TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 z z High-Performance Static CMOS Technology TMS470R1x 16/32-Bit RISC Core (ARM7TDMI™) – 24-MHz System Clock (48-MHz Pipeline Mode) – Independent 16/32-Bit Instruction Set – Open Architecture With Third-Party Support – Built-In Debug Module – Utilizes Big-Endian Format – Class II Serial Interface (C2SIb) – Two Selectable Data Rates – Normal Mode 10.4 Kbps and 4X Mode 41.6 Kbps z High-End Timer (HET) – 27 Programmable I/O Channels (VF338x): – 23 High-Resolution Pins – 4 Standard-Resolution Pins – 16 Programmable I/O Channels (VF348x): – 14 High-Resolution Pins – 2 Standard-Resolution Pins – High-Resolution Share Feature (XOR) – High-End Timer RAM – 64-Instruction Capacity z 10-Bit Multi-Buffered ADC (MibADC) 12-Channel (VF338x) 16-Channel (VF348x) – 64-Word FIFO Buffer – Single- or Continuous-Conversion Modes – 1.55 μs Minimum Sample and Conversion Time – Calibration Mode and Self-Test Features z Eight External Interrupts 470+ System Module – 32-Bit Address Space Decoding – Bus Supervision for Mem and Peripherals – Analog Watchdog (AWD) Timer – Real-Time Interrupt (RTI) – System Integrity and Failure Detection z Flexible Interrupt Handling 5 Dedicated General-Purpose I/O (GIO) Pins, 1 Input-Only GIO Pin, and 48 Additional Peripheral I/Os (VF338x) z 11 Dedicated GIO Pins,1 Input-Only GIO Pin, and 38 Additional Peripheral I/Os (VF348x) z Zero-Pin Phase-Locked Loop (ZPLL)-Based Clock Module With Prescaler – Multiply-by-4 or -8 Internal ZPLL Option – ZPLL Bypass Mode z External Clock Prescale (ECP) Module – Programmable Low-Frequency External Clock (CLK) z z Six Communication Interfaces: – Two Serial Peripheral Interfaces (SPIs) – 255 Programmable Baud Rates – Two Serial Communications Interfaces (SCIs) – 224 Selectable Baud Rates – Asynchronous/Isosynchronous Modes – Standard CAN Controller (SCC) – 16-Mailbox Capacity – Fully Compliant With CAN Protocol, Version 2.0B Compatible ROM Device On-Chip Scan-Base Emulation Logic, IEEE Standard 1149.1† (JTAG) Test-Access Port 100-Pin Plastic Low-Profile Quad Flatpack (PZ Suffix) z z z Integrated Memory – 256K-Byte Program Flash – One Bank With 14 Contiguous Sectors – Internal State Machine for Programming and Erase – 10K-Byte Static RAM (SRAM) (VF3x8) – 12K-Byte Static RAM (SRAM) (VF3x82) Operating Features – Core Supply Voltage (VCC): 1.81 V - 2.06 V – Core Supply Voltage (VCC): 1.70 V - 2.06 V for VF3x8xE when used from - 40C to 85C – I/O Supply Voltage (VCCIO): 3.0 V - 3.6 V – Low-Power Modes: STANDBY and HALT – Industrial and Automotive Temperature Ranges z z z z Development System Support Tools Available – Code Composer Studio™ Integrated Development Environment (IDE) – HET Assembler and Simulator – Real-Time In-Circuit Emulation – Flash Programming Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are property of their respective owners. Code Composer Studio is a trademark of Texas Instruments. ARM7TDMI is a trademark of Advanced RISC Machines Limited (ARM). † The test-access port is compatible with the IEEE Standard 1149.1-1990, IEEE Standard Test-Access Port and Boundary Scan Architecture specification. Boundary scan is not supported on this device. Copyright © 2006, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 1 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 PLLDIS TDI TDO TCK HET[8] HET[9] VCCIO VSSIO CLKOUT CANSRX CANSTX SCI1CLK SCI1TX SCI1RX VSS VCC ADIN[7] ADEVT ADIN[6] ADIN[5] ADIN[4] ADIN[3] ADIN[2] ADIN[1] ADIN[0] TMS470R1VF338x 100-PIN PZ PACKAGE (TOP VIEW) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 HET[20] ADREFHI 80 46 HET[21] ADREFLO VCCAD 81 45 HET[22] 82 44 SPI2ENA VSSAD 83 43 SPI2SOMI TMS 84 42 SPI2SIMO TMS2 85 41 SPI2CLK VSS 86 40 VCC VCC 87 39 VSS HET[0] 88 38 C2SIbRX HET[1] 89 37 C2SIbTX VSS 90 36 C2SIbLPN VCC 91 35 HET[24] FLTP2 92 34 HET[31] FLTP1 93 33 HET[30] VCCP 94 32 HET[29] HET[2] 95 31 SCI2TX HET[3] 96 30 SCI2RX HET[4] 97 29 GIOA[1]/INT[1]/ECLK HET[5] 98 28 GIOA[0]/INT0† HET[6] 99 27 TEST HET[7] 100 26 TRST † GIOA[0]/INT0 (pin 28) is an input-only GIO pin. 2 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 GIOA[4]/INT4 GIOA[5]/INT5 GIOA[6]/INT6 GIOA[7]/INT7 HET[10] PORRST HET[11] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 HET[12] 9 HET[13] 8 HET[14] 7 HET[15] 6 HET[16] 5 HET[17] 4 VCCIO 3 RST 2 VSSIO 1 VCC ADIN[8] 47 OSCIN HET[19] 79 OSCOUT 48 VSS 78 SPI1CLK HET[18] ADIN[9] SPI1SOMI AWD 49 SPI1SIMO 50 77 SPI1ENA 76 ADIN[10] SPI1SCS ADIN[11] TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 PLLDIS TDI TDO TCK HET[8] VCCIO VSSIO CANSRX CLKOUT CANSTX SCI1TX SCI1CLK SCI1RX VSS VCC ADIN[7] ADEVT ADIN[6] ADIN[5] ADIN[15] ADIN[4] ADIN[3] ADIN[2] ADIN[1] ADIN[0] TMS470R1VF348x 100-PIN PZ PACKAGE (TOP VIEW) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 79 ADIN[9] 80 46 HET[21] ADIN[12] ADIN[8] 81 45 SPI2SCS 82 44 SPI2ENA ADREFHI 83 43 SPI2SOMI ADREFLO 84 42 SPI2SIMO VCCAD 85 41 SPI2CLK VSSAD 86 40 VCC TMS 87 39 VSS TMS2 88 38 C2SIbRX VSS 89 37 C2SIbTX VCC 90 36 C2SIbLPN HET[0] 91 35 HET[24] VSS 92 34 HET[31] VCC 93 33 SCI2TX FLTP2 94 32 SCI2RX FLTP1 95 31 GIOA[3]/INT3 VCCP 96 30 GIOA[2]/INT2 HET[2] 97 29 GIOA[1]/INT1/ECLK HET[4] 98 28 GIOA[0]/INT0† HET[6] 99 27 TEST HET[7] 100 26 TRST GIOA[4]/INT4 GIOA[5]/INT5 GIOA[6]/INT6 PORRST GIOA[7]/INT7 HET[10] HET[11] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 HET[12] 9 GIOB[0] 8 HET[13] 7 GIOB[1] 6 GIOB[2] 5 GIOB[3] 4 VSSIO 3 VCCIO 2 RST 1 VCC ADIN[13] HET[20] OSCIN HET[19] 47 OSCOUT 48 VSS 78 SPI1CLK HET[18] ADIN[10] SPI1SOMI AWD 49 SPI1SIMO 50 77 SPI1ENA 76 ADIN[14] SPI1SCS ADIN[11] † GIOA[0]/INT0 (pin 28) is an input-only GIO pin. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 3 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 description The TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, and TMS470R1VF3482† devices are members of the Texas Instruments TMS470R1x family of general-purpose16/32-bit reduced instruction set computer (RISC) microcontrollers. The VF3x8x microcontroller offers high performance utilizing the high-speed ARM7TDMI 16/32-bit RISC central processing unit (CPU), resulting in a high instruction throughput while maintaining greater code efficiency. The ARM7TDMI 16/32-bit RISC CPU views memory as a linear collection of bytes numbered upwards from zero. The TMS470R1VF3x8x utilizes the big-endian format where the most significant byte of a word is stored at the lowest numbered byte and the least significant byte at the highest numbered byte. High-end embedded control applications demand more performance from their controllers while maintaining low costs. The VF3x8x RISC core architecture offers solutions to these performance and cost demands while maintaining low power consumption. The VF338/VF348/VF3382/VF3482 device contains the following: z z z z z z z z z z z z z z z z ARM7TDMI 16/32-Bit RISC CPU TMS470R1x system module (SYS) with 470+ enhancements 256K-byte flash 10K-byte SRAM (VF3x8) 12K-byte SRAM (VF3x82) Zero-pin phase-locked loop (ZPLL) clock module Analog watchdog (AWD) timer Real-time interrupt (RTI) module Two serial peripheral interface (SPI) modules Two serial communications interface (SCI) modules Standard CAN controller (SCC) Class II serial interface (C2SIb) 10-bit multi-buffered analog-to-digital converter (MibADC), 12-input channels (VF338x), 16-input channels (VF348x) High-end timer (HET) controlling 27 I/Os (VF338x), controlling 16 I/Os (VF348x) External Clock Prescale (ECP) Up to 53 I/O pins and 1 input-only pin (VF338x), up to 49 I/O pins and 1 input-only pin (VF348x) The functions performed by the 470+ system module (SYS) include: address decoding; memory protection; memory and peripherals bus supervision; reset and abort exception management; prioritization for all internal interrupt sources; device clock control; and parallel signature analysis (PSA). This data sheet includes devicespecific information such as memory and peripheral select assignment, interrupt priority, and a device memory map. For a more detailed functional description of the SYS module, see the TMS470R1x System Module Reference Guide (literature number SPNU189). The VF3x8x memory includes general-purpose SRAM supporting single-cycle read/write accesses in byte, half-word, and word modes. