Micrel, Inc. 2.5V/3.3/5V 2.5GHz 1:4 PECL/ECL CLOCK DRIVER WITH 2:1 DIFFERENTIAL INPUT MUX Precision Edge® SY89830U ® Precision Edge SY89830U FEATURES ■ Guaranteed AC parameters over temp/voltage: • > 2.5GHz fMAX • < 25ps within-device skew • < 225ps tr/tf time • < 450ps prop delay ■ Low jitter design: • < 1psRMS cycle-to-cycle jitter • < 15psPP total jitter ■ 2:1 Differential MUX input ■ Flexible supply voltage: 2.5V/3.3V/5V ■ Wide operating temperature range: –40°C to +85°C ■ 100K ECL compatible outputs ■ Inputs accept PECL/LVPECL/ECL/HSTL logic levels ■ Available in a 16-pin TSSOP package Precision Edge® DESCRIPTION The SY89830U is a high-speed, 2.5GHz differential PECL 1:4 fanout buffer optimized for ultra-low skew applications. Within device skew is guaranteed to be less than 25ps over temperature and supply voltage. The wide supply voltage operation allows this fanout buffer to operate in 2.5V, 3.3V, and 5V systems. The SY89830U features a 2:1 input MUX, making it an ideal solution for redundant clock switchover applications. If only one input pair is used, the other pair may be left floating. In addition, this device includes a synchronous enable pin that forces the outputs into a fixed logic state. Enable or disable state is initiated only after the outputs are in a LOW state, thus eliminating the possibility of a “runt” clock pulse. The SY89830U I/O are fully differential and 100K ECL compatible. Differential 10K ECL logic can interface directly into the SY89830U inputs. The SY89830U is part of Micrel’s high-speed precision edge timing and distribution family. For applications that require a different I/O combination, consult the Micrel website at www.micrel.com, and choose from a comprehensive product line of high-speed, low-skew fanout buffers, translators, and clock generators. Precision Edge is a registered trademark of Micrel, Inc. M9999-110705 [email protected] or (408) 955-1690 Rev.: E 1 Amendment: /0 Issue Date: November 2005 Precision Edge® SY89830U Micrel, Inc. PACKAGE/ORDERING INFORMATION Ordering Information(1) Q0 1 16 VCC /Q0 2 15 /EN Q D Q1 3 /Q1 4 1 Q2 5 Part Number Package Operating Type Range Package Marking Lead Finish SY89830UK4I K4-16-1 Industrial 89830U Sn-Pb 14 /IN1 SY89830UK4ITR(2) K4-16-1 Industrial 89830U Sn-Pb 13 IN1 SY89830UK4G(3) K4-16-1 Industrial 89830U with NiPdAu Pb-Free bar line indicator Pb-Free 12 /IN0 SY89830UK4GTR(2, 3) K4-16-1 Industrial 89830U with NiPdAu Pb-Free bar line indicator Pb-Free 0 /Q2 6 11 IN0 Q3 7 10 IN_SEL /Q3 8 9 VEE Notes: 1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals only. 2. Tape and Reel. 3. Pb-Free package is recommended for new designs. 16-Pin TSSOP (T32-1) PIN DESCRIPTION Pin Number Pin Name Pin Function 1, 2, 3, 4, 5, 6, 7, 8 Q0 to Q3 /Q0 to /Q3 (LV)PECL, (LV)ECL differential outputs: Terminate with 50Ω to VCC–2V. For single-ended applications, terminate the unused output with 50Ω to VCC–2V. 9 VEE Negative Power Supply: For LVPECL, PECL applications, connect to GND. 10 IN_SEL (LV)PECL, (LV)ECL compatible 2:1 mux input signal select: When IN_SEL is LOW, the IN0 input pair is selected. When IN_SEL is HIGH, the IN1 input pair is selected. Includes a 75kΩ pull-down. Default state is LOW and IN0 is selected. 11, 12, 13, 14 IN0, /IN0 IN1, /IN1 (LV)PECL, (LV)ECL, HSTL clock or data inputs. Internal 75kΩ pull-down resistors on IN0, IN1. Internal 75kΩ pull-up and 75kΩ pull-down resistors on /IN0, /IN1. /IN0, /IN1 default condition is VCC/2 when left floating. IN0, IN1 default condition is LOW when left floating. 