STPS8H100D/F/G/G-1 HIGH VOLTAGE POWER SCHOTTKY RECTIFIER MAIN PRODUCT CHARACTERISTICS IF(AV) 8A VRRM Tj (max) 100 V 175 °C VF (max) 0.58 V A NEGLIGIBLESWITCHING LOSSES HIGH JUNCTION TEMPERATURE CAPABILITY LOW LEAKAGE CURRENT GOOD TRADE OFF BETWEEN LEAKAGE CURRENT AND FORWARD VOLTAGE DROP AVALANCHE RATED TO-220AC STPS8H100D ISOWATT220AC STPS8H100F K A A DESCRIPTION Schottky barrier rectifier designed for high frequency compact Switched Mode Power Supplies such as adaptators and on board DC/DC converters. A K K FEATURES AND BENEFITS NC NC K I2PAK STPS8H100G-1 D2PAK STPS8H100G ABSOLUTE RATINGS (limiting values) Symbol Parameter Value Unit VRRM Repetitive peak reverse voltage 100 V IF(RMS) IF(AV) RMS forward current Average forward current δ = 0.5 30 8 A A 250 A TO-220AC / I2PAK / D2PAK Tc= 165°C ISOWATT220AC Tc = 150°C IRRM Surge non repetitive forward current Repetitive peak reverse current tp = 2 µs F = 1kHz square 1 A IRSM Non repetitive peak reverse current tp = 100 µs square 3 A Eas Non repetitive avalanche energy Tj = 25°C Ias = 2 A 24 mJ Iar Repetitive avalanche current Va = 1.5 x VR typ Current decaying linearly to 0 in 1µs Frequency limited by Tj max. 2 A - 65 to + 175 °C 175 °C 10000 V/µs IFSM Tstg Tj dV/dt tp = 10 ms sinusoidal Storage temperature range Maximum operating junction temperature Critical rate of rise of rise voltage August 1999 - Ed: 4A L = 60 mH 1/7 STPS8H100D/F/G/G-1 THERMAL RESISTANCES Symbol Parameter 2 2 Rth (j-c) Junction to case TO-220AC/ I PAK / D PAK Rth (j-c) Junction to case ISOWATT220AC Value Unit 1.6 °C/W 4 °C/W Max. Unit 4.5 µA 6 mA V STATIC ELECTRICAL CHARACTERISTICS Symbol Parameter Tests Conditions IR * Reverse leakage current Tj = 25°C Min. VR = VRRM Tj = 125°C VF ** Pulse test : Forward voltage drop Typ. 2 Tj = 25°C IF = 8 A 0.71 Tj = 25°C IF = 10 A 0.77 Tj = 25°C IF = 16 A 0.81 Tj = 125°C IF = 8 A 0.56 0.58 Tj = 125°C IF = 10 A 0.59 0.64 Tj = 125°C IF = 16 A 0.65 0.68 * tp = 5 ms, δ < 2% ** tp = 380 µs, δ < 2% To evaluate the maximum conduction losses use the following equation : P = 0.48 x IF(AV) + 0.0125 x IF2(RMS) Fig. 1: Average forward power dissipation versus average forward current. (TO-220AC / ISOWATT220AC / I2PAK / D2PAK) Fig. 2-1: Average forward current versus ambient temperature (δ=0.5) (TO-220AC / I2PAK / D2PAK). IF(av)(A) PF(av)(W) 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2/7 δ = 0.1 δ = 0.2 δ = 0.05 10 δ = 0.5 Rth(j-a)=Rth(j-c) 8 δ=1 6 4 Rth(j-a)=15°C/W T T 2 δ=tp/T IF(av) (A) 0 1 2 3 4 5 6 7 8 tp 9 10 0 0 δ=tp/T tp 20 40 Tamb(°C) 60 80 100 120 140 160 180 STPS8H100D/F/G/G-1 Fig. 2-2: Average forward current versus ambient temperature(δ=0.5) (ISOWATT220AC). Fig. 3-1: Non repetitive surge peak forward current versus overload duration (maximum values) (TO-220AC / I2 PAK / D2 PAK). IF(av)(A) IM(A) 10 160 Rth(j-a)=Rth(j-c) 140 8 120 100 6 4 60 T 40 2 δ=tp/T 0 Tc=75°C 80 Rth(j-a)=50°C/W 0 20 20 Tamb(°C) tp 40 60 80 100 120 140 160 180 Fig. 3-2: Non repetitive surge peak forward current versus overload duration (maximum values) (ISOWATT220AC). Tc=125°C t 0 1E-3 t(s) δ=0.5 1E-2 1E-1 1E+0 Fig. 4-1: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AC / I2PAK / D2PAK). IM(A) 100 90 80 70 60 50 40 30 20 IM 10 0 1E-3 Tc=100°C IM Zth(j-c)/Rth(j-c) 1.0 0.8 Tc=75°C δ = 0.5 0.6 0.4 Tc=100°C δ = 0.2 Tc=125°C 0.2 T δ = 0.1 Single pulse t t(s) δ =0.5 1E-2 δ=tp/T tp(s) 1E-1 1E+0 Fig. 4-2: Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AC). 