TLMK / O / S / Y330. VISHAY Vishay Semiconductors Power SMD LED in PLCC-2 Package Description The TLM.33.. series is an advanced modification of the Vishay TLM.31.. series. It is designed to incorporate larger chips, therefore, capable of withstanding a 50 mA drive current. The package of the TLM.33.. is the PLCC-2 (equivalent to a size B tantalum capacitor). It consists of a lead frame which is embedded in a white thermoplast. The reflector inside this package is filled up with clear epoxy. 19225 e3 Pb Pb-free Features Applications • Utilizing (AS) AlInGaP technology • Available in 8 mm tape • Luninous intensity, color and forward voltage categorized per packing unit • Luminous intensity ratio per packing unit IVmax/IVmin ≤ 1.6 • Thermal resistance R = 400 K/W • ESD class 2 • Suitable for all soldering methods according to CECC • Lead-free device Traffic Signals and Signs Interior and exterior lighting Dashboard illumination Indicator and backlighting purposes for audio, video, LCD’s switches, symbols, illuminated advertising etc. Parts Table Part Color, Luminous Intensity Angle of Half Intensity (±ϕ) Technology TLMK3300 Red, IV > 200 mcd 60 ° AlInGaP on GaAs TLMK3301 Red, IV = (250 to 800) mcd 60 ° AlInGaP on GaAs TLMK3302 Red, IV = (400 to 800) mcd 60 ° AlInGaP on GaAs TLMK3303 Red, IV = (400 to 1250) mcd 60 ° AlInGaP on GaAs TLMS3300 Red, IV > 160 mcd 60 ° AlInGaP on GaAs TLMS3301 Red, IV = (160 to 400) mcd 60 ° AlInGaP on GaAs TLMS3302 Red, IV = (250 to 800) mcd 60 ° AlInGaP on GaAs TLMO3300 Soft orange, IV > 200 mcd 60 ° AlInGaP on GaAs TLMO3301 Soft orange, IV = (250 to 640) mcd 60 ° AlInGaP on GaAs TLMO3302 Soft orange, IV = (320 to 800) mcd 60 ° AlInGaP on GaAs Document Number 83201 Rev. 1.4, 31-Aug-04 www.vishay.com 1 TLMK / O / S / Y330. VISHAY Vishay Semiconductors Part Color, Luminous Intensity Angle of Half Intensity (±ϕ) Technology TLMO3303 Soft orange, IV = (400 to 1250) mcd 60 ° AlInGaP on GaAs TLMY3300 Yellow, IV > 200 mcd 60 ° AlInGaP on GaAs TLMY3301 Yellow, IV = (250 to 640) mcd 60 ° AlInGaP on GaAs TLMY3302 Yellow, IV = (320 to 800) mcd 60 ° AlInGaP on GaAs TLMY3303 Yellow, IV = (400 to 1250) mcd 60 ° AlInGaP on GaAs Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified TLMY33.., TLMO33.., TLMK33.., TLMS33.. Parameter Test condition Symbol Value Unit VR 5 V Reverse voltage DC Forward current Tamb ≤ 73 °C (400 K/W) IF 50 mA Power dissipation Tamb ≤ 73 °C (400 K/W) PV 130 mW Tj 125 °C Operating temperature range Tamb - 40 to + 100 °C Storage temperature range Tstg - 40 to + 100 °C Tsd 260 °C RthJA 400 K/W Junction temperature Soldering temperature t≤5s Thermal resistance junction/ ambient mounted on PC board (pad size > 16 mm2) Optical and Electrical Characteristics Tamb = 25 °C, unless otherwise specified Red TLMK33.. Parameter Luminous intensity Test condition IF = 50 mA Part Symbol Min Typ. TLMK3300 IV 200 500 TLMK3301 IV 250 TLMK3302 IV TLMK3303 IV Unit mcd 800 mcd 400 800 mcd 400 1250 φV/IV Luminous flux/Luminous intensity Max 3 mcd mlm/ mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 624 nm Spectral bandwidth at 50 % Irel max IF = 50 mA ∆λ 18 nm Angle of half intensity IF = 50 mA ϕ Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR www.vishay.com 2 611 617 622 ± 60 1.85 nm deg 2.1 