15 /EN (LV)PECL, (LV)ECL compatible synchronous enable: When /EN goes HIGH, QOUT will go LOW and /QOUT will go HIGH on the next LOW input clock transition. Includes a 75kΩ pull-down. Default state is LOW when left floating. The internal latch is clocked on the falling edge of the input (IN0, IN1) 16 VCC Positive Power Supply: Bypass with 0.1µF//0.01µF low ESR capacitors. TRUTH TABLE(1) IN0 IN1 IN_SEL /EN Q L X L L L H X L L H X L H L L X H H L H X L H L H H L X Note: 1. = negative edge M9999-110705 [email protected] or (408) 955-1690 2 Precision Edge® SY89830U Micrel, Inc. ABSOLUTE MAXIMUM RATINGS(1) Symbol Rating VCC – VEE Power Supply Voltage VIN Input Voltage (VCC = 0V, VIN not more negative than VEE) Input Voltage (VEE = 0V, VIN not more positive than VCC) IOUT Output Current TA Operating Temperature Range TLEAD Lead Temperature (soldering, 20sec.) Tstore Storage Temperature Range θJA Package Thermal Resistance (Junction-to-Ambient) θJC Package Thermal Resistance (Junction-to-Case) –Continuous –Surge –Still-Air (single-layer PCB) –Still-Air (multi-layer PCB) –500lfpm (multi-layer PCB) Value Unit 6.0 V –6.0 to 0 +6.0 to 0 V 50 100 mA –40 to +85 °C 260 °C –65 to +150 °C 115 75 65 °C/W 21 °C/W Note: 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratlng conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS(1) TA = –40°C Symbol VCC Parameter Min. Typ. Power Supply Voltage (PECL) (LVPECL) (ECL) (LVECL) 4.5 2.375 –5.5 –3.63 5.0 3.3 –5.0 –3.3 TA = +25°C Max. Min. Typ. 5.5 4.5 3.63 2.375 –4.5 –5.5 –2.375 –3.63 5.0 3.3 –5.0 –3.3 TA = +85°C Max. Min. Typ. Max. 5.5 4.5 3.63 2.375 –4.5 –5.5 –2.375 –3.63 5.0 3.3 –5.0 –3.3 5.5 3.63 –4.5 –2.375 Unit Condition V ICC Power Supply Current — — 70 — 50 72 — — 75 mA IIH Input HIGH Current — — 150 — — 150 — — 150 µA VIN = VIH IIL Input LOW Current 0.5 –150 — — — — 0.5 –150 — — — — 0.5 –150 — — — — µA µA VIN = VIL VIN = VIL CIN Input Capacitance (TSSOP) — — — — 1.0 — — — — pF IN /IN Note: 1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. M9999-110705 [email protected] or (408) 955-1690 3 Precision Edge® SY89830U Micrel, Inc. (100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 2.5V ±5%, VEE = 0V TA = –40°C Symbol TA = +25°C TA = +85°C Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit Condition VIL Input LOW Voltage (Single-ended) 555 — 875 555 — 875 555 — 875 mV VCC = 2.5V VIH Input HIGH Voltage (Single-ended) 1275 — 1620 1275 — 1620 1275 — 1620 mV VCC = 2.5V VOL Output LOW Voltage 555 680 805 555 680 805 555 680 805 mV VCC = 2.5V VOH Output HIGH Voltage 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VCC = 2.5V VIHCMR Input HIGH Voltage Common Mode Range(2) 1.2 — VCC 1.2 — VCC 1.2 — VCC V Notes: 1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with VCC. Output load is 50Ω to VCC –2V. 2. The VIHCMR range is referenced to the most positive side of the differential input signal. (100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 3.3V ±10%, VEE = 0V TA = –40°C Symbol Parameter TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit Condition VIL Input LOW Voltage (Single-Ended) 1355 — 1675 1355 — 1675 1355 — 1675 mV VCC = 3.3V VIH Input HIGH Voltage (Single-Ended) 2075 — 2420 2075 — 2420 2075 — 2420 mV VCC = 3.3V VOL Output LOW Voltage 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VCC = 3.3V VOH Output HIGH Voltage 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VCC = 3.3V VIHCMR Input HIGH Voltage Common Mode Range(2) 1.2 — VCC 1.2 — VCC 1.2 — VCC V Notes: 1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with VCC. Output load is 50Ω to VCC –2V. 2. The VIHCMR range is referenced to the most positive side of the differential input signal. (100KEP) PECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 5.0V ±10%, VEE = 0V TA = –40°C Symbol TA = +25°C TA = +85°C Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit