VISHAY TLMK330

TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
Power SMD LED in PLCC-2 Package
Description
The TLM.33.. series is an advanced modification of
the Vishay TLM.31.. series. It is designed to incorporate larger chips, therefore, capable of withstanding a
50 mA drive current.
The package of the TLM.33.. is the PLCC-2 (equivalent to a size B tantalum capacitor).
It consists of a lead frame which is embedded in a
white thermoplast. The reflector inside this package is
filled up with clear epoxy.
19225
e3 Pb
Pb-free
Features
Applications
• Utilizing (AS) AlInGaP technology
• Available in 8 mm tape
• Luninous intensity, color and forward
voltage categorized per packing unit
• Luminous intensity ratio per packing unit
IVmax/IVmin ≤ 1.6
• Thermal resistance R = 400 K/W
• ESD class 2
• Suitable for all soldering methods
according to CECC
• Lead-free device
Traffic Signals and Signs
Interior and exterior lighting
Dashboard illumination
Indicator and backlighting purposes for audio, video,
LCD’s switches, symbols, illuminated advertising etc.
Parts Table
Part
Color, Luminous Intensity
Angle of Half Intensity
(±ϕ)
Technology
TLMK3300
Red, IV > 200 mcd
60 °
AlInGaP on GaAs
TLMK3301
Red, IV = (250 to 800) mcd
60 °
AlInGaP on GaAs
TLMK3302
Red, IV = (400 to 800) mcd
60 °
AlInGaP on GaAs
TLMK3303
Red, IV = (400 to 1250) mcd
60 °
AlInGaP on GaAs
TLMS3300
Red, IV > 160 mcd
60 °
AlInGaP on GaAs
TLMS3301
Red, IV = (160 to 400) mcd
60 °
AlInGaP on GaAs
TLMS3302
Red, IV = (250 to 800) mcd
60 °
AlInGaP on GaAs
TLMO3300
Soft orange, IV > 200 mcd
60 °
AlInGaP on GaAs
TLMO3301
Soft orange, IV = (250 to 640) mcd
60 °
AlInGaP on GaAs
TLMO3302
Soft orange, IV = (320 to 800) mcd
60 °
AlInGaP on GaAs
Document Number 83201
Rev. 1.4, 31-Aug-04
www.vishay.com
1
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
Part
Color, Luminous Intensity
Angle of Half Intensity
(±ϕ)
Technology
TLMO3303
Soft orange, IV = (400 to 1250) mcd
60 °
AlInGaP on GaAs
TLMY3300
Yellow, IV > 200 mcd
60 °
AlInGaP on GaAs
TLMY3301
Yellow, IV = (250 to 640) mcd
60 °
AlInGaP on GaAs
TLMY3302
Yellow, IV = (320 to 800) mcd
60 °
AlInGaP on GaAs
TLMY3303
Yellow, IV = (400 to 1250) mcd
60 °
AlInGaP on GaAs
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLMY33.., TLMO33.., TLMK33.., TLMS33..
Parameter
Test condition
Symbol
Value
Unit
VR
5
V
Reverse voltage
DC Forward current
Tamb ≤ 73 °C (400 K/W)
IF
50
mA
Power dissipation
Tamb ≤ 73 °C (400 K/W)
PV
130
mW
Tj
125
°C
Operating temperature range
Tamb
- 40 to + 100
°C
Storage temperature range
Tstg
- 40 to + 100
°C
Tsd
260
°C
RthJA
400
K/W
Junction temperature
Soldering temperature
t≤5s
Thermal resistance junction/
ambient
mounted on PC board
(pad size > 16 mm2)
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Red
TLMK33..
Parameter
Luminous intensity
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLMK3300
IV
200
500
TLMK3301
IV
250
TLMK3302
IV
TLMK3303
IV
Unit
mcd
800
mcd
400
800
mcd
400
1250
φV/IV
Luminous flux/Luminous
intensity
Max
3
mcd
mlm/
mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
624
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
∆λ
18
nm
Angle of half intensity
IF = 50 mA
ϕ
Forward voltage
IF = 50 mA
VF
Reverse current
VR = 5 V
VR
www.vishay.com
2
611
617
622
± 60
1.85
nm
deg
2.1
2.55
V
0.01
10
µA
Document Number 83201
Rev. 1.4, 31-Aug-04
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
Red
TLMS33..