2.55 V 0.01 10 µA Document Number 83201 Rev. 1.4, 31-Aug-04 TLMK / O / S / Y330. VISHAY Vishay Semiconductors Red TLMS33.. Parameter Luminous intensity Test condition IF = 50 mA Part Symbol Min Typ. TLMS3300 IV 160 300 TLMS3301 IV 160 IV 250 TLMS3302 φV/IV Luminous flux/Luminous intensity Max Unit mcd 400 800 3 mcd mcd mlm/ mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 641 nm Spectral bandwidth at 50 % Irel max IF = 50 mA ∆λ 17 nm Angle of half intensity IF = 50 mA ϕ ± 60 deg Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR 626 1.85 630 638 nm 2.1 2.55 V 0.01 10 µA Max Soft Orange TLMO33.. Parameter Luminous intensity Test condition IF = 50 mA Part Symbol Min Typ. TLMO3300 IV 200 500 TLMO3301 IV 250 640 TLMO3302 IV 320 800 mcd TLMO3303 IV 400 1250 mcd φV/IV Luminous flux/Luminous intensity λd Unit mcd 3 mcd mlm/ mcd Dominant wavelength IF = 50 mA Peak wavelength IF = 50 mA λp 611 nm Spectral bandwidth at 50 % Irel max IF = 50 mA ∆λ 17 nm Angle of half intensity IF = 50 mA ϕ Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR Document Number 83201 Rev. 1.4, 31-Aug-04 600 605 611 ± 60 1.85 nm deg 2.1 2.55 V 0.01 10 µA www.vishay.com 3 TLMK / O / S / Y330. VISHAY Vishay Semiconductors Yellow TLMY33.. Parameter Test condition IF = 50 mA Luminous intensity Part Symbol Min Typ. TLMY3300 IV 200 450 TLMY3301 IV 250 TLMY3302 IV TLMY3303 IV Unit mcd 640 mcd 320 800 mcd 400 1250 mcd φV/IV Luminous flux/Luminous intensity Max 3 mlm/ mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 590 nm Spectral bandwidth at 50 % Irel max IF = 50 mA ∆λ 18 nm Angle of half intensity IF = 50 mA ϕ Forward voltage IF = 50 mA VF Reverse current VR = 5 V VR 583 588 594 nm ± 60 1.85 deg 2.1 2.55 V 0.01 10 µA Forward Voltage Classification Group Forward Voltage (V) min max 1 1.85 2.25 2 2.15 2.55 Color Classification Group Dominant Wavelength (nm) Red Soft Orange Yellow min max min max min max 1 611 618 598 601 581 584 2 614 622 600 603 583 586 3 602 605 585 588 4 604 607 587 590 5 606 609 589 592 6 608 611 591 594 Luminous Intensity Classification Group www.vishay.com 4 Luminous Intensity (mcd) min max Xa 160 250 Xb 200 320 Ya 250 400 Yb 320 500 Za 400 630 Zb 500 800 0a 630 1000 0b 800 1250 Document Number 83201 Rev. 1.4, 31-Aug-04 TLMK / O / S / Y330. VISHAY Vishay Semiconductors Group Name on Label Luminous Intensity Group Halfgroup Wavelength Forward Voltage Z b 2 1 One packing unit/tape contains only one classification group of luminous intensity, color and forward voltage Only one single classification groups is not available The given groups are not order codes, customer specific group combinations require marketing agreement No color subgrouping for Super Red Typical Characteristics (Tamb = 25 °C unless otherwise specified) 0° I V re l - Relative Luminous Intensity 200 PV –Power Dissipation (mW) 180 160 RthJA = 400K/W 140 120 100 80 60 40 20 25 50 75 100 50° 0.8 60° 80 70 RthJA = 400K/W 50 40 30 20 10 0 25 50 75 100 Tamb – Ambient Temperature ( qC ) 125 Figure 2. Forward Current vs. Ambient Temperature Document Number 83201 Rev. 1.4, 31-Aug-04 80° 0.4 0.2 0 0.2 0.4 0.6 Figure 3. Rel. Luminous Intensity vs. Angular Displacement I Vrel - Relative Luminous Intensity I F – Forward Current ( mA ) 90 0 70° 0.7 0.6 100 16784 40° 95 