TRIQUINT TGC4405

TGC4405
17 - 27 GHz Upconverter
Key Features
•
•
•
•
•
•
•
•
•
Primary Applications
Converion Gain (dB)
Measured Performance
20
18
16
14
12
10
8
6
4
2
0
•
•
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
OTOI (dBm)
Point-to-Point Radio
Ku Band Sat-Com
Product Description
Upper Side Band
Lower Side Band
17 18 19 20 21 22 23 24 25 26 27
RF Output Frequency (GHz)
34
32
30
28
26
24
22
20
18
16
14
RF Output Frequency Range: 17 - 27 GHz
LO Input Frequency Range: 8 -13 GHz
IF Input Frequency Range: 0.5 - 3 GHz
13 dB Conversion Gain
28 dBm OTOI
30 dBc LO Isolation
Bias: Vd = 5 V, Idq = 425 mA, Vg = -0.5 V Typical
Technology: 3MI 0.25 um Power PHEMT
Chip Dimensions: 2.07 x 1.93 x 0.1mm
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz +/- 5MHz @ -8dBm Input/Tone, +2dBm LO
The TriQuint TGC4405 is a multifunction chip. It is an
upconverter with RF output frequencies of 17 to 27
GHz. It contains a frequency doubler and local
oscillator (LO) amplifier, operating at LO Input
frequencies of 8 - 13 GHz. The part is designed using
TriQuint’s 0.25 um 3MI power pHEMT process.
The TGC4405 nominally provides 13 dB Conversion
Gain and 28 dBm OTOI when operated with LO inputs
from 2 - 5 dBm. The part also achieves 30 dBc typical
isolation between the fundamental and doubled
frequency.
The TGC4405 is ideally suited for low cost markets
such as Point-to-Point Radio, and Ku-band Satellite
Communications.
The TGC4405 is 100% DC and RF tested on-wafer to
ensure performance compliance.
The TGC4405 has a protective surface passivation
layer providing environmental robustness.
Lead-Free & RoHS compliant
18 19 20 21 22 23 24 25 26 27 28
RF Output Frequency (GHz)
Datasheet subject to change without notice.
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
1
TGC4405
Table I
Absolute Maximum Ratings 1/
Symbol
Parameter
Value
Vd-Vg
Drain to Gate Voltage
12 V
Vd
Drain Supply Voltage
8V
Notes
2/
Vmxr
Mixer Supply Voltage Range
-5 to 0 V
Vdbl
Doubler Supply Voltage Range
-5 to 0 V
Vg
Gate Supply Voltage Range
-5 to 0 V
Id
Drain Supply Current
817 mA
Ig
Gate Supply Current Range
-3.3 to 56.7 mA
Imxr
Mixer Supply Current Range
-0.75 to 10.5 mA
Idbl
Doubler Supply Current Range
-0.6 to 16.8 mA
2/
PinLO
LO Input Continuous Wave Power
18 dBm
2/
PinIF
IF Input Continuous Wave Power
21 dBm
2/
1/
These ratings represent the maximum operable values for this device. Stresses beyond those listed
under “Absolute Maximum Ratings” may cause permanent damage to the device and / or affect
device lifetime. These are stress ratings only, and functional operation of the device at these
conditions is not implied.
2/
Combinations of supply voltage, supply current, input power, and output power shall not exceed Pd
(as listed in “Thermal Information”).
Table II
Recommended Operating Conditions
Symbol
Parameter
Value
Vd
Drain Voltage
5V
Idq
Drain Current
425 mA
Vg
Gate Voltage
-0.5 V, typical
Vmxr
Mixer Voltage
-0.9 V
Vdbl
Doubler Voltage
-0.9 V
See assembly diagram for bias instructions.
2
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Table III
RF Characterization Table
Bias: Vd = 5 V, Idq = 425 mA, Vmxr = Vdbl = -0.9V, Vg = -0.5V Typical
SYMBOL
PARAMETER
TEST
CONDITIONS
NOMINAL
UNITS
FLO
LO Input Frequency Range
8 - 13
GHz
FIF
IF Input Frequency Range
0.5 - 3
GHz
Gain
Conversion Gain
f = 17 - 27 GHz
13
dB
ORL
Output Return Loss
f = 17 - 27 GHz
-10
dB
OTOI
Output Third Order Intercept
@ IF Input = -8dBm/Tone
f = 17 - 27 GHz
28
dBm
LO Isolation
f = 17 - 27 GHz
30
dBc
LO_Isol
3
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Table IV
Power Dissipation and Thermal Properties
Parameter
Test Conditions
Value
Notes
Tbaseplate = 70 ºC
Pd = 2.9 W
Tchannel = 150 ºC
Tm = 1.0E+6 Hrs
1/ 2/
Thermal Resistance, θjc
Vd = 5 V
Id = 425 mA
Pd = 2.13 W
θjc = 27.4 (ºC/W)
Tchannel = 128 ºC
Tm = 7E+6 Hrs
Mounting Temperature
30 Seconds
320 ºC
Maximum Power Dissipation
Storage Temperature
1/
-65 to 150 ºC
For a median life of 1E+6 hours, Power Dissipation is limited to
Pd(max) = (150 ºC – Tbase ºC)/θjc.