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 32-bit-wide data bus interface.The flash operates with a system clock frequency of up to 24 MHz. In pipeline mode, the flash operates with a system clock frequency of up to 48 MHz. For more detailed information on the flash, see the flash section of this data sheet and the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). † Throughout the remainder of this document, the TMS470R1VF338, TMSVF348, TMS470R1VF3382 and TMS470R1VF3482 device names, where generic, shall be referred to as TMS470R1VF3x8x or VF3x8x; where applicable to only the 10K SRAM devices, VF3x8; where applicable to only the 12K SRAM devices, VF3x82; where applicable to only VF338 and VF3382 as VF338x; where applicable to only VF348 and VF3482 as VF348x;and, where unique, shall be referred to as either their full device name or VF338 or VF348 or VF3382 or VF3482. 4 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 description (continued) The VF3x8x device has six communication interfaces: two SPIs, two SCIs, an SCC, and a C2SIb. The SPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. The SCI is a full-duplex, serial I/O interface intended for asynchronous communication between the CPU and other peripherals using the standard Non-Return-to-Zero (NRZ) format. The SCC uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The SCC is ideal for applications operating in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or multiplexed wiring. The C2SIb allows the VF3x8x to transmit and receive messages on a class II network following an SAE J1850† standard. For more detailed functional information on the SPI, SCI, and SCC peripherals, see the specific reference guides (literature numbers SPNU195, SPNU196, and SPNU197, respectively). For more detailed functional information on the C2SIb peripheral, see the TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214). The HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The HET can be used for compare, capture, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. For more detailed functional information on the HET, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). The VF3x8x device has a 10-bit-resolution sample-and-hold MibADC. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. There are three separate groupings, two of which are triggerable by an external event. Each sequence can be converted once when triggered or configured for continuous conversion mode. For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). The zero-pin phase-locked loop (ZPLL) clock module contains a phase-locked loop, a clock-monitor circuit, a clock-enable circuit, and a prescaler (with prescale values of 1–8). The function of the ZPLL is to multiply the external frequency reference to a higher frequency for internal use. The ZPLL provides ACLK‡ to the system (SYS) module. The SYS module subsequently provides system clock (SYSCLK), real-time interrupt clock (RTICLK), CPU clock (MCLK), and peripheral interface clock (ICLK) to all other VF3x8x device modules. For more detailed functional information on the ZPLL, see the TMS470R1x Zero-Pin Phase Locked Loop (ZPLL) Clock Module Reference Guide (literature number SPNU212). The VF3x8x device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous external clock (ECLK) on a specified GIO pin. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (ICLK) frequency. For more detailed functional information on the ECP, see the TMS470R1x External Clock Prescaler (ECP) Reference Guide (literature number SPNU202). device characteristics The TMS470R1VF3x8x device is a derivative of the F05 system emulation device SE470R1VB8AD. Table 1 identifies all the characteristics of the TMS470R1VF3x8x device except the SYSTEM and CPU, which are generic. The COMMENTS column aids the user in software-programming and references device-specific information. † SAE Standard J1850 Class B Data Communication Network Interface ‡ ACLK should not be confused with the MibADC internal clock, ADCLK. ACLK is the continuous system clock from an external resonator/crystal reference. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 5 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 device characteristics (continued) Table 1. Device Characteristics CHARACTERISTICS DEVICE DESCRIPTION TMS470R1VF338X DEVICE DESCRIPTION TMS470R1VF348X COMMENTS FOR VF3X8X MEMORY For the number of memory selects on this device, see the Memory Selection Assignment table (Table 2). Flash is pipeline-capable 256K-Byte Flash INTERNAL MEMORY 10K-Byte SRAM (VF338) 12K-Byte SRAM (VF3382) 256K-Byte Flash The VF3x8 RAM is implemented in one 10K array selected by two memory-select signals. The VF3x82 10K-Byte SRAM (VF348) RAM is implemented in one 12K array selected by two 12K-Byte SRAM (VF3482) memory-select signals. (See the Memory Selection Assignment table, Table 2). PERIPHERALS For the device-specific interrupt priority configurations, see the Interrupt Priority table (Table 4). And for the 1K peripheral address ranges and their peripheral selects, see the VF338/VF348x Peripherals, System Module, and Flash Base Addresses table (Table 3). CLOCK ZPLL ZPLL GENERAL-PURPOSE I/Os 5 I/O 1 Input only 11 I/O 1 Input only ECP YES YES C2SIb 1 1 SCI 1 (3-pin) 1 (2-pin) 1 (3-pin) 1 (2-pin) CAN (HECC and/or SCC) 1 SCC 1 SCC SPI (5-pin, 4-pin or 3-pin) 1 (5-pin) 1 (4-pin) 2 (5-pin) Zero-pin PLL has no external loop filter pins. Port A has six (6) external pins (VF338x – GIOA[2]/INT2 and GIOA[3]/INT3 are not available.) Port A has eight (8) external pins and Port B has four (4) external pins (VF348x) SCI2 has no external clock pin, only transmit/receive pins (SCI2TX and SCI2RX) Standard CAN controller VF338x SPI1 (5-pin), SPI2 (4-pin) SPI2 has no chip select pin The VF338x and VF348x devices have both the logic and registers for a full 32-I/O HET implemented, even though not all 32 pins are available externally. 6 The high-resolution (HR) SHARE feature allows even HR pins to share the next higher odd HR pin structures. This HR sharing is independent of whether or not the odd pin is available externally. If an odd pin is available externally and shared, then the odd pin can only be used as a general-purpose I/O. For more information on HR SHARE, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). HET with XOR Share 27 I/O 16 I/O HET RAM 64-Instruction Capacity 64-Instruction Capacity MibADC 10-bit, 12-channel 64-word FIFO 10-bit, 16-channel 64-word FIFO 12-channel MibADC (VF338x), 16-channel MibADC (VF348x). Both the logic and registers for a full 16-channel MibADC are present. Capable of being event triggered from a user-selectable event source. CORE VOLTAGE 1.81 - 2.06 V (see note) 1.81 - 2.06 V (see note) When used from -40C to 85C, the core voltage range for VF3x8xE devices is 1.70 - 2.06 V I/O VOLTAGE 3.0 - 3.6 V 3.0 - 3.6 V PINS 100 100 PACKAGE PZ PZ POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 functional block diagram External Pins VCCP FLTP1 FLTP2 OSCIN RAM (10K Bytes) (VF3x8) (12K Bytes) (VF3x82) FLASH (256K Bytes) 14 Sectors ZPLL PLLDIS ADIN[11:0]† CPU Address/Data Bus MibADC with 64-Word FIFO TRST TMS470R1x CPU TCK ADEVT ADREFHI ADREFLO VCCAD VSSAD TDI TMS TMS470R1x 470+ SYSTEM MODULE RST AWD TEST PORRST Expansion Address/Data Bus TDO TMS2 OSCOUT Crystal External Pins CLKOUT HET with XOR Share (64-Word) SCC HET [31:29, 24]‡ HET[22:0]‡ CANSTX CANSRX SCI1CLK SCI1 SCI1TX SCI1RX SCI2 SCI2TX SCI2RX C2SIbTX C2SIb C2SIbRX SPI2 SPI1 SPI1SCS SPI1ENA SPI1SIMO SPI1SOMI SPI1CLK ECP GIO GIOA[0]/INT[0]¶ GIOA[2:7]/ INT[2:7]# GIOB[3:0]# GIOA[1]/INT[1]/ ECLK SPI2SCS§ SPI2ENA SPI2SIMO SPI2SOMI SPI2CLK C2SIbLPN † ADIN[11:0] for VF338x and ADIN[15:0] for VF348. ‡ HET[31:29, 24] and HET[22:0] for VF338, HET[31, 24] and HET[21:18, 13:10, 8, 7, 6, 4, 2, 0] for VF348. § The SPI2 chip select pin (SPI2SCS) is only applicable to the VF348x device. ¶ GIOA[0]/INT[0] is an input-only GIO pin. # GIOA[2]/INT[2], GIOA[3]/INT[3], and GIOB[3:0] pins are not applicable to the VF338x device. