Input fCL 1/65 duty Ta = 25°C Frame frequency fFRAME Item Internal Power Input voltage Supply Step-up output voltage Circuit Symbol Condition VDD — KΩ SEGn COMn *6 — 3.2 5.4 — 80 84 kHz *7 — 80 84 kHz OSC — 77 80.3 Hz Rating Units Applicable Pin Min. Typ. Max. (Relative To VSS) 1.8 — 3.3 V VLCDOUT (Relative To VSS) — — 13.5 V VLCDOUT VLCDIN (Relative To VSS) — — 13.5 V VLCDIN Voltage regulator Circuit Operating Voltage Ver 2.2 31/43 2005/10/05 ST7556 Bare Dice Consumption Current : During Display, with the Internal Power Supply, Current consumed by total ICs when an external power supply(VDD,VDD2) is used . Test pattern Symbol Rating Condition Units Notes 400 μA *8 2 μA Min. Typ. Max. — 300 — 0.01 VDD,VDD2 = 3.0 V, Display Pattern SNOW ISS V0 – VSS = 9.0 V 4X Booster 1/9 Bias Power Down ISS VDD=3.0V Ta = 25°C Notes to the DC characteristics 1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load. 2. Internal clock 3. Power-down mode. During power down all static currents are switched off. 4. If external VLCDIN, the display load current is not transmitted to IDD. 5. VOUT external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT (no connect) References for items market with * *1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed. *2 The A0, D0 to D5, D6 (SI), D7 (SCL), /RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *3 The D0 to D7, and OSC terminals. *4 The A0,/RD (E), /WR ,/(R/W), CSB, IMS, OSC, P/S, /DOF, RESB ,and MODE terminals. *5 Applies when the D0 to D5, D6 (SI), D7 (SCL) terminals are in a high impedance state. *6 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range. RON = 0.1 V /∆I (Where ∆I is the current that flows when 0.1 V is applied while the power supply is ON.) *7 The relationship between the oscillator frequency and the frame rate frequency. *8,9It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. Ver 2.2 32/43 2005/10/05 ST7556 13. TIMING CHARACTERISTICS System Bus Read/Write Characteristics 1 (For the 8080 Series MPU) A0 tAW8 tAH8 /CS tCYC8 tCCLR,tCCLW WR,RD tCCHR,tCCHW tDS8 tDH8 D0 to D7 (Write) tACC8 tOH8 D0 to D7 (Read) Figure 18. (VDD = 3.3V , Ta =-30~85°C) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time Ver 2.2 D0 to D7 Symbol Condition Rating Min. Max. tAH8 10 — tAW8 0 — tCYC8 240 — tCCLW 80 — tCCHW 80 — tCCLR 140 — tCCHR 80 tDS8 40 — tDH8 0 — tACC8 CL = 100 pF — 70 tOH8 CL = 100 pF 5 50 33/43 Units ns 2005/10/05 ST7556 (VDD = 2.7 V , Ta = 30~85°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Condition Rating Min. Max. tAH8 15 — tAW8 0 — tCYC8 400 — tCCLW 220 — tCCHW 180 — tCCLR 220 — tCCHR 180 — tDS8 40 — tDH8 0 — tACC8 CL = 100 pF — 140 tOH8 CL = 100 pF 10 100 Units ns (VDD = 1.8V , Ta = 30~85°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Rating Min. Max. tAH8 30 — tAW8 0 — tCYC8 640 — tCCLW 360 — tCCHW 280 — tCCLR 360 — tCCHR 280 tDS8 80 — tDH8 30 — tACC8 CL = 100 pF — 240 tOH8 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC8 – tCCLW – tCCHW) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tCCLW and tCCLR are specified as the overlap between CSB being “L” and WR and RD being at the “L” level. Ver 2.2 34/43 2005/10/05 ST7556 System Bus Read/Write Characteristics 1 (For the 6800 Series MPU) A0 R/W tAW6 tAH6 CS1 (CS2="1") tCYC6 tCCLR,tCCLW E tCCHR,tCCHW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Figure 19. (VDD = 3.3 V , Ta = 30~85°C ) Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time Ver 2.2 D0 to D7 Symbol Condition Rating Min. Max. tAH6 10 — tAW6 0 — tCYC6 240 — tEWLW 80 — tEWHW 80 — tEWLR 80 — tEWHR 140 tDS6 40 — tDH6 0 — tACC6 CL = 100 pF — 70 tOH6 CL = 100 pF 5 50 35/43 Units ns 2005/10/05 ST7556 (VDD = 2.7V , Ta =30~85°C ) Item Signal Address hold time A0 Address setup time System cycle time Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) Enable L pulse width (READ) RD Enable H pulse width (READ) WRITE Data setup time WRITE Address hold time READ access time D0 to D7 READ Output disable time Symbol Rating Condition Min. Max. tAH6 15 — tAW6 0 — tCYC6 400 — tEWLW 220 — tEWHW 180 — tEWLR 220 — tEWHR 180 — tDS6 40 — tDH6 0 — tACC6 CL = 100 pF — 140 tOH6 CL = 100 pF 10 100 (VDD =1.8V Item Signal Address hold time Address setup time A0 System cycle time Enable L pulse width (WRITE) Enable H pulse width (WRITE) Enable L pulse width (READ) Enable H pulse width (READ) WR RD WRITE Data setup time WRITE Address hold time READ access time READ Output disable