10319 Figure 1. Power Dissipation vs. Ambient Temperature 60 30° 0.9 125 Tamb – Ambient Temperature ( qC ) 16783 20° 1.0 0 0 10° 16008 1.2 Yellow 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 540 550 560 570 580 590 600 610 620 630 640 λ - Wavelength ( nm ) Figure 4. Relative Intensity vs. Wavelength www.vishay.com 5 TLMK / O / S / Y330. VISHAY 250 10.00 50 mA I Vrel –Relative Luminous Intensity 30 mA 200 Yellow 150 100 50 0 10 mA –50 –100 –150 –200 –50 –25 0 25 50 75 I Vrel –Relative Luminous Intensity Yellow 2.0 1.5 1.0 0.5 0 25 50 75 n l d – Change of Dom. Wavelength (nm) Figure 6. Relative Luminous Intensity vs. Amb. Temperature 17017 6 Yellow 4 2 0 –2 –4 –6 –50 –25 0 25 50 75 100 Tamb – Ambient Temperature ( qC ) Figure 7. Change of Dominant Wavelength vs. Ambient Temperature www.vishay.com 6 100.00 1.5 Yellow 1.0 0.5 0.0 –0.5 –1.0 –1.5 100 Tamb – Ambient Temperature ( qC ) 17016 10.00 IF – Forward Current ( mA ) Figure 8. Relative Luminous Intensity vs. Forward Current n l d – Change of Dom. Wavelength (nm) 2.5 –25 0.10 17018 Figure 5. Change of Forward Voltage vs. Ambient Temperature 0.0 –50 1.00 0.01 1.00 100 Tamb – Ambient Temperature ( qC ) 17015 Yellow 10 20 30 40 50 60 70 80 90 100 17019 IF – Forward Current ( mA ) Figure 9. Change of Dominant Wavelength vs. Forward Current I Vrel - Relative Luminous Intensity n VF – Change of Forward Voltage (mV) Vishay Semiconductors 16314 1.2 1.1 Soft orange 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 560 570 580 590 600 610 620 630 640 650 660 λ- Wavelength ( nm ) Figure 10. Relative Intensity vs. Wavelength Document Number 83201 Rev. 1.4, 31-Aug-04 TLMK / O / S / Y330. VISHAY Vishay Semiconductors n VF – Change of Forward Voltage (mV) 250 10.00 50 mA I Vrel –Relative Luminous Intensity 200 30 mA 150 100 Soft orange 50 0 10 mA –50 –100 –150 –200 –50 –25 0 25 50 75 2.0 1.5 1.0 0.5 0 25 50 75 n l d – Change of Dom. Wavelength (nm) Figure 12. Relative Luminous Intensity vs. Amb. Temperature 17022 1.5 Soft orange 1.0 0.5 0.0 –0.5 –1.0 –1.5 100 Tamb – Ambient Temperature ( qC ) 17021 10 20 30 40 50 60 70 80 90 100 17024 4 2 0 –2 –4 –6 –50 –25 0 25 50 75 100 Tamb – Ambient Temperature ( qC ) Figure 13. Change of Dominant Wavelength vs. Ambient Temperature Document Number 83201 Rev. 1.4, 31-Aug-04 IF – Forward Current ( mA ) Figure 15. Change of Dominant Wavelength vs. Forward Current 6 Soft orange 100.00 Figure 14. Relative Luminous Intensity vs. Forward Current n l d – Change of Dom. Wavelength (nm) Soft orange 10.00 IF – Forward Current ( mA ) I Vrel - Relative Luminous Intensity I Vrel –Relative Luminous Intensity 2.5 –25 0.10 17023 Figure 11. Change of Forward Voltage vs. Ambient Temperature 0.0 –50 1.00 0.01 1.00 100 Tamb – Ambient Temperature ( qC ) 17020 Soft orange 16007 1.2 Red 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 570 580 590 600 610 620 630 640 650 660 670 λ - Wavelength ( nm ) Figure 16. Relative Intensity vs. Wavelength www.vishay.com 7 TLMK / O / S / Y330. VISHAY Vishay Semiconductors 10.00 Red 50 mA 150 I Vrel –Relative Luminous Intensity 200 100 50 30 mA 0 –50 10 mA –100 –150 –200 –50 –25 0 25 50 75 Red 2.0 1.5 1.0 0.5 0 25 50 75 n l d – Change of Dom. Wavelength (nm) Figure 18. Relative Luminous Intensity vs. Amb. Temperature 17036 