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 7 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 Terminal Functions TERMINAL NAME VF338 VF348 HET[0] 88 91 HET[1] 89 – HET[2] 95 97 HET[3] 96 – HET[4] 97 98 HET[5] 98 – TYPE†‡ INTERNAL PULLUP/ PULLDOWN§ DESCRIPTION HIGH-END TIMER (HET) HET[6] 99 99 HET[7] 100 100 HET[8] 55 55 HET[9] 56 – HET[10] 20 20 The VF338x and VF348x devices have both the logic and registers for a full 32-I/O HET implemented, even though not all 32 pins are available externally Timer input capture or output compare. The HET[31:0] applicable pins can be programmed as general-purpose input/output (GIO) pins. HET[22:0] are high-resolution pins and HET[31:29, 24] are standardresolution pins for VF338x. HET[21:18, 13:10, 8, 7, 6, 4, 2, 0] are high-resolution pins and HET[31, 24] are standard-resolution pins for VF348x. HET[11] 19 19 HET[12] 18 18 HET[13] 17 17 HET[14] 16 – HET[15] 15 – HET[16] 14 – HET[17] 13 – HET[18] 49 49 HET[19] 48 48 HET[20] 47 47 HET[21] 46 46 HET[22] 45 – HET[24] 35 35 HET[28] –¶ –¶ HET[29] 32 – HET[30] 33 – HET[31] 34 34 CANSRX 60 59 3.3-V I/O CANSTX 61 60 3.3-V I/O C2SIbLPN 36 36 3.3-V I/O C2SIbRX 38 38 3.3-V I/O C2SIbTX 37 37 3.3-V I/O 3.3-V I/O IPD The high-resolution (HR) SHARE feature allows even HR pins to share the next higher odd HR pin structures. This HR sharing is independent of whether or not the odd pin is available externally. If an odd pin is available externally and shared, then the odd pin can only be used as a generalpurpose I/O. For more information on HR SHARE, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). The HET[19] or HET[18] pins can also be used as a user-selectable event source to event trigger the MibADC event group or group1 providing the associated register source bits are properly configured and defined. For the internal device connections, see the MibADC section of this data sheet. And for more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). STANDARD CAN CONTROLLER (SCC) SCC receive pin or GIO pin IPU SCC transmit pin or GIO pin CLASS II SERIAL INTERFACE (C2SIb) IPD C2SIb module loopback enable pin or GIO pin C2SIb module receive data input pin or GIO pin IPD C2SIb module transmit data output pin or GIO pin † I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect ‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. § IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) ¶ N/A on the VF348x device. For the VF338x device only, the HET[28] signal is only connected to the pad not to a package pin. 8 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 Terminal Functions (Continued) TERMINAL NAME VF338 VF348 GIOA[0]/INT0 28 28 GIOA[1]/INT1/ ECLK 29 29 GIOA[2]/INT2 – 30 GIOA[3]/INT3 – 31 GIOA[4]/INT4 25 25 GIOA[5]/INT5 24 24 GIOA[6]/INT6 23 23 GIOA[7]/INT7 22 22 GIOB[0] – 16 GIOB[1] – 15 GIOB[2] – 14 GIOB[3] – 13 TYPE†‡ INTERNAL PULLUP/ PULLDOWN§ DESCRIPTION GENERAL-PURPOSE I/O (GIO) 3.3-V I General-purpose input/output pins. GIOA[0]/INT[0] is an input-only pin. GIOA[7:0]/INT[7:0] are interrupt-capable pins. 3.3-V I/O IPD GIOA[1]/INT[1]/ECLK pin is multiplexed with the external clock-out function of the external clock prescale (ECP) module. GIOA[2]/INT[2] and GIOA[3]/INT[3] pins are not applicable on the VF338x device. 3.3-V I/O IPD General-purpose input/output pins (VF348x only). MULTI-BUFFERED ANALOG-TO-DIGITAL CONVERTER (MibADC) ADEVT 67 66 ADIN[0] 75 75 ADIN[1] 74 74 ADIN[2] 73 73 ADIN[3] 72 72 ADIN[4] 71 71 ADIN[5] 70 69 ADIN[6] 69 68 ADIN[7] 68 67 ADIN[8] 79 82 3.3-V I/O IPD MibADC event input. ADEVT can be programmed as a GIO pin.The ADEVT pin can also be used as a user-selectable event source to event trigger the MibADC event group or group1 providing the associated register source bits are properly configured and defined. For the internal device connections, see the MibADC section of this data sheet. MibADC analog input pins 3.3-V I The VF338x device has only 12 input channels but all S/W registers are capable. ADIN[15:12] pins are not applicable to the VF338x device. ADIN[9] 78 80 ADIN[10] 77 78 ADIN[11] 76 76 ADIN[12] – 81 ADIN[13] – 79 ADIN[14] – 77 ADIN[15] – 70 ADREFHI 80 83 3.3-V REF I MibADC module high-voltage reference input ADREFLO 81 84 GND REF I MibADC module low-voltage reference input VCCAD 82 85 3.3-V PWR MibADC analog supply voltage VSSAD 83 86 GND MibADC analog ground reference The VF348x device has all 16 input channels. † I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect ‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. § IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 9 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 Terminal Functions (Continued) TERMINAL NAME TYPE†‡ INTERNAL PULLUP/ PULLDOWN§ DESCRIPTION VF338 VF348 SPI1CLK 5 5 SPI1 clock. SPI1CLK can be programmed as a GIO pin. SPI1ENA 1 1 SPI1 chip enable. SPI1ENA can be programmed as a GIO pin. SPI1SCS 2 2 SERIAL PERIPHERAL INTERFACE 1 (SPI1) SPI1SIMO 3 3 SPI1SOMI 4 4 SPI1 slave chip select. SPI1SCS can be programmed as a GIO pin. 3.3-V I/O IPD SPI1 data stream. Slave in/master out. SPI1SIMO can be programmed as a GIO pin. SPI1 data stream. Slave out/master in. SPI1SOMI can be programmed as a GIO pin. SERIAL PERIPHERAL INTERFACE 2 (SPI2) SPI2CLK 41 41 SPI2ENA 44 44 SPI2 clock. SPI2CLK can be programmed as a GIO pin. SPI2 chip enable. SPI2ENA can be programmed as a GIO pin. SPI2 slave chip select. SPI2SCS can be programmed as a GIO pin. (This pin is not applicable to the VF338x device.) SPI2SCS – 45 SPI2SIMO 42 42 SPI2 data stream. Slave in/master out. SPI2SIMO can be programmed as a GIO pin. SPI2SOMI 43 43 SPI2 data stream. Slave out/master in. SPI2SOMI can be programmed as a GIO pin. 3.3-V I/O IPD ZERO-PIN PHASE-LOCKED LOOP (ZPLL) OSCIN 8 8 1.8-V I Crystal connection pin or external clock input OSCOUT 7 7 1.8-V O External crystal connection pin PLLDIS 51 51 3.3-V I IPD Enable/disable the ZPLL. The ZPLL can be bypassed and the oscillator becomes the system clock. If not in bypass mode, TI recommends that this pin be connected to ground or pulled down to ground by an external resistor. SERIAL COMMUNICATIONS INTERFACE 1 (SCI1) SCI1CLK 62 61 3.3-V I/O IPD SCI1 clock. SCI1CLK can be programmed as a GIO pin. SCI1RX 64 63 3.3-V I/O IPU SCI1 data receive. SCI1RX can be programmed as a GIO pin. SCI1TX 63 62 3.3-V I/O IPU SCI1 data transmit. SCI1TX can be programmed as a GIO pin. SERIAL COMMUNICATIONS INTERFACE 2 (SCI2) SCI2RX 30 32 3.3-V I/O IPU SCI2 data receive. SCI2RX can be programmed as a GIO pin. SCI2TX 31 33 3.3-V I/O IPU SCI2 data transmit. SCI2TX can be programmed as a GIO pin. SYSTEM MODULE (SYS) CLKOUT 59 58 3.3-V I/O IPD Bidirectional pin. CLKOUT can be programmed as a GIO pin or the output of SYSCLK, ICLK, or MCLK. PORRST 21 21 3.3-V I IPD Input master chip power-up reset. External VCC monitor circuitry must assert a power-on reset. IPU Bidirectional reset. The internal circuitry can assert a reset, and an external system reset can assert a device reset. On this pin, the output buffer is implemented as an open drain (drives low only). To ensure an external reset is not arbitrarily generated, TI recommends that an external pullup resistor be connected to this pin. RST 10 10 3.3-V I/O † I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect ‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. § IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) 10 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 Terminal Functions (Continued) TERMINAL NAME AWD VF338 VF348 50 50 INTERNAL PULLUP/ DESCRIPTION PULLDOWN§ WATCHDOG/REAL-TIME INTERRUPT (WD/RTI) Analog watchdog reset. The AWD pin provides a system reset if the WD KEY is not written in time by the system, providing an external RC network circuit is connected. If the user is not using AWD, TI recommends that this pin be connected to ground or pulled down to ground by an external resistor. 