Channel operating temperature will directly affect the device median time to failure (MTTF). For
maximum life, it is recommended that channel temperatures be maintained at the lowest possible
levels.
7
Power De-rating Curve
6
Power Dissipated (W)
2/
Tm= 1.0E+6 Hrs
5
4
3
2
1
0
-50 -25
0
25 50 75 100 125 150 175
Baseplate Temp (C)
4
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Measured Data
Converion Gain (dB)
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
20
18
16
14
12
10
8
6
4
2
0
-2
-4
-6
-8
-10
Upper Side Band
Lower Side Band
14
15
16
17
18 19 20 21 22 23 24
RF Output Frequency (GHz)
25
26
27
28
OTOI (dBm)
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz +/- 5MHz @ -8dBm Input/Tone, +2dBm LO
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
Upper Side Band
Lower Side Band
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
RF Output Frequency (GHz)
5
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Output Power (dBm)
Measured Data
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-55
1x LO Frequency
2x LO Frequency
3x LO Frequency
8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
LO Frequency (GHz)
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
20
19
Noise Figure (dB)
18
17
16
15
14
13
12
Lower Side Band
Upper Side Band
11
10
17
18
19
20
21
22
23
24
RF Output Frequency (GHz)
6
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Measured Data
Swept LO Power
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, LO Frequency = 20GHz
Conversion Gain (dB)
16
15
14
13
12
Upper Side Band
Lower Side Band
11
10
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
LO Power (dBm)
Swept IF @ -8dBm
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
RF Frequency = 21GHz, +2dBm LO
16
Conversion Gain (dB)
15
14
13
12
11
Upper Side Band
Lower Side Band
10
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3
IF Frequency (GHz)
7
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Electrical Schematic
100
pF
0.01
uF
100
pF
Resistive FET
Mixer +
Baluns
1 uF
Vd
1 uF
Vmxr
RF Amplifier
IF In
RF Out
15 Ω
2xLO
Buffer
100
pF
1 uF
Vg
100
pF
1 uF
Vdbl
Doubler
TGC4405
LO In
Bias Procedures
Bias-up Procedure
Bias-down Procedure
•Vg set to -1.5 V
•Turn off signals
•Vd set to +5 V
•Reduce Vg to -1.5V. Ensure Id ~ 0 mA
•Vmxr set to -0.9V
•Turn Vdbl to 0V
•Vdbl set to -0.9 V
•Turn Vmxr to 0V
•Adjust Vg more positive until Idq is 425 mA.
•Turn Vd to 0V
•Turn Vg to 0V
This will be ~ Vg = -0.5 V
•Apply signals to LO and IF input
8
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
1.233
0.456
1.183
1.454
1.767
1.930
1.842
0.130
Mechanical Drawing
3
4
5
6
7
2
0.705
2.068
9
1.834
10
0.703
1
0.0
0.095
0.095
0.0
0.418
8
Units: millimeters
Thickness: 0.10
Die x,y size tolerance: +/- 0.05
Chip edge to bond pad dimensions are shown to center of pad
Ground is backside of die
Bond Pad #1
LO In
0.100 x 0.100
Bond Pad #6
Vg
0.085 x 0.085
Bond Pad #2
IF In
0.100 x 0.150
Bond Pad #7
Vmxr
0.085 x 0.085
Bond Pad #3
RF Out
0.170 x 0.085
Bond Pad #8
Vd
0.081 x 0.081
Bond Pad #4
Vd
0.085 x 0.085
Bond Pad #9
Vg
0.081 x 0.081
Bond Pad #5
Vd
0.085 x 0.085
Bond Pad #10
Vdbl
0.081 x 0.081
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
9
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Recommended Assembly Diagram
RF Out
100 pF
0.01 μF
Vd = 5V
1 μF
100 pF
IF In
Vmxr = -0.9V
1 μF
100 pF
15 Ω
100 pF
1 μF
Vg ~ -0.5V
for Idq = 425mA
1 μF
LO In
Vdbl = -0.9V
Vmxr and Vdbl can be connected together
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
10
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -
TGC4405
Assembly Notes
Component placement and adhesive attachment assembly notes:
1.
Vacuum pencils and/or vacuum collets are the preferred method of pick up.
2.
Air bridges must be avoided during placement.
3.
The force impact is critical during auto placement.
4.
Organic attachment (i.e. epoxy) can be used in low-power applications.
5.
Curing should be done in a convection oven; proper exhaust is a safety concern.
Reflow process assembly notes:
1.
Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
2.
An alloy station or conveyor furnace with reducing atmosphere should be used.
3.
Do not use any kind of flux.
4.
Coefficient of thermal expansion matching is critical for long-term reliability.
5.
Devices must be stored in a dry nitrogen atmosphere.
Interconnect process assembly notes:
1.
Thermosonic ball bonding is the preferred interconnect technique.
2.
Force, time, and ultrasonics are critical parameters.
3.
Aluminum wire should not be used.
4.
Devices with small pad sizes should be bonded with 0.0007-inch wire.
Ordering Information
Part
Package Style
TGC4405
GaAs MMIC Die
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
11
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 [email protected]
Oct 2006 © Rev -