4 2 0 –2 –4 –6 –50 –25 0 25 50 75 100 Tamb – Ambient Temperature ( qC ) Figure 19. Change of Dominant Wavelength vs. Ambient Temperature www.vishay.com 8 Red 1.0 0.5 0.0 –0.5 –1.0 –1.5 10 20 30 40 50 60 70 80 90 100 17038 IF – Forward Current ( mA ) Figure 21. Change of Dominant Wavelength vs. Forward Current 6 Red 100.00 1.5 100 Tamb – Ambient Temperature ( qC ) 17035 10.00 IF – Forward Current ( mA ) Figure 20. Relative Luminous Intensity vs. Forward Current n l d – Change of Dom. Wavelength (nm) I Vrel –Relative Luminous Intensity 2.5 –25 0.10 17037 Figure 17. Change of Forward Voltage vs. Ambient Temperature 0.0 –50 1.00 0.01 1.00 100 Tamb – Ambient Temperature ( qC ) 17034 Red I Vrel - Relative Luminous Intensity n VF – Change of Forward Voltage (mV) 250 17045 1.2 1.1 Red 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 600 610 620 630 640 650 660 670 680 690 700 λ - Wavelength ( nm ) Figure 22. Relative Intensity vs. Wavelength Document Number 83201 Rev. 1.4, 31-Aug-04 TLMK / O / S / Y330. VISHAY Vishay Semiconductors 2.5 100 Yellow Soft orange Red 80 70 Red I Vrel - Relative Luminous Intensity I F – Forward Current ( mA ) 90 60 50 40 30 20 10 2.0 1.5 1.0 0.5 0.0 -50 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 VF – Forward Voltage ( V ) Figure 23. Forward Current vs. Forward Voltage 100 I F - Forward Current ( mA ) 90 Red 80 70 60 50 40 30 20 10 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 VF - Forward Voltage ( V ) 17047 75 100 Red 2 1 0 -1 -2 -3 -4 -5 -25 0 25 50 75 100 Tamb - Ambient Temperature ( ° C ) Figure 27. Change of Dominant Wavelength vs. Ambient Temperature 30 mA 150 100 Red 50 mA 50 10 mA -50 -100 -150 -200 -50 -25 0 25 50 75 100 Tamb - Ambient Temperature ( ° C ) Figure 25. Change of Forward Voltage vs. Ambient Temperature Document Number 83201 Rev. 1.4, 31-Aug-04 I Vrel - Relative Luminous Intensity ı VF - Change of Forward Voltage ( mV ) 50 10 200 17039 25 3 -50 250 0 0 Figure 26. Relative Luminous Intensity vs. Amb. Temperature 17041 Figure 24. Forward Current vs. Forward Voltage -25 Tamb - Ambient Temperature ( ° C ) 17040 ∆ λ d - Change of Dom. W avelength (nm) 17046 Red 1 0 0.01 17042 1 10 100 IF - Forward Current ( mA ) Figure 28. Relative Luminous Intensity vs. Forward Current www.vishay.com 9 TLMK / O / S / Y330. VISHAY 0.12 1.5 Red 1.0 I F - Forward Current (A) ∆ λ d - Change of Dom. W avelength (nm) Vishay Semiconductors 0.5 0.0 -0.5 -1.0 -1.5 10 20 30 40 50 60 70 80 90 100 17044 IF - Forward Current ( mA ) 17043 Figure 29. Change of Dominant Wavelength vs. Forward Current 0.10 0.08 0.06 tp/T = 0.005 0.05 0.5 0.04 0.02 0.00 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 tp - Pulse Length (s) 101 102 Figure 30. Forward Current vs. Pulse Length Package Dimensions in mm 3.5 ± 0.2 0.85 + 0.10 1.65- 0.05 technical drawings according to DIN specifications Mounting Pad Layout Pin identification area covered with solder resist 4 2.6 (2.8) A 2.2 C 2.8 + 0.15 1.2 4 1.6 (1.9) ∅ 2.4 3 + 0.15 Dimensions: IR and Vaporphase (Wave Soldering) Drawing-No. : 6.541-5025.01-4 Issue: 7; 05.04.04 95 11314 www.vishay.com 10 Document Number 83201 Rev. 1.4, 31-Aug-04 TLMK / O / S / Y330. VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 83201 Rev. 1.4, 31-Aug-04 www.vishay.com 11