Condition VIL Input LOW Voltage (Single-Ended) 3055 — 3375 3055 — 3375 3055 — 3375 mV VCC = 5.0V VIH Input HIGH Voltage (Single-Ended) 3775 — 4120 3775 — 4120 3775 — 4120 mV VCC = 5.0V VOL Output LOW Voltage 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VCC = 5.0V VOH Output HIGH Voltage 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VCC = 5.0V VIHCMR Input HIGH Voltage(2) Common Mode Range 1.2 — VCC 1.2 — VCC 1.2 — VCC V Notes: 1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with VCC. Output load is 50Ω to VCC –2V. 2. The VIHCMR range is referenced to the most positive side of the differential input signal. M9999-110705 [email protected] or (408) 955-1690 4 Precision Edge® SY89830U Micrel, Inc. (100KEP) LVECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 0V, VEE = –2.375V to –3.63V TA = –40°C Symbol Parameter Min. Typ. TA = +25°C Max. Min. Typ. TA = +85°C Max. Min. Typ. Max. Unit Condition VIL Input LOW Voltage (Single-ended) –1945 — –1625 –1945 — –1625 –1945 — –1625 mV VIH Input HIGH Voltage (Single-ended) –1225 — –880 — –880 — –880 mV VOL Output LOW Voltage –1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695 mV 50Ω to VCC–2V VOH Output HIGH Voltage –1145 –1020 mV 50Ω to VCC–2V VIHCMR Input HIGH Voltage Common Mode Range(2) VEE +1.2 –895 — 0.0 –1225 –1145 –1020 VEE +1.2 –895 — 0.0 –1225 –1145 –1020 VEE +1.2 –895 — 0.0 V Notes: 1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. 2. The VIHCMR range is referenced to the most positive side of the differential input signal. (100KEP) ECL DC ELECTRICAL CHARACTERISTICS(1) VCC = 0V, VEE = –4.5V to –5.5V TA = –40°C Symbol Parameter Min. Typ. TA = +25°C Max. Min. Typ. TA = +85°C Max. Min. Typ. Max. Unit Condition VIL Input LOW Voltage (Single-ended) –1945 — –1625 –1945 — –1625 –1945 — –1625 mV VIH Input HIGH Voltage (Single-ended) –1225 — –880 — –880 — –880 mV VOL Output LOW Voltage –1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695 mV 50Ω to VCC–2V VOH Output HIGH Voltage –1145 –1020 mV 50Ω to VCC–2V VIHCMR Input HIGH Voltage Common Mode Range(2) VEE +1.2 –895 — 0.0 –1225 –1145 –1020 VEE +1.2 — –895 0.0 –1225 –1145 –1020 VEE +1.2 — –895 0.0 V Notes: 1. 100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. 2. The VIHCMR range is referenced to the most positive side of the differential input signal. HSTL INPUT DC ELECTRICAL CHARACTERISTICS VCC = 2.375V to 3.63V, VEE = 0V TA = –40°C Symbol Parameter TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit VIH Input HIGH Voltage 1200 — — 1200 — — 1200 — — mV VIL Input LOW Voltage — — 400 — — 400 — — 400 mV M9999-110705 [email protected] or (408) 955-1690 5 Precision Edge® SY89830U Micrel, Inc. AC ELECTRICAL CHARACTERISTICS LVPECL: VCC = 2.375V to 3.63V, VEE = 0V; PECL: VCC = 4.50V to 5.50V, VEE = 0V LVECL: VCC = 0V, VEE = –2.375V to –3.63V; ECL: VCC = 0V, VEE = –4.50V to –5.5V TA = –40°C Symbol fMAX(1) tPD Parameter TA = +25°C TA = +85°C Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit Maximum Frequency 2.5 — — 2.5 — — 2.5 — — GHz Propagation Delay to Output LVPECL/LVECL Diff. IN (150mV) — — — — 375 — — — — ps Diff. IN (800mV) 300 350 450 300 350 450 300 350 450 ps Single-Ended IN — — — — 375 — — — — ps Diff. IN (150mV) — — — — 375 — — — — ps Diff. IN (800mV) 275 350 425 275 350 425 275 350 425 ps Single-Ended IN — — — — 355 — — — — ps 325 — 500 300 — 450 300 — 450 ps PECL/ECL HSTL tSKEW(2) Within-Device Skew (Diff.) Part-to-Part Skew (Diff.) — — 15 100 25 150 — — 15 100 25 150 — — 15 100 25 150 ps ps tSW Select to Valid Output Switchover Time — — 450 — 400 450 — — 450 ps tS(3) Set-Up Time /EN to CLK 100 0 — 100 0 — 100 0 — ps Hold Time /EN to CLK 200 50 — 200 50 — 200 50 — ps — — 0.2 <15 1 — — — 0.2 <15 1 — — — 0.2 <15 1 — psRMS psPP tH (3) tJITTER Cycle-to-Cycle(4) VID Input Voltage Swing 150 800 1200 150 800 1200 150 800 1200 mV t r, t f Output Rise/Fall Times (20% to 80%) 75 — 225 75 130 225 85 — 225 ps Total Jitter (622MHz clock)(5) Notes: 1. fMAX is defined as the maximum toggle frequency. Measured with 750mV input signal, 50% duty cycle, output swing ≥ 400mV (diff), all loading with 50Ω to VCC–2V. 2. Skew is measured between outputs under identical transitions. 3. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next cycle. For asynchronous applications, set-up and hold time does not apply. 4. Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. TJITTER_CC = Tn–Tn+1 where T is the time between rising edges of the output signal. 5. Total jitter definition: with an ideal clock input applied to one channel of the MUX, no more than one output edge in 1012 output edges will deviate by more than the specified peak-to-peak jitter value. M9999-110705 [email protected] or (408) 955-1690 6 Precision Edge® SY89830U Micrel, Inc. TYPICAL OPERATING CHARACTERISTICS VCC = 3.3V, VEE = GND, TA = 25°C, unless otherwise stated. Propagation Delay vs. Temperature Output Swing vs. Frequency 500 PROPAGATION DELAY (ps) OUTPUT SWING (mV Diff.) 900 800 700 600 500 400 300 TA = 25°C VCC = 3.3V VIN = 800mV 200 100 0 0 475 450 425 400 375 350 325 300 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 500 1000 1500 2000 2500 FREQUENCY (MHz) Propagation Delay vs. Differential Input Voltage (Vdiff) 30 450 TA = 25°C VCC = 3.3V 25 tSKEW (ps) PROPAGATION DELAY (ps) 500 475 TA = 25°C VCC = 3.3V VIN = 800mV 425 400 375 20 t SKEW vs. Temperature TA = 25°C VCC = 3.3V VIN = 800mV 15 10 350 5 325 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 300 100 200 300 400 500 600 700 800 DIFFERENTIAL INPUT VOLTAGE (Vdiff, mV) M9999-110705 [email protected] or (408) 955-1690 7 Precision Edge® SY89830U Micrel, Inc. FUNCTIONAL CHARACTERISTICS 125MHz Output 1.5GHz Output TA = 25°C VCC = 3.3V VEE GND VIN = 800mV /Q Output Swing (200mV/div.) Output Swing (200mV/div.) TA = 25°C VCC = 3.3V VEE GND VIN = 800mV /Q Q Q TIME (178ps/div.) TIME (96ps/div.) 2.5GHz Output Output Swing (200mV/div.) TA = 25°C VCC = 3.3V VEE GND VIN = 800mV /Q Q TIME (72ps/div.) M9999-110705 [email protected] or (408) 955-1690 8 Precision Edge® SY89830U Micrel, Inc. TERMINATION RECOMMENDATIONS +3.3V +3.3V ZO = 50Ω R1 130Ω R1 130Ω R2 82Ω R2 82Ω +3.3V ZO = 50Ω Vt = VCC —2V Figure 1. Parallel Termination–Thevenin Equivalent Notes: 1. For +2.5V systems: R1 = 250Ω R2 = 62.5Ω 2. For +5.0V systems: R1 = 82Ω R2 = 130Ω +3.3V +3.3V Z = 50Ω Z = 50Ω 50Ω 50Ω “source” “destination” 50Ω Rb (Optional) C1 0.01µF Figure 2. Three-Resistor “Y–Termination” Notes: 1. Power-saving alternative to Thevenin termination. 2. Place termination resistors as close to destination inputs as possible. 3. Rb resistor sets the DC bias voltage, equal to Vt. For +3.3V systems Rb = 46Ω to 50Ω. For +5V systems, Rb = 110Ω. 4. C1 is an optional bypass capacitor intended to compensate for any tr/tf mismatches. +3.3V +3.3V Q +3.3V R1 130Ω R1 130Ω Vt = VCC —1.3V R3 +3.3V 1kΩ ZO = 50Ω /Q R4 1.6kΩ Vt = VCC —2V R2 82Ω R2 82Ω Figure 3. Terminating Unused I/O Notes: 1. Unused output (/Q) must be terminated to balance the output. 2. For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω, R3 = 1.25kΩ, R4 = 1.2kΩ. M9999-110705 [email protected] or (408) 955-1690 9 Precision Edge® SY89830U Micrel, Inc. 16 LEAD TSSOP (K4-16-1) Rev. 01 MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB USA http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2005 Micrel, Incorporated. M9999-110705 [email protected] or (408) 955-1690 10