3.3-V I/O IPD TYPE†‡ TCK 54 54 3.3-V I TDI 52 52 3.3-V I TDO 53 53 3.3-V O TEST 27 27 3.3-V I TMS 84 87 3.3-V I TMS2 85 88 3.3-V I TRST 26 26 3.3-V I FLTP1 FLTP2 93 92 95 94 NC VCCP 94 96 3.3-V PWR VCC 9 40 66 87 91 9 40 65 90 93 1.8-V PWR VCCIO 12 58 12 57 3.3-V PWR VSS 6 39 65 86 90 6 39 64 89 92 VSSIO 11 57 11 56 For more details on the external RC network circuit, see the TMS470R1x System Module Reference Guide (literature number SPNU189) and the application note Analog Watchdog Resistor, Capacitor and Discharge Interval Selection Constraints (literature number SPNA005). TEST/DEBUG (T/D) IPD Test clock. TCK controls the test hardware (JTAG) Test data in. TDI inputs serial data to the test instruction register, test data IPU register, and programmable test address (JTAG). Test data out. TDO outputs serial data from the test instruction register, IPD test data register, identification register, and programmable test address (JTAG). Test enable. Reserved for internal use only. TI recommends that this pin IPD be connected to ground or pulled down to ground by an external resistor. Serial input for controlling the state of the CPU test access port (TAP) IPU controller (JTAG) Serial input for controlling the second TAP. TI recommends that this pin IPU be connected to VCCIO or pulled up to VCCIO by an external resistor. IPD Test hardware reset to TAP1 and TAP2. IEEE Standard 1149-1 (JTAG) Boundary-Scan Logic. TI recommends that this pin be pulled down to ground by an external resistor. FLASH Flash test pads 1 and 2. For proper operation, these pins must not be connected [no connect (NC)]. Flash external pump voltage (3.3 V) SUPPLY VOLTAGE CORE (1.8 V) Core logic supply voltage SUPPLY VOLTAGE DIGITAL I/O (3.3 V) Digital I/O supply voltage SUPPLY GROUND CORE GND Core supply ground reference SUPPLY GROUND DIGITAL I/O GND Digital I/O supply ground reference † I = input, O = output, PWR = power, GND = ground, REF = reference voltage, NC = no connect ‡ All I/O pins, except RST, are configured as inputs while PORRST is low and immediately after PORRST goes high. § IPD = internal pulldown, IPU = internal pullup (all internal pullups and pulldowns are active on input pins, independent of the PORRST state.) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 11 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 VF338X/VF348X DEVICE-SPECIFIC INFORMATION memory Figure 1 shows the memory map of the VF3x8x device. 0xFFFF_FFFF Memory (4G Bytes) SYSTEM 0xFFFF_FFFF 0xFFFF_FD00 System Module Control Registers (512K Bytes) Reserved 0xFFF8_0000 0xFFF7_FFFF 0xFFF0_0000 0xFFEF_FFFF 0xFFE8_C000 0xFFE8_BFFF 0xFFE8_8000 0xFFE8_7FFF 0xFFE8_4024 0xFFE8_4023 0xFFE8_4000 0xFFE8_3FFF HET Peripheral Control Registers (512K Bytes) SPI1 SCI2 Reserved SCI1 Flash Control Registers MibADC Reserved GIO/ECP MPU Control Registers Reserved SCC Reserved SCC RAM 0xFFE0_0000 Reserved RAM (10K Bytes) (VF3x8) SPI2 Reserved C2SIb RAM (12K Bytes) (VF3x82) Program and Data Area FLASH (256K Bytes) 14 Sectors Reserved FIQ IRQ Reserved Data Abort Prefetch Abort 0x0000_0020 0x0000_001F 0x0000_0000 Software Interrupt Undefined Instruction Exception, Interrupt, and Reset Vectors Reset 0xFFF8_0000 0xFFF7_FC00 0xFFF7_F800 0xFFF7_F500 0xFFF7_F400 0xFFF7_F000 0xFFF7_EC00 0xFFF7_E400 0xFFF7_E000 0xFFF7_DC00 0xFFF7_D800 0xFFF7_D400 0xFFF7_CC00 0xFFF7_C800 0xFFF0_0000 0x0000_001F 0x0000_001C 0x0000_0018 0x0000_0014 0x0000_0010 0x0000_000C 0x0000_0008 0x0000_0004 0x0000_0000 NOTES: A. Memory addresses are configurable by the system (SYS) module within the range of 0x0000_0000 to 0xFFE0_0000. B. The CPU registers are not a part of the memory map. Figure 1. Memory Map 12 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 memory selects Memory selects allow the user to address memory arrays (i.e., flash, RAM, and HET RAM) at user-defined addresses. Each memory select has its own set (low and high) of memory base address registers (MFBAHRx and MFBALRx) that, together, define the array’s starting (base) address, block size, and protection. The base address of each memory select is configurable to any memory address boundary that is a multiple of the decoded block size. For more information on how to control and configure these memory select registers, see the bus structure and memory sections of the TMS470R1x System Module Reference Guide (literature number SPNU189). For the memory selection assignments and the memory selected, see Table 2. Table 2. Memory Selection Assignment MEMORY SELECT MEMORY SELECTED (ALL INTERNAL) 0 (fine) FLASH 1 (fine) FLASH MEMORY SIZE MPU 256K 2 (fine) RAM 3 (fine) RAM 12K (VF3x82) 4 (fine) HET RAM 1K 10K (VF3x8)† † MEMORY BASE ADDRESS REGISTER NO MFBAHR0 and MFBALR0 NO MFBAHR1 and MFBALR1 YES MFBAHR2 and MFBALR2 YES MFBAHR3 and MFBALR3 MFBAHR4 and MFBALR4 STATIC MEM CTL REGISTER SMCR1 † The starting addresses for both RAM memory-select signals cannot be offset from each other by a multiple of the user-defined block size in the memory-base address register. RAM The VF3x8 device contains 10K of internal static RAM configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. This VF3x8 RAM is implemented in one 10K array selected by two memory-select signals. The VF3x82 device contains 12K of internal static RAM configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. This VF3x82 RAM is implemented in one 12K array selected by two memory-select signals. This VF3x8x configuration imposes an additional constraint on the memory map for RAM; the starting addresses for both RAM memory selects cannot be offset from each other by the multiples of the size of the physical RAM (i.e., 12K for the VF3x82 device). The VF3x8x RAM is addressed through memory selects 2 and 3. The RAM can be protected by the memory protection unit (MPU) portion of the SYS module, allowing the user finer blocks of memory protection than is allowed by the memory selects. The MPU is ideal for protecting an operating system while allowing access to the current task. For more detailed information on the MPU portion of the SYS module and memory protection, see the memory section of the TMS470R1x System Module Reference Guide (literature number SPNU189). F05 flash The F05 flash memory is a nonvolatile electrically erasable and programmable memory implemented with a 32-bit-wide data bus interface. The F05 flash has an external state machine for programming and erase functions. See the flash read and flash program and erase sections of this document. flash protection keys The VF3x8x device provides flash protection keys. These four 32-bit protection keys prevent program/erase/ compaction operations from occurring until after the four protection keys have been matched by the CPU loading the correct user keys into the FMPKEY control register. The protection keys on both VF338x and VF348x are located in the last 4 words of the first 8K sector. For more detailed information on the flash protection keys and the FMPKEY control register, see the Optional Quadruple Protection Keys and Programming the Protection Keys portions of the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 13 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 FLASH read The VF3x8x flash memory is configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The flash is addressed through memory selects 0 and 1. Note: The flash external pump voltage (VCCP) is required for all operations (program, erase, and read). flash pipeline mode When in pipeline mode, the flash operates with a system clock frequency of up to 48 MHz (versus a system clock in normal mode of up to 24 MHz). Flash in pipeline mode is capable of accessing 64-bit words and provides two 32-bit pipelined words to the CPU. Also in pipeline mode, the flash can be read with no wait states when memory addresses are contiguous (after the initial 1-or 2-wait-state reads). Note: After a system reset, pipeline mode is disabled (ENPIPE bit [FMREGOPT.0] is a 0). In other words, the VF3x8x device powers up and comes out of reset in non-pipeline mode. Furthermore, setting the flash configuration mode bit (GLBCTRL.4) will override pipeline mode. flash program and erase The VF3x8x device flash has one 256K-byte bank that consists of fourteen sectors. These fourteen sectors