Parameter
Luminous intensity
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLMS3300
IV
160
300
TLMS3301
IV
160
IV
250
TLMS3302
φV/IV
Luminous flux/Luminous
intensity
Max
Unit
mcd
400
800
3
mcd
mcd
mlm/
mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
641
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
∆λ
17
nm
Angle of half intensity
IF = 50 mA
ϕ
± 60
deg
Forward voltage
IF = 50 mA
VF
Reverse current
VR = 5 V
VR
626
1.85
630
638
nm
2.1
2.55
V
0.01
10
µA
Max
Soft Orange
TLMO33..
Parameter
Luminous intensity
Test condition
IF = 50 mA
Part
Symbol
Min
Typ.
TLMO3300
IV
200
500
TLMO3301
IV
250
640
TLMO3302
IV
320
800
mcd
TLMO3303
IV
400
1250
mcd
φV/IV
Luminous flux/Luminous
intensity
λd
Unit
mcd
3
mcd
mlm/
mcd
Dominant wavelength
IF = 50 mA
Peak wavelength
IF = 50 mA
λp
611
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
∆λ
17
nm
Angle of half intensity
IF = 50 mA
ϕ
Forward voltage
IF = 50 mA
VF
Reverse current
VR = 5 V
VR
Document Number 83201
Rev. 1.4, 31-Aug-04
600
605
611
± 60
1.85
nm
deg
2.1
2.55
V
0.01
10
µA
www.vishay.com
3
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
Yellow
TLMY33..
Parameter
Test condition
IF = 50 mA
Luminous intensity
Part
Symbol
Min
Typ.
TLMY3300
IV
200
450
TLMY3301
IV
250
TLMY3302
IV
TLMY3303
IV
Unit
mcd
640
mcd
320
800
mcd
400
1250
mcd
φV/IV
Luminous flux/Luminous
intensity
Max
3
mlm/
mcd
Dominant wavelength
IF = 50 mA
λd
Peak wavelength
IF = 50 mA
λp
590
nm
Spectral bandwidth
at 50 % Irel max
IF = 50 mA
∆λ
18
nm
Angle of half intensity
IF = 50 mA
ϕ
Forward voltage
IF = 50 mA
VF
Reverse current
VR = 5 V
VR
583
588
594
nm
± 60
1.85
deg
2.1
2.55
V
0.01
10
µA
Forward Voltage Classification
Group
Forward Voltage (V)
min
max
1
1.85
2.25
2
2.15
2.55
Color Classification
Group
Dominant Wavelength (nm)
Red
Soft Orange
Yellow
min
max
min
max
min
max
1
611
618
598
601
581
584
2
614
622
600
603
583
586
3
602
605
585
588
4
604
607
587
590
5
606
609
589
592
6
608
611
591
594
Luminous Intensity Classification
Group
www.vishay.com
4
Luminous Intensity (mcd)
min
max
Xa
160
250
Xb
200
320
Ya
250
400
Yb
320
500
Za
400
630
Zb
500
800
0a
630
1000
0b
800
1250
Document Number 83201
Rev. 1.4, 31-Aug-04
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
Group Name on Label
Luminous Intensity Group
Halfgroup
Wavelength
Forward Voltage
Z
b
2
1
One packing unit/tape contains only one classification group of luminous intensity, color and forward voltage
Only one single classification groups is not available
The given groups are not order codes, customer specific group combinations require marketing agreement
No color subgrouping for Super Red
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
0°
I V re l - Relative Luminous Intensity
200
PV –Power Dissipation (mW)
180
160
RthJA = 400K/W
140
120
100
80
60
40
20
25
50
75
100
50°
0.8
60°
80
70
RthJA = 400K/W
50
40
30
20
10
0
25
50
75
100
Tamb – Ambient Temperature ( qC )
125
Figure 2. Forward Current vs. Ambient Temperature
Document Number 83201
Rev. 1.4, 31-Aug-04
80°
0.4
0.2
0
0.2
0.4
0.6
Figure 3. Rel. Luminous Intensity vs. Angular Displacement
I Vrel - Relative Luminous Intensity
I F – Forward Current ( mA )
90
0
70°
0.7
0.6
100
16784
40°
95 10319
Figure 1. Power Dissipation vs. Ambient Temperature
60
30°
0.9
125
Tamb – Ambient Temperature ( qC )
16783
20°
1.0
0
0
10°
16008
1.2
Yellow
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
540 550 560 570 580 590 600 610 620 630 640
λ - Wavelength ( nm )
Figure 4. Relative Intensity vs. Wavelength
www.vishay.com
5
TLMK / O / S / Y330.
