STMICROELECTRONICS STPS8H100F

STPS8H100D/F/G/G-1

HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
IF(AV)
8A
VRRM
Tj (max)
100 V
175 °C
VF (max)
0.58 V
A
NEGLIGIBLESWITCHING LOSSES
HIGH JUNCTION TEMPERATURE CAPABILITY
LOW LEAKAGE CURRENT
GOOD TRADE OFF BETWEEN LEAKAGE
CURRENT AND FORWARD VOLTAGE DROP
AVALANCHE RATED
TO-220AC
STPS8H100D
ISOWATT220AC
STPS8H100F
K
A
A
DESCRIPTION
Schottky barrier rectifier designed for high frequency compact Switched Mode Power Supplies such as adaptators and on board DC/DC
converters.
A
K
K
FEATURES AND BENEFITS
NC
NC
K
I2PAK
STPS8H100G-1
D2PAK
STPS8H100G
ABSOLUTE RATINGS (limiting values)
Symbol
Parameter
Value
Unit
VRRM
Repetitive peak reverse voltage
100
V
IF(RMS)
IF(AV)
RMS forward current
Average forward current
δ = 0.5
30
8
A
A
250
A
TO-220AC /
I2PAK / D2PAK
Tc= 165°C
ISOWATT220AC
Tc = 150°C
IRRM
Surge non repetitive forward
current
Repetitive peak reverse current
tp = 2 µs F = 1kHz square
1
A
IRSM
Non repetitive peak reverse current
tp = 100 µs square
3
A
Eas
Non repetitive avalanche energy
Tj = 25°C
Ias = 2 A
24
mJ
Iar
Repetitive avalanche current
Va = 1.5 x VR typ
Current decaying linearly
to 0 in 1µs
Frequency limited by Tj max.
2
A
- 65 to + 175
°C
175
°C
10000
V/µs
IFSM
Tstg
Tj
dV/dt
tp = 10 ms sinusoidal
Storage temperature range
Maximum operating junction temperature
Critical rate of rise of rise voltage
August 1999 - Ed: 4A
L = 60 mH
1/7
STPS8H100D/F/G/G-1
THERMAL RESISTANCES
Symbol
Parameter
2
2
Rth (j-c)
Junction to case
TO-220AC/ I PAK / D PAK
Rth (j-c)
Junction to case
ISOWATT220AC
Value
Unit
1.6
°C/W
4
°C/W
Max.
Unit
4.5
µA
6
mA
V
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Tests Conditions
IR *
Reverse leakage current
Tj = 25°C
Min.
VR = VRRM
Tj = 125°C
VF **
Pulse test :
Forward voltage drop
Typ.
2
Tj = 25°C
IF = 8 A
0.71
Tj = 25°C
IF = 10 A
0.77
Tj = 25°C
IF = 16 A
0.81
Tj = 125°C
IF = 8 A
0.56
0.58
Tj = 125°C
IF = 10 A
0.59
0.64
Tj = 125°C
IF = 16 A
0.65
0.68
* tp = 5 ms, δ < 2%
** tp = 380 µs, δ < 2%
To evaluate the maximum conduction losses use the following equation :
P = 0.48 x IF(AV) + 0.0125 x IF2(RMS)
Fig. 1: Average forward power dissipation versus
average forward current.
(TO-220AC / ISOWATT220AC / I2PAK / D2PAK)
Fig. 2-1: Average forward current versus ambient
temperature (δ=0.5) (TO-220AC / I2PAK / D2PAK).
IF(av)(A)
PF(av)(W)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
2/7
δ = 0.1
δ = 0.2
δ = 0.05
10
δ = 0.5
Rth(j-a)=Rth(j-c)
8
δ=1
6
4
Rth(j-a)=15°C/W
T
T
2
δ=tp/T
IF(av) (A)
0
1
2
3
4
5
6
7
8
tp
9
10
0
0
δ=tp/T
tp
20
40
Tamb(°C)
60
80
100
120
140
160
180
STPS8H100D/F/G/G-1
Fig. 2-2: Average forward current versus ambient
temperature(δ=0.5) (ISOWATT220AC).
Fig. 3-1: Non repetitive surge peak forward current
versus overload duration (maximum values)
(TO-220AC / I2 PAK / D2 PAK).
IF(av)(A)
IM(A)
10
160
Rth(j-a)=Rth(j-c)
140
8
120
100
6
4
60
T
40
2
δ=tp/T
0
Tc=75°C
80
Rth(j-a)=50°C/W
0
20
20
Tamb(°C)
tp
40
60
80
100
120
140
160
180
Fig. 3-2: Non repetitive surge peak forward current
versus overload duration (maximum values)
(ISOWATT220AC).
Tc=125°C
t
0
1E-3
t(s)
δ=0.5
1E-2
1E-1
1E+0
Fig. 4-1: Relative variation of thermal impedance
junction to case versus pulse duration
(TO-220AC / I2PAK / D2PAK).
IM(A)
100
90
80
70
60
50
40
30
20 IM
10
0
1E-3
Tc=100°C
IM
Zth(j-c)/Rth(j-c)
1.0
0.8
Tc=75°C
δ = 0.5
0.6
0.4
Tc=100°C
δ = 0.2
Tc=125°C
0.2
T
δ = 0.1
Single pulse
t
t(s)
δ =0.5
1E-2
δ=tp/T
tp(s)
1E-1
1E+0
Fig. 4-2: Relative variation of thermal impedance
junction to case versus pulse duration
(ISOWATT220AC).
0.0
1E-4
1E-3
1E-2
1E-1
tp
1E+0
Fig. 5: Reverse leakage current versus reverse
voltage applied (typical values).