0.0 1E-4 1E-3 1E-2 1E-1 tp 1E+0 Fig. 5: Reverse leakage current versus reverse voltage applied (typical values). IR(µA) Zth(j-c)/Rth(j-c) 5E+3 1.0 1E+3 Tj=125°C 0.8 1E+2 0.6 δ = 0.5 1E+1 0.4 δ = 0.2 0.2 1E+0 T Tj=25°C δ = 0.1 1E-1 Single pulse tp(s) 0.0 1E-3 1E-2 1E-1 δ=tp/T 1E+0 tp 1E+1 1E-2 VR(V) 0 10 20 30 40 50 60 70 80 90 100 3/7 STPS8H100D/F/G/G-1 Fig. 6: Junction capacitance versus reverse voltage applied (typical values). Fig. 7: Forward voltage drop versus forward current (maximum values). IFM(A) C(nF) 50.0 1000 F=1MHz Tj=25°C Tj=125°C 10.0 500 Tj=25°C 1.0 200 VFM(V) VR(V) 100 1 10 100 Fig. 8: Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit board FR4, copper thickness: 35µm)(D2PAK). Rth(j-a) (°C/W) 80 70 60 50 40 30 20 10 0 S(Cu) (cm ) 0 4/7 4 8 12 16 20 24 28 32 36 40 0.1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 STPS8H100D/F/G/G-1 PACKAGE MECHANICAL DATA TO-220AC DIMENSIONS REF. Millimeters Min. A H2 C L5 L7 ØI L6 L2 D L9 F1 L4 M F E G A C D E F F1 G H2 L2 L4 L5 L6 L7 L9 M Diam. I Max. 4.40 4.60 1.23 1.32 2.40 2.72 0.49 0.70 0.61 0.88 1.14 1.70 4.95 5.15 10.00 10.40 16.40 typ. 13.00 14.00 2.65 2.95 15.25 15.75 6.20 6.60 3.50 3.93 2.6 typ. 3.75 3.85 Inches Min. Max. 0.173 0.181 0.048 0.051 0.094 0.107 0.019 0.027 0.024 0.034 0.044 0.066 0.194 0.202 0.393 0.409 0.645 typ. 0.511 0.551 0.104 0.116 0.600 0.620 0.244 0.259 0.137 0.154 0.102 typ. 0.147 0.151 PACKAGE MECHANICAL DATA ISOWATT220AC DIMENSIONS A H Diam B L6 L7 L2 L3 F1 F D G E REF. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A B D E F F1 G H L2 L3 L6 L7 Diam 4.40 2.50 2.40 0.40 0.75 1.15 4.95 10.00 4.60 2.70 2.75 0.70 1.00 1.70 5.20 10.40 0.173 0.098 0.094 0.016 0.030 0.045 0.195 0.394 30.60 16.40 9.30 3.20 1.125 0.626 0.354 0.118 16.00 28.60 15.90 9.00 3.00 0.181 0.106 0.108 0.028 0.039 0.067 0.205 0.409 0.630 1.205 0.646 0.366 0.126 5/7 STPS8H100D/F/G/G-1 PACKAGE MECHANICAL DATA D2PAK DIMENSIONS REF. A E Min. C2 L2 D L L3 A1 B2 R C B G A2 M * V2 * FLAT ZONE NO LESSTHAN 2mm FOOTPRINT (in millimeters)D2PAK 16.90 10.30 5.08 1.30 3.70 8.90 6/7 Millimeters A A1 A2 B B2 C C2 D E G L L2 L3 M R V2 Max. 4.40 4.60 2.49 2.69 0.03 0.23 0.70 0.93 1.14 1.70 0.45 0.60 1.23 1.36 8.95 9.35 10.00 10.40 4.88 5.28 15.00 15.85 1.27 1.40 1.40 1.75 2.40 3.20 0.40 typ. 0° 8° Inches Min. Max. 0.173 0.181 0.098 0.106 0.001 0.009 0.027 0.037 0.045 0.067 0.017 0.024 0.048 0.054 0.352 0.368 0.393 0.409 0.192 0.208 0.590 0.624 0.050 0.055 0.055 0.069 0.094 0.126 0.016 typ. 0° 8° STPS8H100D/F/G/G-1 PACKAGE MECHANICAL DATA I2PAK DIMENSIONS REF. c2 L2 D L1 A1 b2 L b1 b c e Inches Min. Max. Min. Max. A A1 4.40 2.49 4.60 2.69 0.173 0.098 0.181 0.106 b b1 0.70 1.14 0.93 1.17 0.028 0.044 0.037 0.046 b2 c 1.14 0.45 1.17 0.60 0.044 0.018 0.046 0.024 c2 D 1.23 8.95 1.36 9.35 0.048 0.352 0.054 0.368 e E 2.40 10.0 2.70 10.4 0.094 0.394 0.106 0.409 L 13.1 13.6 0.516 0.535 L1 3.48 3.78 0.137 0.149 L2 1.27 1.40 0.050 0.055 A E Millimeters Ordering type Marking Package Weight Base qty Delivery mode STPS8H100D STPS8H100D TO-220AC 1.86g 50 Tube STPS8H100F STPS8H100F ISOWATT220AC STPS8H100G-1 STPS8H100G 2.00g 50 Tube 2 1.49g 50 Tube 2 I PAK STPS8H100G STPS8H100G D PAK 1.48g 50 Tube STPS8H100G-TR STPS8H100G D2PAK 1.48g 500 Tape & reel Epoxy meets UL94,V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 7/7