are sized as follows: SECTOR NO. SEGMENT LOW ADDRESS HIGH ADDRESS 0 8K Bytes 0x00000000 0x00001FFF 1 8K Bytes 0x00002000 0x00003FFF 2 8K Bytes 0x00004000 0x00005FFF 3 8K Bytes 0x00006000 0x00007FFF 4 32K Bytes 0x00008000 0x0000FFFF 5 32K Bytes 0x00010000 0x00017FFF 6 32K Bytes 0x00018000 0x0001FFFF 7 32K Bytes 0x00020000 0x00027FFF 8 32K Bytes 0x00028000 0x0002FFFF 0x00037FFF 9 32K Bytes 0x00030000 10 8K Bytes 0x00038000 0x00039FFF 11 8K Bytes 0x0003A000 0x0003BFFF 12 8K Bytes 0x0003C000 0x0003DFFF 13 8K Bytes 0x0003E000 0x0003FFFF The minimum size for an erase operation is one sector. The maximum size for a program operation is one 16-bit word. Note: The flash external pump voltage (VCCP) is required for all operations (program, erase, and read). For more detailed information on flash program and erase operations, see the TMS470R1x F05 Flash Reference Guide (literature number SPNU213). HET RAM The VF3x8x device contains HET RAM. The HET RAM has a 64-instruction capability. The HET RAM is configurable by the SYS module to be addressed within the range of 0x0000_0000 to 0xFFE0_0000. The HET RAM is addressed through memory select 4. XOR share The VF3x8x HET peripheral contains the XOR-share feature. This feature allows two adjacent HET highresolution channels to be XORed together, making it possible to output smaller pulses than a standard HET. For more detailed information on the HET XOR-share feature, see the TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199). 14 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 peripheral selects and base addresses The VF3x8x device uses ten of the sixteen peripheral selects to decode the base addresses of the peripherals. These peripheral selects are fixed and transparent to the user since they are part of the decoding scheme used by the SYS module. Control registers for the peripherals, SYS module, and flash begin at the base addresses shown in Table 3. Table 3. Peripherals, System Module, and Flash Base Addresses CONNECTING MODULE ADDRESS RANGE BASE ADDRESS ENDING ADDRESS PERIPHERAL SELECTS SYSTEM 0XFFFF_FD00 0XFFFF_FFFF RESERVED 0XFFF8_0000 0XFFFF_FCFF N/A HET 0XFFF7_FC00 0XFFF7_FFFF PS[0] PS[1] SPI1 0XFFF7_F800 0XFFF7_FBFF SCI2 0XFFF7_F500 0XFFF7_F7FF SCI1 0XFFF7_F400 0XFFF7_F4FF N/A PS[2] ADC 0XFFF7_F000 0XFFF7_F3FF GIO/ECP 0XFFF7_EC00 0XFFF7_EFFF PS[3] PS[4] RESERVED 0XFFF7_E400 0XFFF7_EBFF PS[5] - PS[6] SCC 0XFFF7_E000 0XFFF7_E3FF PS[7] SCC RAM 0XFFF7_DC00 0XFFF7_DFFF PS[8] RESERVED 0XFFF7_D800 0XFFF7_DBFF PS[9] SPI2 0XFFF7_D400 0XFFF7_D7FF PS[10] RESERVED 0XFFF7_CC00 0XFFF7_D3FF PS[11] - PS[12] C2SIb 0XFFF7_C800 0XFFF7_CBFF PS[13] RESERVED 0XFFF7_C000 0XFFF7_C7FF PS[14] - PS[15] RESERVED 0XFFF0_0000 0XFFF7_BFFF N/A FLASH CONTROL REGISTERS 0XFFE8_8000 0XFFE8_BFFF N/A MPU CONTROL REGISTERS 0XFFE8_4000 0XFFE8_4023 N/A POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 15 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 interrupt priority The central interrupt manager (CIM) portion of the SYS module manages the interrupt requests from the device modules (i.e., SPI1 or SPI2, SCI1 or SCI2, and RTI, etc.). Although the CIM can accept up to 32 interrupt request signals, the VF3x8x device only uses 21 of those interrupt request signals. The request channels are maskable so that individual channels can be selectively disabled. All interrupt requests can be programmed in the CIM to be of either type: z Fast interrupt request (FIQ) z Normal interrupt request (IRQ) The precedences of request channels decrease with ascending channel order in the CIM (0 [highest] and 31 [lowest] priority). For these channel priorities and the associated modules, see Table 4. Table 4. Interrupt Priority MODULES INTERRUPT SOURCES SPI1 end-transfer/overrun 0 RTI COMP2 interrupt 1 RTI COMP1 interrupt 2 RTI TAP interrupt 3 SPI2 SPI2 end-transfer/overrun 4 GIO Interrupt A 5 RESERVED HET 6 Interrupt 1 7 RESERVED SCI1/SCI2 8 SCI1/SCI2 error interrupt 9 SCI1 SCI1 receive interrupt 10 C2SIb C2SIb interrupt 11 RESERVED 12 RESERVED SCC 13 Interrupt A 14 MibADC End event conversion 16 SCI2 SCI2 receive interrupt 17 RESERVED 15 RESERVED 18 RESERVED SCI1 System 19 SCI1 transmit interrupt 20 SW interrupt (SSI) 21 RESERVED HET 22 Interrupt 2 23 RESERVED 24 SCC Interrupt B SCI2 SCI2 transmit interrupt 26 End Group 1 conversion 27 MibADC 25 RESERVED GIO MibADC 28 Interrupt B 29 End Group 2 conversion 30 RESERVED 16 INTERRUPT LEVEL/CHANNEL SPI1 31 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 MibADC The multi-buffered analog-to-digital converter (MibADC) accepts an analog signal and converts the signal to a 10-bit digital value. The VF3x8x MibADC module can function in two modes: compatibility mode, where it’s programmer’s model is compatible with the TMS470R1x ADC module and its digital results are stored in digital result registers; or in buffered mode, where the digital result registers are replaced with three FIFO buffers, one for each conversion group [event, group1 (G1), and group2 (G2)]. In buffered mode, the MibADC buffers can be serviced by interrupts. MibADC event trigger enhancements The MibADC includes two major enhancements over the event-triggering capability of the TMS470R1x ADC. z Both group1 and the event group can be configured for event-triggered operation, providing up to two eventtriggered groups. z The trigger source and polarity can be selected individually for both group 1 and the event group from the three options identified in Table 5. Table 5. MibADC Event Hookup Configuration SOURCE SELECT BITS FOR G1 OR EVENT (G1SRC[1:0] or EVSRC[1:0]) SIGNAL PIN NAME EVENT1 00 ADEVT EVENT2 01 HET18 EVENT3 10 HET19 EVENT4 11 RESERVED EVENT # For group 1, these event-triggered selections are configured via the group 1 source select bits (G1SRC[1:0]) in the AD event source register (ADEVTSRC.[5:4]). For the event group, these event-triggered selections are configured via the event group source select bits (EVSRC[1:0]) in the AD event source register (ADEVTSRC.[1:0]). For more detailed functional information on the MibADC, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 17 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 development system support Texas Instruments provides extensive hardware and software development support tools for the TMS470R1x family. These support tools include: z Code Composer Studio™ IDE – – – z Optimizing C compiler – – – – – – – z Provides extensive macro capability Allows high-speed operation Allows extensive control of the assembly process using assembler directives Automatically resolves memory references as C and assembly modules are combined TMS470R1x CPU Simulator – – – z Supports high-level language programming Full implementation of the standard ANSI C language Powerful optimizer that improves code-execution speed and reduces code size Extensive run-time support library included TMS470R1x control registers easily accessible from the C program Interfaces C functions and assembly functions easily Establishes comprehensive, easy-to-use tool set for the development of high-performance microcontroller applications in C/C++ Assembly language tools (assembler and linker) – – – – z Fully integrated suite of software development tools Includes Compiler/Assembler/Linker, Debugger, and Simulator Supports Real-Time analysis, data visualization, and open API Provides capability to simulate CPU operation without emulation hardware Allows inspection and modifications of memory locations Allows debugging programs in C or assembly language XDS emulation communication kits – Allow high-speed JTAG communication to the TMS470R1x emulator or target board For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. Code Composer Studio is a trademark of Texas Instruments. 