IR(µA)
Zth(j-c)/Rth(j-c)
5E+3
1.0
1E+3
Tj=125°C
0.8
1E+2
0.6
δ = 0.5
1E+1
0.4
δ = 0.2
0.2
1E+0
T
Tj=25°C
δ = 0.1
1E-1
Single pulse
tp(s)
0.0
1E-3
1E-2
1E-1
δ=tp/T
1E+0
tp
1E+1
1E-2
VR(V)
0
10
20
30
40
50
60
70
80
90 100
3/7
STPS8H100D/F/G/G-1
Fig. 6: Junction capacitance versus reverse voltage applied (typical values).
Fig. 7: Forward voltage drop versus forward current (maximum values).
IFM(A)
C(nF)
50.0
1000
F=1MHz
Tj=25°C
Tj=125°C
10.0
500
Tj=25°C
1.0
200
VFM(V)
VR(V)
100
1
10
100
Fig. 8: Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit
board FR4, copper thickness: 35µm)(D2PAK).
Rth(j-a) (°C/W)
80
70
60
50
40
30
20
10
0
S(Cu) (cm )
0
4/7
4
8
12
16
20
24
28
32
36
40
0.1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
STPS8H100D/F/G/G-1
PACKAGE MECHANICAL DATA
TO-220AC
DIMENSIONS
REF.
Millimeters
Min.
A
H2
C
L5
L7
ØI
L6
L2
D
L9
F1
L4
M
F
E
G
A
C
D
E
F
F1
G
H2
L2
L4
L5
L6
L7
L9
M
Diam. I
Max.
4.40
4.60
1.23
1.32
2.40
2.72
0.49
0.70
0.61
0.88
1.14
1.70
4.95
5.15
10.00
10.40
16.40 typ.
13.00
14.00
2.65
2.95
15.25
15.75
6.20
6.60
3.50
3.93
2.6 typ.
3.75
3.85
Inches
Min.
Max.
0.173
0.181
0.048
0.051
0.094
0.107
0.019
0.027
0.024
0.034
0.044
0.066
0.194
0.202
0.393
0.409
0.645 typ.
0.511
0.551
0.104
0.116
0.600
0.620
0.244
0.259
0.137
0.154
0.102 typ.
0.147
0.151
PACKAGE MECHANICAL DATA
ISOWATT220AC
DIMENSIONS
A
H
Diam
B
L6
L7
L2
L3
F1
F
D
G
E
REF.
Millimeters
Inches
Min. Typ. Max. Min. Typ. Max.
A
B
D
E
F
F1
G
H
L2
L3
L6
L7
Diam
4.40
2.50
2.40
0.40
0.75
1.15
4.95
10.00
4.60
2.70
2.75
0.70
1.00
1.70
5.20
10.40
0.173
0.098
0.094
0.016
0.030
0.045
0.195
0.394
30.60
16.40
9.30
3.20
1.125
0.626
0.354
0.118
16.00
28.60
15.90
9.00
3.00
0.181
0.106
0.108
0.028
0.039
0.067
0.205
0.409
0.630
1.205
0.646
0.366
0.126
5/7
STPS8H100D/F/G/G-1
PACKAGE MECHANICAL DATA
D2PAK
DIMENSIONS
REF.
A
E
Min.
C2
L2
D
L
L3
A1
B2
R
C
B
G
A2
M
*
V2
* FLAT ZONE NO LESSTHAN 2mm
FOOTPRINT (in millimeters)D2PAK
16.90
10.30
5.08
1.30
3.70
8.90
6/7
Millimeters
A
A1
A2
B
B2
C
C2
D
E
G
L
L2
L3
M
R
V2
Max.
4.40
4.60
2.49
2.69
0.03
0.23
0.70
0.93
1.14
1.70
0.45
0.60
1.23
1.36
8.95
9.35
10.00
10.40
4.88
5.28
15.00
15.85
1.27
1.40
1.40
1.75
2.40
3.20
0.40 typ.
0°
8°
Inches
Min.
Max.
0.173
0.181
0.098
0.106
0.001
0.009
0.027
0.037
0.045
0.067
0.017
0.024
0.048
0.054
0.352
0.368
0.393
0.409
0.192
0.208
0.590
0.624
0.050
0.055
0.055
0.069
0.094
0.126
0.016 typ.
0°
8°
STPS8H100D/F/G/G-1
PACKAGE MECHANICAL DATA
I2PAK
DIMENSIONS
REF.
c2
L2
D
L1
A1
b2
L
b1
b
c
e
Inches
Min.
Max.
Min.
Max.
A
A1
4.40
2.49
4.60
2.69
0.173
0.098
0.181
0.106
b
b1
0.70
1.14
0.93
1.17
0.028
0.044
0.037
0.046
b2
c
1.14
0.45
1.17
0.60
0.044
0.018
0.046
0.024
c2
D
1.23
8.95
1.36
9.35
0.048
0.352
0.054
0.368
e
E
2.40
10.0
2.70
10.4
0.094
0.394
0.106
0.409
L
13.1
13.6
0.516
0.535
L1
3.48
3.78
0.137
0.149
L2
1.27
1.40
0.050
0.055
A
E
Millimeters
Ordering type
Marking
Package
Weight
Base qty
Delivery mode
STPS8H100D
STPS8H100D
TO-220AC
1.86g
50
Tube
STPS8H100F
STPS8H100F
ISOWATT220AC
STPS8H100G-1
STPS8H100G
2.00g
50
Tube
2
1.49g
50
Tube
2
I PAK
STPS8H100G
STPS8H100G
D PAK
1.48g
50
Tube
STPS8H100G-TR
STPS8H100G
D2PAK
1.48g
500
Tape & reel
Epoxy meets UL94,V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
7/7