VISHAY
250
10.00
50 mA
I Vrel –Relative Luminous Intensity
30 mA
200
Yellow
150
100
50
0
10 mA
–50
–100
–150
–200
–50
–25
0
25
50
75
I Vrel –Relative Luminous Intensity
Yellow
2.0
1.5
1.0
0.5
0
25
50
75
n l d – Change of Dom. Wavelength (nm)
Figure 6. Relative Luminous Intensity vs. Amb. Temperature
17017
6
Yellow
4
2
0
–2
–4
–6
–50
–25
0
25
50
75
100
Tamb – Ambient Temperature ( qC )
Figure 7. Change of Dominant Wavelength vs. Ambient
Temperature
www.vishay.com
6
100.00
1.5
Yellow
1.0
0.5
0.0
–0.5
–1.0
–1.5
100
Tamb – Ambient Temperature ( qC )
17016
10.00
IF – Forward Current ( mA )
Figure 8. Relative Luminous Intensity vs. Forward Current
n l d – Change of Dom. Wavelength (nm)
2.5
–25
0.10
17018
Figure 5. Change of Forward Voltage vs. Ambient Temperature
0.0
–50
1.00
0.01
1.00
100
Tamb – Ambient Temperature ( qC )
17015
Yellow
10 20 30 40 50 60 70 80 90 100
17019
IF – Forward Current ( mA )
Figure 9. Change of Dominant Wavelength vs. Forward Current
I Vrel - Relative Luminous Intensity
n VF – Change of Forward Voltage (mV)
Vishay Semiconductors
16314
1.2
1.1
Soft orange
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
560 570 580 590 600 610 620 630 640 650 660
λ- Wavelength ( nm )
Figure 10. Relative Intensity vs. Wavelength
Document Number 83201
Rev. 1.4, 31-Aug-04
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
n VF – Change of Forward Voltage (mV)
250
10.00
50 mA
I Vrel –Relative Luminous Intensity
200
30 mA
150
100
Soft orange
50
0
10 mA
–50
–100
–150
–200
–50
–25
0
25
50
75
2.0
1.5
1.0
0.5
0
25
50
75
n l d – Change of Dom. Wavelength (nm)
Figure 12. Relative Luminous Intensity vs. Amb. Temperature
17022
1.5
Soft orange
1.0
0.5
0.0
–0.5
–1.0
–1.5
100
Tamb – Ambient Temperature ( qC )
17021
10 20 30 40 50 60 70 80 90 100
17024
4
2
0
–2
–4
–6
–50
–25
0
25
50
75
100
Tamb – Ambient Temperature ( qC )
Figure 13. Change of Dominant Wavelength vs. Ambient
Temperature
Document Number 83201
Rev. 1.4, 31-Aug-04
IF – Forward Current ( mA )
Figure 15. Change of Dominant Wavelength vs. Forward Current
6
Soft orange
100.00
Figure 14. Relative Luminous Intensity vs. Forward Current
n l d – Change of Dom. Wavelength (nm)
Soft orange
10.00
IF – Forward Current ( mA )
I Vrel - Relative Luminous Intensity
I Vrel –Relative Luminous Intensity
2.5
–25
0.10
17023
Figure 11. Change of Forward Voltage vs. Ambient Temperature
0.0
–50
1.00
0.01
1.00
100
Tamb – Ambient Temperature ( qC )
17020
Soft orange
16007
1.2
Red
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
570 580 590 600 610 620 630 640 650 660 670
λ - Wavelength ( nm )
Figure 16. Relative Intensity vs. Wavelength
www.vishay.com
7
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
10.00
Red
50 mA
150
I Vrel –Relative Luminous Intensity
200
100
50
30 mA
0
–50
10 mA
–100
–150
–200
–50
–25
0
25
50
75
Red
2.0
1.5
1.0
0.5
0
25
50
75
n l d – Change of Dom. Wavelength (nm)
Figure 18. Relative Luminous Intensity vs. Amb. Temperature
17036
4
2
0
–2
–4
–6
–50
–25
0
25
50
75
100
Tamb – Ambient Temperature ( qC )
Figure 19. Change of Dominant Wavelength vs. Ambient
Temperature
www.vishay.com
8
Red
1.0
