TGC4405 17 - 27 GHz Upconverter Key Features • • • • • • • • • Primary Applications Converion Gain (dB) Measured Performance 20 18 16 14 12 10 8 6 4 2 0 • • Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz @ -8dBm, +2dBm LO OTOI (dBm) Point-to-Point Radio Ku Band Sat-Com Product Description Upper Side Band Lower Side Band 17 18 19 20 21 22 23 24 25 26 27 RF Output Frequency (GHz) 34 32 30 28 26 24 22 20 18 16 14 RF Output Frequency Range: 17 - 27 GHz LO Input Frequency Range: 8 -13 GHz IF Input Frequency Range: 0.5 - 3 GHz 13 dB Conversion Gain 28 dBm OTOI 30 dBc LO Isolation Bias: Vd = 5 V, Idq = 425 mA, Vg = -0.5 V Typical Technology: 3MI 0.25 um Power PHEMT Chip Dimensions: 2.07 x 1.93 x 0.1mm Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz +/- 5MHz @ -8dBm Input/Tone, +2dBm LO The TriQuint TGC4405 is a multifunction chip. It is an upconverter with RF output frequencies of 17 to 27 GHz. It contains a frequency doubler and local oscillator (LO) amplifier, operating at LO Input frequencies of 8 - 13 GHz. The part is designed using TriQuint’s 0.25 um 3MI power pHEMT process. The TGC4405 nominally provides 13 dB Conversion Gain and 28 dBm OTOI when operated with LO inputs from 2 - 5 dBm. The part also achieves 30 dBc typical isolation between the fundamental and doubled frequency. The TGC4405 is ideally suited for low cost markets such as Point-to-Point Radio, and Ku-band Satellite Communications. The TGC4405 is 100% DC and RF tested on-wafer to ensure performance compliance. The TGC4405 has a protective surface passivation layer providing environmental robustness. Lead-Free & RoHS compliant 18 19 20 21 22 23 24 25 26 27 28 RF Output Frequency (GHz) Datasheet subject to change without notice. TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - 1 TGC4405 Table I Absolute Maximum Ratings 1/ Symbol Parameter Value Vd-Vg Drain to Gate Voltage 12 V Vd Drain Supply Voltage 8V Notes 2/ Vmxr Mixer Supply Voltage Range -5 to 0 V Vdbl Doubler Supply Voltage Range -5 to 0 V Vg Gate Supply Voltage Range -5 to 0 V Id Drain Supply Current 817 mA Ig Gate Supply Current Range -3.3 to 56.7 mA Imxr Mixer Supply Current Range -0.75 to 10.5 mA Idbl Doubler Supply Current Range -0.6 to 16.8 mA 2/ PinLO LO Input Continuous Wave Power 18 dBm 2/ PinIF IF Input Continuous Wave Power 21 dBm 2/ 1/ These ratings represent the maximum operable values for this device. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device and / or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied. 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed Pd (as listed in “Thermal Information”). Table II Recommended Operating Conditions Symbol Parameter Value Vd Drain Voltage 5V Idq Drain Current 425 mA Vg Gate Voltage -0.5 V, typical Vmxr Mixer Voltage -0.9 V Vdbl Doubler Voltage -0.9 V See assembly diagram for bias instructions. 2 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Table III RF Characterization Table Bias: Vd = 5 V, Idq = 425 mA, Vmxr = Vdbl = -0.9V, Vg = -0.5V Typical SYMBOL PARAMETER TEST CONDITIONS NOMINAL UNITS FLO LO Input Frequency Range 8 - 13 GHz FIF IF Input Frequency Range 0.5 - 3 GHz Gain Conversion Gain f = 17 - 27 GHz 13 dB ORL Output Return Loss f = 17 - 27 GHz -10 dB OTOI Output Third Order Intercept @ IF Input = -8dBm/Tone f = 17 - 27 GHz 28 dBm LO Isolation f = 17 - 27 GHz 30 dBc LO_Isol 3 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Table IV Power Dissipation and Thermal Properties Parameter Test Conditions Value Notes Tbaseplate = 70 ºC Pd = 2.9 W Tchannel = 150 ºC Tm = 1.0E+6 Hrs 1/ 2/ Thermal Resistance, θjc Vd = 5 V Id = 425 mA Pd = 2.13 W θjc = 27.4 (ºC/W) Tchannel = 128 ºC Tm = 7E+6 Hrs Mounting Temperature 30 Seconds 320 ºC Maximum Power Dissipation Storage Temperature 1/ -65 to 150 ºC For a median life of 1E+6 hours, Power Dissipation is limited to Pd(max) = (150 ºC – Tbase ºC)/θjc. Channel operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that channel temperatures be maintained at the lowest possible levels. 