time D0 to D7 Symbol Condition Units ns , Ta =30~85°C ) Rating Min. Max. tAH6 30 — tAW6 0 — tCYC6 640 — tEWLW 360 — tEWHW 280 — tEWLR 360 — tEWHR 280 — tDS6 80 — tDH6 30 — tACC6 CL = 100 pF — 240 tOH6 CL = 100 pF 10 200 Units ns *1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≦ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified. *2 All timing is specified using 20% and 80% of VDD as the reference. *3 tEWLW and tEWLR are specified as the overlap between CSB being “L” and E. Ver 2.2 36/43 2005/10/05 ST7556 SERIAL INTERFACE (4-Line Interface) tCCSS tCSH /CS1 (CS2="1") tSAS tSAH A0 tSCYC tSLW SCL tSHW tf tr tSDS tSDH SI Fig 20. (VDD=3.3V,Ta=30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time A0 SI Data hold time CS-SCL time CSB CS-SCL time Symbol Condition Rating Min. Max. tSCYC 50 — tSHW 25 — tSLW 25 — tSAS 20 — tSAH 10 — tSDS 20 — tSDH 10 — tCSS 20 — tCSH 140 — Units ns (VDD=2.7V,Ta=30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time Ver 2.2 A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 100 — tSHW 50 — tSLW 50 — tSAS 30 — tSAH 20 — tSDS 30 — tSDH 20 — tCSS 30 — tCSH 160 — 37/43 Units ns 2005/10/05 ST7556 (VDD=1.8V,Ta=30~85℃) Item Signal Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Address setup time Address hold time Data setup time Data hold time CS-SCL time CS-SCL time A0 SI CSB Symbol Condition Rating Min. Max. tSCYC 200 — tSHW 80 — tSLW 80 — tSAS 60 — tSAH 30 — tSDS 60 — tSDH 30 — tCSS 40 — tCSH 200 — Units ns *1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard. Ver 2.2 38/43 2005/10/05 ST7556 14. RESET TIMING tRW /RES tR Internal status During reset Reset complete Fig 21. (VDD = 3.3V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1 us tRW 1 — — us (VDD = 2.7V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 1.5 us tRW 1.5 — — us (VDD = 1.8V , Ta = –30 to 85°C ) Item Signal Reset time Reset “L” pulse width Ver 2.2 RESB Symbol Condition Rating Units Min. Typ. Max. tR — — 2.0 us tRW 2.0 — — us 39/43 2005/10/05 ST7556 15. APPLICATION INFORMATION The pinning of the ST7556 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 64x102 pixels. Display 102X 65 pixels 102 33 VLCDOUT VLCDIN 32 VSS1 VSS2 VDD2 VDD ST7556 8 CLVCD I/O CVDD VSS VDD Fig 22. Application diagram: internal charge pump is used and single VDD Display 102 X 65 pixels 102 33 VLCDOUT VLCDIN 32 8 VSS1 VSS2 VDD2 VDD ST7556 VDD CVDD CLVCD I/OVDD2 CVDD2 VSS Fig 23. Application diagram: Internal charge pump is used and two separate VDD(VDD2) Ver 2.2 40/43 2005/10/05 ST7556 Display 102 X 65 pixels 102 33 VSS1 VSS2 VDD2 VDD ST7556 VLCDOUT VLCDIN 32 8 VL2 I/O VDD2 CVDD VSS Fig 24. application diagram : External high voltage generation is used The required minimum value for the external capacitors in an application with the ST7556 are: CVLCD = min. 100nF CVDD,2= min. 1.0 μF Higher capacitor values are recommended for ripple reduction. Ver 2.2 41/43 2005/10/05 ST7556 16. THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7556 Series can be connected to either 80X86 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7556 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7556 Series chips. When this is done, the chip select signal can be used to select the individual ICs to access. (1) 8080 Series MPUs VDD VDD IMS VCC A0 A0 /CS Decoder ST7556 MPU A1 to A7 IORQ D0 to D7 E (/RD) R/W (/WR) /RES DO to D7 RD WR RES GND PS VSS RESET VSS (2) 6800 Series MPUs VDD VDD IMS VCC A0 A0 /CS Decoder DO to D7 RD WR RES ST7556 MPU A1 to A7 IORQ D0 to D7 /RD (E) /WR (R/W) /RES GND PS VSS RESET VSS (3) Using the Serial Interface (4-line interface) VDD VCC A0 VDD IMS ST7556 /CS Decoder MPU A1 to A7 A0 Port 1 Port 2 RES GND SI SCL /RES PS VSS RESET VSS Ver 2.2 42/43 2005/10/05 ST7556 17. ST7556 Application Note (96x65) COM31 . . COM0 C O M 1 S C L D 7 C O M 0 S E G 1 96X65 ……… V L C D V D D S E G 1 0 0 S E G 1 0 1 S C C O M 3 2 V S S C O M 3 3 0 A C O M 3 4 S C L S I R E S V L C D I N V L C D O U T R E S … …… V V T TV O T T I V S S V V V T R R R A C M D P 1 1 D S MM V V S S S S 8 S D W 0 S S D S 1 0 D C X Y 0 …4 2 2 S S ST7556 ……… …… ……… ……… ……… ……… S V I D D D D D D DD T 6 5 4 3 2 1 0 D 0 S E G 0 S0 , S1 ………………………………………………………………… S94 , S95 C O M 2 V V VV D D DD T D D DD 2 2 9 ……… C C O O M … M 2 3 1 1 C C O O M M 1 1 2 2 C O M 2 1 I TO Pad for mo nitor V0 te st V D D C C O O MM… 6 6 4 3 C O M 4 1 C O M 5 5 COM64 . . COM32 C O M 4 2 C O M 5 4 2005/10/05 43/43 Ver 2.2