0.5
0.0
–0.5
–1.0
–1.5
10 20 30 40 50 60 70 80 90 100
17038
IF – Forward Current ( mA )
Figure 21. Change of Dominant Wavelength vs. Forward Current
6
Red
100.00
1.5
100
Tamb – Ambient Temperature ( qC )
17035
10.00
IF – Forward Current ( mA )
Figure 20. Relative Luminous Intensity vs. Forward Current
n l d – Change of Dom. Wavelength (nm)
I Vrel –Relative Luminous Intensity
2.5
–25
0.10
17037
Figure 17. Change of Forward Voltage vs. Ambient Temperature
0.0
–50
1.00
0.01
1.00
100
Tamb – Ambient Temperature ( qC )
17034
Red
I Vrel - Relative Luminous Intensity
n VF – Change of Forward Voltage (mV)
250
17045
1.2
1.1
Red
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
600 610 620 630 640 650 660 670 680 690 700
λ - Wavelength ( nm )
Figure 22. Relative Intensity vs. Wavelength
Document Number 83201
Rev. 1.4, 31-Aug-04
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
2.5
100
Yellow
Soft orange
Red
80
70
Red
I Vrel - Relative Luminous Intensity
I F – Forward Current ( mA )
90
60
50
40
30
20
10
2.0
1.5
1.0
0.5
0.0
-50
0
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
VF – Forward Voltage ( V )
Figure 23. Forward Current vs. Forward Voltage
100
I F - Forward Current ( mA )
90
Red
80
70
60
50
40
30
20
10
0
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
VF - Forward Voltage ( V )
17047
75
100
Red
2
1
0
-1
-2
-3
-4
-5
-25
0
25
50
75
100
Tamb - Ambient Temperature ( ° C )
Figure 27. Change of Dominant Wavelength vs. Ambient
Temperature
30 mA
150
100
Red
50 mA
50
10 mA
-50
-100
-150
-200
-50
-25
0
25
50
75
100
Tamb - Ambient Temperature ( ° C )
Figure 25. Change of Forward Voltage vs. Ambient Temperature
Document Number 83201
Rev. 1.4, 31-Aug-04
I Vrel - Relative Luminous Intensity
ı VF - Change of Forward Voltage ( mV )
50
10
200
17039
25
3
-50
250
0
0
Figure 26. Relative Luminous Intensity vs. Amb. Temperature
17041
Figure 24. Forward Current vs. Forward Voltage
-25
Tamb - Ambient Temperature ( ° C )
17040
∆ λ d - Change of Dom. W avelength (nm)
17046
Red
1
0
0.01
17042
1
10
100
IF - Forward Current ( mA )
Figure 28. Relative Luminous Intensity vs. Forward Current
www.vishay.com
9
TLMK / O / S / Y330.
VISHAY
0.12
1.5
Red
1.0
I F - Forward Current (A)
∆ λ d - Change of Dom. W avelength (nm)
Vishay Semiconductors
0.5
0.0
-0.5
-1.0
-1.5
10 20 30 40 50 60 70 80 90 100
17044
IF - Forward Current ( mA )
17043
Figure 29. Change of Dominant Wavelength vs. Forward Current
0.10
0.08
0.06
tp/T = 0.005
0.05
0.5
0.04
0.02
0.00
10 -5 10 -4 10 -3 10 -2 10 -1 10 0
tp - Pulse Length (s)
101
102
Figure 30. Forward Current vs. Pulse Length
Package Dimensions in mm
3.5 ± 0.2
0.85
+ 0.10
1.65- 0.05
technical drawings
according to DIN
specifications
Mounting Pad Layout
Pin identification
area covered with
solder resist
4
2.6 (2.8)
A
2.2
C
2.8
+ 0.15
1.2
4
1.6 (1.9)
∅ 2.4
3
+ 0.15
Dimensions: IR and Vaporphase
(Wave Soldering)
Drawing-No. : 6.541-5025.01-4
Issue: 7; 05.04.04
95 11314
www.vishay.com
10
Document Number 83201
Rev. 1.4, 31-Aug-04
TLMK / O / S / Y330.
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83201
Rev. 1.4, 31-Aug-04
www.vishay.com
11