7 Power De-rating Curve 6 Power Dissipated (W) 2/ Tm= 1.0E+6 Hrs 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 150 175 Baseplate Temp (C) 4 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Measured Data Converion Gain (dB) Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz @ -8dBm, +2dBm LO 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 Upper Side Band Lower Side Band 14 15 16 17 18 19 20 21 22 23 24 RF Output Frequency (GHz) 25 26 27 28 OTOI (dBm) Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz +/- 5MHz @ -8dBm Input/Tone, +2dBm LO 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 Upper Side Band Lower Side Band 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 RF Output Frequency (GHz) 5 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Output Power (dBm) Measured Data Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz @ -8dBm, +2dBm LO 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 1x LO Frequency 2x LO Frequency 3x LO Frequency 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 LO Frequency (GHz) Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz @ -8dBm, +2dBm LO 20 19 Noise Figure (dB) 18 17 16 15 14 13 12 Lower Side Band Upper Side Band 11 10 17 18 19 20 21 22 23 24 RF Output Frequency (GHz) 6 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Measured Data Swept LO Power Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V IF = 2GHz @ -8dBm, LO Frequency = 20GHz Conversion Gain (dB) 16 15 14 13 12 Upper Side Band Lower Side Band 11 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 LO Power (dBm) Swept IF @ -8dBm Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V RF Frequency = 21GHz, +2dBm LO 16 Conversion Gain (dB) 15 14 13 12 11 Upper Side Band Lower Side Band 10 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 IF Frequency (GHz) 7 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Electrical Schematic 100 pF 0.01 uF 100 pF Resistive FET Mixer + Baluns 1 uF Vd 1 uF Vmxr RF Amplifier IF In RF Out 15 Ω 2xLO Buffer 100 pF 1 uF Vg 100 pF 1 uF Vdbl Doubler TGC4405 LO In Bias Procedures Bias-up Procedure Bias-down Procedure •Vg set to -1.5 V •Turn off signals •Vd set to +5 V •Reduce Vg to -1.5V. Ensure Id ~ 0 mA •Vmxr set to -0.9V •Turn Vdbl to 0V •Vdbl set to -0.9 V •Turn Vmxr to 0V •Adjust Vg more positive until Idq is 425 mA. •Turn Vd to 0V •Turn Vg to 0V This will be ~ Vg = -0.5 V •Apply signals to LO and IF input 8 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 1.233 0.456 1.183 1.454 1.767 1.930 1.842 0.130 Mechanical Drawing 3 4 5 6 7 2 0.705 2.068 9 1.834 10 0.703 1 0.0 0.095 0.095 0.0 0.418 8 Units: millimeters Thickness: 0.10 Die x,y size tolerance: +/- 0.05 Chip edge to bond pad dimensions are shown to center of pad Ground is backside of die Bond Pad #1 LO In 0.100 x 0.100 Bond Pad #6 Vg 0.085 x 0.085 Bond Pad #2 IF In 0.100 x 0.150 Bond Pad #7 Vmxr 0.085 x 0.085 Bond Pad #3 RF Out 0.170 x 0.085 Bond Pad #8 Vd 0.081 x 0.081 Bond Pad #4 Vd 0.085 x 0.085 Bond Pad #9 Vg 0.081 x 0.081 Bond Pad #5 Vd 0.085 x 0.085 Bond Pad #10 Vdbl 0.081 x 0.081 GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 9 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Recommended Assembly Diagram RF Out 100 pF 0.01 μF Vd = 5V 1 μF 100 pF IF In Vmxr = -0.9V 1 μF 100 pF 15 Ω 100 pF 1 μF Vg ~ -0.5V for Idq = 425mA 1 μF LO In Vdbl = -0.9V Vmxr and Vdbl can be connected together GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 10 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev - TGC4405 Assembly Notes Component placement and adhesive attachment assembly notes: 1. Vacuum pencils and/or vacuum collets are the preferred method of pick up. 2. Air bridges must be avoided during placement. 3. The force impact is critical during auto placement. 4. Organic attachment (i.e. epoxy) can be used in low-power applications. 5. Curing should be done in a convection oven; proper exhaust is a safety concern. Reflow process assembly notes: 1. Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum. 2. An alloy station or conveyor furnace with reducing atmosphere should be used. 3. Do not use any kind of flux. 4. Coefficient of thermal expansion matching is critical for long-term reliability. 5. Devices must be stored in a dry nitrogen atmosphere. Interconnect process assembly notes: 1. Thermosonic ball bonding is the preferred interconnect technique. 2. Force, time, and ultrasonics are critical parameters. 3. Aluminum wire should not be used. 4. Devices with small pad sizes should be bonded with 0.0007-inch wire. Ordering Information Part Package Style TGC4405 GaAs MMIC Die GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. 11 TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected] Oct 2006 © Rev -