18 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 documentation support Extensive documentation supports all of the TMS470 microcontroller family generation of devices. The types of documentation available include: data sheets with design specifications; complete user’s guides for all devices and development support tools; and hardware and software applications. Useful reference documentation includes: z z User’s Guides – TMS470R1x 32-Bit RISC Microcontroller Family User’s Guide (literature number SPNU134) – TMS470R1x C/C++ Compiler User’s Guide (literature number SPNU151) – TMS470R1x Code Generation Tools Getting Started Guide (literature number SPNU117) – TMS470R1x C Source Debugger User’s Guide (literature number SPNU124) – TMS470R1x Assembly Language Tools User’s Guide (literature number SPNU118) – TMS470R1x System Module Reference Guide (literature number SPNU189) – TMS470R1x Serial Peripheral Interface (SPI) Reference Guide (literature number SPNU195) – TMS470R1x Serial Communication Interface (SCI) Reference Guide (literature number SPNU196) – TMS470R1x Controller Area Network (CAN) Reference Guide (literature number SPNU197) – TMS470R1x High-End Timer (HET) Reference Guide (literature number SPNU199) – TMS470R1x External Clock Prescale (ECP) Reference Guide (literature number SPNU202) – TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206) – TMS470R1x Zero-Pin Phase-Locked Loop (ZPLL) Clock Module Reference Guide (literature number SPNU212) – TMS470R1x F05 Flash Reference Guide (literature number SPNU213) – TMS470R1x Class II Serial Interface B (C2SIb) Reference Guide (literature number SPNU214) Application Reports: – Analog Watchdog Resistor, Capacitor and Discharge Interval Selection Constraints (literature number SPNA005) – F05/C05 Power Up Reset and Power Sequencing Requirements (literature number SPNA009) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 19 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 device numbering conventions Figure 2 illustrates the numbering and symbol nomenclature for the TMS470R1x family. TMS 470 R1 V F 33 8 2 PZ Q Prefix: TMS = Standard Prefix for Fully Qualified Devices Family: 470 = TMS470 RISC-Embedded Microcontroller Family V = 1.8-V Core Voltage Program Memory Types: CPU Type: Device Type: Program Memory Size C F L B R = = = = = Masked ROM Flash ROM-less System Emulator for Development Tools RAM R1 = ARM7TDMI CPU 33 = ’33 Devices Containing the Following Modules: – ZPLL Clock – 1K-Byte HET RAM (64 Instructions) – Analog Watchdog (AWD) – Real-Time Interrupt (RTI) – 10-Bit, 12-Input Multi-buffered Analog-to-Digital Converter (MibADC)† – Two Serial Peripheral Interface (SPI) Modules – Two Serial Communications Interface (SCI) Modules – Class II Serial Interface (C2SIb) – Standard Controller Area Network (CAN) [SCC] – High-End Timer (HET) – External Clock Prescaler (ECP) 8 = 0 – No on-chip program memory 1–5 – 1 to < 128K Bytes 6–B – 128K Bytes to < 1M Bytes C–F – > 1M Bytes Device Sub-type 2 = Blank = 2 Operating Free-Air Temperature Ranges: Package: A = T = Q = – 10 KB SRAM – 12 KB SRAM –40°C to 85°C –40°C to 105°C –40°C to 125°C PZ = 100-Pin Plastic Low-Profile Quad Flatpack (LQFP) † The VF348x device contains a 10-bit, 16-input MibADC. Figure 2. TMS470R1x Family Nomenclature 20 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 device identification code register The device identification code register identifies the silicon version, the technology family (TF), a ROM or flash device, and an assigned device-specific part number (see Table 6). The VF3x8x device identification code register value is 0x0857. Table 6. TMS470 Device ID Bit Allocation Register BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 BIT 16 6 5 4 3 2 1 BIT 0 Reserved FFFF_FFF0 BIT 15 LEGEND: For bits 3–15: For bits 0–2: 14 13 12 11 10 9 8 7 VERSION TF R/F PART NUMBER 1 1 1 R-K R-K R-K R-K R-1 R-1 R-1 R = Read only, -K = Value constant after RESET R = Read only, -1 = Value after RESET Bits 31:16 Reserved. Reads are undefined and writes have no effect. Bits 15:12 VERSION. Silicon version (revision) bits These bits identify what version of silicon the device is. Initial device version numbers start at "0000". Bit 11 TF. Technology Family (TF) bit This bit distinguishes the technology family core power supply: 0 = 3.3 V for F10/C10 devices 1 = 1.8 V for F05/C05 devices Bit 10 R/F. ROM/flash bit This bit distinguishes between ROM and flash devices: 0 = Flash device 1 = ROM device Bits 9:3 PART NUMBER. Device-specific part number bits These bits identify the assigned device-specific part number. The assigned device-specific part number for the VF3x8x device is: 0001010. Bits 2:0 "1" Mandatory High. Bits 2,1, and 0 are tied high by default. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 21 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 device part numbers Table 7 lists all the available TMS470R1VF3x8x devices. Table 7. Device Part Number† DEVICE PART NUMBER TMS470R1VF338PZQ PROGRAM MEMORY ROM PACKAGE FLASH EEPROM 100-PIN LQFP X X TMS470R1VF338PZ-T X X TMS470R1VF338PZA X X TMS470R1VF348PZQ X X TMS470R1VF348PZ-T X X TMS470R1VF348PZA X X TMS470R1VF338APZQ X X TMS470R1VF338APZ-T X X TMS470R1VF338APZA X X TMS470R1VF348APZQ X X TMS470R1VF348APZ-T X X TMS470R1VF348APZA X X TMS470R1VF338EPZQ X X TMS470R1VF338EPZ-T X X TMS470R1VF338EPZA X X TMS470R1VF348EPZQ X X TMS470R1VF348EPZ-T X X TMS470R1VF348EPZA X X TMS470R1VF3382APZQ X X TMS470R1VF3382APZ-T X X TMS470R1VF3382APZA X X TMS470R1VF3482APZQ X X TMS470R1VF3482APZ-T X X TMS470R1VF3482APZA X X TMS470R1VF3382EPZQ X X TMS470R1VF3382EPZ-T X X TMS470R1VF3382EPZA X X TMS470R1VF3482EPZQ X X TMS470R1VF3482EPZ-T X X TMS470R1VF3482EPZA X X TEMPERATURE RANGES −40°C TO 85°C −40°C TO 105°C −40°C TO 125°C X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X † The various part numbers listed in this table differ due to differences in either electrical specifications or functional errata. Electrical differences will be noted in this datasheet. For functional errata, see the errata document for the specific part number you are using. 22 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 DEVICE ELECTRICAL SPECIFICATIONS AND TIMING PARAMETERS absolute maximum ratings over operating free-air temperature range, Q version (unless otherwise noted)† Supply voltage ranges: VCC , VCCF (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 2.5 V Supply voltage ranges: VCCIO , VCCAD , VCCP (flash pump) (see Note 1) . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1V Input voltage range: All input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Input clamp current: IIK (VI < 0 or VI > VCCIO) All pins except ADIN[0:11]‡, PORRST, TRST, TEST and TCK . . . . . . . . . . . . . . ±20 mA IIK (VI < 0 or VI > VCCAD) ADIN[0:11]‡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Operating free-air temperature ranges, TA: A version (VF348x) . . . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 85°C T version (VF348x) . . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 105°C Q version (VF338x). . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 125°C Operating junction temperature range, TJ A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 115°C T version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 40°C to 130°C Q version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−40°C to 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .−65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ‡ ADIN[0:11] for VF338x only and ADIN[0:15] for VF348x only. NOTE 1: All voltage values are with respect to their associated grounds. device recommended operating conditions§ MIN − 40C to 125C 1.81 − 40C to 85C (VF3x8xE only) 1.70 NOM MAX UNIT 2.06 V VCC Digital logic supply voltage (Core) 2.06 V VCCIO Digital logic supply voltage (I/O) 3 3.3 3.6 V VCCAD ADC supply voltage 3 3.3 3.6 V VCCP Flash pump supply voltage 3 3.3 3.6 V VSS Digital logic supply ground VSSAD ADC supply ground TA TJ Operating free-air temperature Operating junction temperature 0 V − 0.1 0.1 V A version (VF348x) − 40 85 °C T version (VF348x) − 40 105 °C Q version (VF338x) − 40 125 °C A version − 40 115 °C T version − 40 130 °C Q version − 40 150 °C § All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 23 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 electrical characteristics over recommended operating free-air temperature range, Q version (unless otherwise noted)† PARAMETER Vhys TEST CONDITIONS Input hysteresis All inputs‡ except OSCIN VIL Low-level input voltage VIH High-level input voltage Vth Input threshold voltage AWD only RDSON Drain to source on resistance AWD only§ VOL Low-level output voltage¶ VOH High-level output voltage¶ IIC Input clamp current (I/O pins)# II IOL IOH Input current (I/O pins) Low-level output current High-level output current MIN MAX 0.15 OSCIN only 0.8 − 0.3 0.35 VCC 2 0.65 VCC 1.35 VOL = 0.35V @ IOL = 8mA IOL = IOL MAX IOH = 50 μA VCCIO + 0.3 V 45 Ω 0.8 VCCIO VI < VSSIO − 0.3 or VI > VCCIO + 0.3 −2 2 −1 1 IIL Pulldown VI = VSS IIH Pulldown VI = VCCIO 5 40 IIL Pullup VI = VSS −40 −5 IIH Pullup VI = VCCIO −1 1 All other pins No pullup or pulldown −1 1 CLKOUT, AWD, TDO VOL = VOL MAX 8 RST, SPI1CLK, SPI1SIMO, SPI1SOMI, SPI2CLK, SPI2SIMO, SPI2SOMI VOL = VOL MAX 4 All other output pins|| VOL = VOL MAX 2 VOH = VOH MIN −8 VOH = VOH MIN −4 All other output pins|| VOH = VOH MIN −2 V V VCCIO − 0.2 CLKOUT, TDO V 1.8 0.2 SPI1CLK, SPI1SIMO, SPI1SOMI, SPI2CLK, SPI2SIMO, SPI2SOMI V VCC + 0.3 0.2 VCCIO IOL = 50 μA IOH = IOH MIN V − 0.3 All inputs except OSCIN OSCIN only UNIT mA μA mA mA † Source currents (out of the device) are negative while sink currents (into the device) are positive. ‡ This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section on page 31. § These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide (literature number SPNU189). ¶ VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied. # Parameter does not apply to input-only or output-only pins. || The 2 mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the resulting value will always be low. ,For flash pumps/banks in sleep mode. I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤ 0.2 V. All pullup inputs ≥ VCCIO − 0.2 V. 24 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 electrical characteristics over recommended operating free-air temperature range, Q version (unless otherwise noted) (continued)† PARAMETER MAX UNIT SYSCLK = 48 MHz, ICLK = 24 MHz, VCC = 2.06 V TEST CONDITIONS 70 mA SYSCLK = 24 MHz, ICLK = 12 MHz, VCC = 2.06 V 50 mA VCC digital supply current (standby mode)K OSCIN = 6 MHz, VCC = 2.06 V 3.0 mA VCC digital supply current (halt mode)K All frequencies, VCC = 2.06 V 1.0 mA VCCIO digital supply current (operating mode) No DC load, VCCIO = 3.6 Vo 10 mA VCCIO digital supply current (standby mode) No DC load, VCCIO = 3.6 Vo 300 μA VCCIO digital supply current (halt mode) No DC load, VCCIO = 3.6 Vo 300 μA VCC digital supply current (operating mode) ICC ICCIO ICCAD ICCP MIN TYP VCCAD supply current (operating mode) All frequencies, VCCAD = 3.6 V 15 mA VCCAD supply current (standby mode) All frequencies, VCCAD = 3.6 V 20 μA VCCAD supply current (halt mode) All frequencies, VCCAD = 3.6 V 20 μA VCCP = 3.6 V read operation 45 mA VCCP = 3.6 V program and erase 70 mA 20 μA 20 μA VCCP pump supply current VCCP = 3.6 V standby mode operationK VCCP = 3.6 V halt mode operationK CI Input capacitance 2 pF CO Output capacitance 3 pF † Source currents (out of the device) are negative while sink currents (into the device) are positive. ‡ This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST timings section on page 31. § These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide (literature number SPNU189). ¶ VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied. ¶ Parameter does not apply to input-only or output-only pins. || The 2 mA buffers on this device are called zero-dominant buffers. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the resulting value will always be low. ,For flash pumps/banks in sleep mode. I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤ 0.2 V. All pullup inputs ≥ VCCIO − 0.2 V. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 25 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 PARAMETER MEASUREMENT INFORMATION IOL Tester Pin Electronics 50 Ω VLOAD Output Under Test CL IOH Where: IOL = IOL MAX for the respective pin (see Note A) = IOH MIN for the respective pin (see Note A) IOH VLOAD = 1.5 V = 150-pF typical load-circuit capacitance (see Note B) CL NOTES: A. For these values, see the electrical characteristics over recommended operating free-air temperature range table. B. All timing parameters measured using an external load capacitance of 150 pF unless otherwise noted. Figure 3. Test Load Circuit 26 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 timing parameter symbology Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows: CM CO ER ICLK M OSC, OSCI OSCO P R R0 R1 Compaction, CMPCT CLKOUT Erase Interface clock Master mode OSCIN OSCOUT Program, PROG Ready Read margin 0, RDMRGN0 Read margin 1, RDMRGN1 RD RST RX S SCC SIMO SOMI SPC SYS TX Read Reset, RST SCInRX Slave mode SCInCLK SPInSIMO SPInSOMI SPInCLK System clock SCInTX r su t v w rise time setup time transition time valid time pulse duration (width) Lowercase subscripts and their meanings are: a c d f h access time cycle time (period) delay time fall time hold time The following additional letters are used with these meanings: H High X L V Low Valid Z POST OFFICE BOX 1443 Unknown, changing, or don’t care level High impedance • HOUSTON, TEXAS 77251-1443 27 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 external reference resonator/crystal oscillator clock option The oscillator is enabled by connecting the appropriate fundamental 4–20 MHz resonator/crystal and load capacitors across the external OSCIN and OSCOUT pins as shown in Figure 4a. The oscillator is a singlestage inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and HALT mode. TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temperature/voltage extremes. An external oscillator source can be used by connecting a 1.8V clock signal to the OSCIN pin and leaving the OSCOUT pin unconnected (open) as shown in Figure 4b. OSCIN C1 (see Note A) OSCOUT Crystal OSCIN C2 (see Note A) External Clock Signal (toggling 0–1.8 V) (a) (b) NOTE A: The values of C1 and C2 should be provided by the resonator/crystal vendor. Figure 4. Crystal/Clock Connection 28 OSCOUT POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 ZPLL and clock specifications timing requirements for ZPLL circuits enabled or disabled MIN MAX UNIT 4 20 MHz f(OSC) Input clock frequency tc(OSC) Cycle time, OSCIN 50 ns tw(OSCIL) Pulse duration, OSCIN low 15 ns tw(OSCIH) Pulse duration, OSCIN high 15 ns f(OSCRST) OSC FAIL frequency† 53 kHz † Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1) bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide (literature number SPNU189). switching characteristics over recommended operating conditions for clocks‡§ PARAMETER f(SYS) System clock frequency# f(CONFIG) System clock frequency - flash config mode f(ICLK) f(ECLK) Interface clock frequency External clock output frequency for ECP Module tc(SYS) Cycle time, system clock tc(CONFIG) Cycle time, system clock - flash config mode tc(ICLK) tc(ECLK) Cycle time, interface clock Cycle time, ECP module external clock output TEST CONDITIONS¶ MAX UNIT Pipeline mode enabled MIN 48 MHz Pipeline mode disabled 24 MHz 24 MHz Pipeline mode enabled 25 MHz Pipeline mode disabled 24 MHz Pipeline mode enabled 25 MHz 24 MHz Pipeline mode disabled Pipeline mode enabled 20.8 ns Pipeline mode disabled 41.6 ns 41.6 ns Pipeline mode enabled 40 ns Pipeline mode disabled 41.6 ns Pipeline mode enabled 40 ns Pipeline mode disabled 41.6 ns ‡ f(SYS) = M × f(OSC) / R, where M = {4 or 8}, R = {1,2,3,4,5,6,7,8} when PLLDIS = 0. R is the system-clock divider determined by the CLKDIVPRE [2:0] bits in the global control register (GLBCTRL.[2:0]) and M is the PLL multiplier determined by the MULT4 bit also in the GLBCTRL register (GLBCTRL.3). f(SYS) = f(OSC) / R, where R = {1,2,3,4,5,6,7,8} when PLLDIS = 1. f(ICLK) = f(SYS) / X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0.[4:1] bits in the SYS module. § f(ECLK) = f(ICLK) / N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL.[7:0] register bits in the ECP module ¶ Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0). # Flash Vread must be set to 5V to achieve maximum System Clock Frequency. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 29 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 ZPLL and clock specifications (continued) switching characteristics over recommended operating conditions for external clocks (see Figure 5 and Figure 6)†‡§ NO. PARAMETER TEST CONDITIONS SYSCLK or MCLK 1 tw(COL) Pulse duration, CLKOUT low MIN 0.5tc(ICLK) – tf ICLK, X is even or 1# ICLK, X is odd and not 1# tw(COH) Pulse duration, CLKOUT high ICLK, X is even or 0.5tc(ICLK) – tr ICLK, X is odd and not 1 3 4 tw(EOH) Pulse duration, ECLK low Pulse duration, ECLK high ns 0.5tc(SYS) – tr 1# # tw(EOL) UNIT 0.5tc(ICLK) + 0.5tc(SYS) – tf SYSCLK or MCLK¶ 2 MAX 0.5tc(SYS) – tf ¶ N is even and X is even or odd 0.5tc(ECLK) – tf N is odd and X is even 0.5tc(ECLK) – tf N is odd and X is odd and not 1 0.5tc(ECLK) + 0.5tc(SYS) – tf N is even and X is even or odd 0.5tc(ECLK) – tr 0.5tc(ECLK) – tr N is odd and X is even N is odd and X is odd and not 1 ns 0.5tc(ICLK) – 0.5tc(SYS) – tr ns ns 0.5tc(ECLK) – 0.5tc(SYS) – tr † X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0.[4:1] bits in the SYS module. ‡ N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL.[7:0] register bits in the ECP module. § CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active. ¶ Clock source bits selected as either SYSCLK (CLKCNTL.[6:5] = 11 binary) or MCLK (CLKCNTL.[6:5] = 10 binary). # Clock source bits selected as ICLK (CLKCNTL.[6:5] = 01 binary). 2 CLKOUT 1 Figure 5. CLKOUT Timing Diagram 4 ECLK 3 Figure 6. ECLK Timing Diagram 30 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 RST and PORRST timings timing requirements for PORRST (see Figure 7) MIN NO. MAX UNIT VCCPORL VCC low supply level when PORRST must be active during power up VCCPORH VCC high supply level when PORRST must remain active during power up and become active during power down VCCIOPORL VCCIO low supply level when PORRST must be active during power up VCCIOPORH VCCIO high supply level when PORRST must remain active during power up and become active during power down VIL Low-level input voltage after VCCIO > VCCIOPORH VIL(PORRST) Low-level input voltage of PORRST before VCCIO > VCCIOPORL 3 tsu(PORRST)r Setup time, PORRST active before VCCIO > VCCIOPORL during power up 0 ms 5 tsu(VCCIO)r Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL 0 ms 6 th(PORRST)r Hold time, PORRST active after VCC > VCCPORH 1 ms 0.6 1.5 V V 1.1 2.75 V V 0.2 VCCIO V 0.5 V 7 tsu(PORRST)f Setup time, PORRST active before VCC ≤ VCCPORH during power down 8 μs 8 th(PORRST)rio Hold time, PORRST active after VCC > VCCIOPORH 1 ms 9 th(PORRST)d Hold time, PORRST active after VCC < VCCPORL 0 ms 10 tsu(PORRST)fio Setup time, PORRST active before VCC ≤ VCCIOPORH during power down 0 ns 11 tsu(VCCIO)f Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL 0 ns VCCP/VCCIO VCC VCCIOPORH VCCPORH 6 VCCIOPORL 11 VCC 7 6 VCCPORL VCC 5 VCCP/VCCIO 3 PORRST VCCIOPORH VCCIO 8 VCCPORH 10 7 VCCPORL VCCIOPORL 9 VIL(PORRST) VIL VIL VIL VIL VIL(PORRST) Figure 7. PORRST Timing Diagram switching characteristics over recommended operating conditions for RST† PARAMETER tv(RST) tfsu MIN 4112tc(OSC) Valid time, RST active after PORRST inactive 8tc(SYS) Valid time, RST active (all others) Flash start up time, from RST inactive to fetch of first instruction from flash (flash pump stabilization time) 456tc(OSC) MAX UNIT ns ns † Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 31 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 JTAG scan interface timing (JTAG clock specification 10-MHz and 50-pF load on TDO output) MIN NO. UNIT 1 Cycle time, JTAG low and high period 50 ns 2 tsu(TDI/TMS - TCKr) Setup time, TDI, TMS before TCK rise (TCKr) 15 ns 3 th(TCKr -TDI/TMS) Hold time, TDI, TMS after TCKr 15 ns 4 th(TCKf -TDO) Hold time, TDO after TCKf 10 ns 5 td(TCKf -TDO) Delay time, TDO valid after TCK fall (TCKf) 45 TCK 1 1 TMS TDI 2 3 TDO 4 5 Figure 8. JTAG Scan Timing 32 MAX tc(JTAG) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 ns TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 output timings switching characteristics for output timings versus load capacitance (CL) (see Figure 9) MIN PARAMETER tr tf tr tf tr tf Rise time, CLKOUT, AWD, TDO Fall time, CLKOUT, AWD, TDO Rise time, SPInCLK, SPInSOMI, SPInSIMO† Fall time, RST, SPInCLK, SPInSOMI, SPInSIMO† Rise time, all other output pins Fall time, all other output pins MAX UNIT CL = 15 pF 0.5 2.50 CL = 50 pF 1.5 5 CL = 100 pF 3 9 CL = 150 pF 4.5 12.5 CL = 15 pF 0.5 2.5 CL = 50 pF 1.5 5 CL = 100 pF 3 9 CL = 150 pF 4.5 12.5 CL = 15 pF 2.5 8 CL = 50 pF 5 14 CL = 100 pF 9 23 CL = 150 pF 13 32 CL = 15 pF 2.5 8 CL= 50 pF 5 14 CL = 100 pF 9 23 CL = 150 pF 13 32 CL = 15 pF 2.5 10 CL = 50 pF 6.0 25 CL = 100 pF 12 45 CL = 150 pF 18 65 CL = 15 pF 3 10 CL = 50 pF 8.5 25 CL = 100 pF 16 45 CL = 150 pF 23 65 ns ns ns ns ns ns † n = 1 and 2 tr tf 80% Output 20% VCC 80% 20% 0 Figure 9. CMOS-Level Outputs POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 33 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 input timings timing requirements for input timings† (see Figure 10) MIN tpw tc(ICLK) + 10 Input minimum pulse width † tc(ICLK) = interface clock cycle time = 1/f(ICLK) tpw Input 80% 20% VCC 80% 20% Figure 10. CMOS-Level Inputs 34 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 0 MAX UNIT ns TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 flash timings timing requirements for program flash† tprog(16-bit) Half word (16-bit) programming time tprog(Total) 256K-byte programming terase(sector) Sector erase time twec Write/erase cycles at TA = 125°C tfp(RST) MIN TYP MAX UNIT 4 16 200 μs 2 8 s time‡ 2 15 s 100 cycles Flash pump settling time from RST to SLEEP 91tc(SYS) ns tfp(SLEEP) Initial flash pump settling time from SLEEP to STANDBY 91tc(SYS) ns tfp(STDBY) Initial flash pump settling time from STANDBY to ACTIVE 46tc(SYS) ns † For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet. ‡ The 256K-byte programming times include overhead of state machine. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 35 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn master mode timing parameters SPIn master mode external timing parameters (CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)†‡§ (see Figure 11) NO. 1 2# 3# MIN tc(SPC)M 6 MAX 100 256tc(ICLK) 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – tr tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0) 10 td(SPCL-SIMO)M Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1) 10 tv(SPCL-SIMO)M Valid time, SPInSIMO data valid tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0) 6 tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1) 6 tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0) 4 tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1) 4 4# 5# Cycle time, SPInCLK ¶ # 7# UNIT ns ns ns ns tc(SPC)M – 5 – tr/f ns ns ns † The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared. ‡ tc(ICLK) = interface clock cycle time = 1/f(ICLK) § For rise and fall timings, see the “switching characteristics for output timings versus load capacitance” table. ¶ When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0: tc(SPC)M = 2tc(ICLK) ≥ 100 ns. # The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). 36 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn master mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSIMO Master Out Data Is Valid 6 7 SPInSOMI Master In Data Must Be Valid Figure 11. SPIn Master Mode External Timing (CLOCK PHASE = 0) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 37 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn master mode timing parameters (continued) SPIn master mode external timing parameters (CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)†‡§ (see Figure 12) MIN MAX UNIT 100 256tc(ICLK) ns Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCL)M NO. 1 2# 3# 4 tc(SPC)M Cycle time, SPInCLK tw(SPCH)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5 tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5 tv(SIMO-SPCH)M Valid time, SPInCLK high after SPInSIMO data valid (clock polarity = 0) 0.5tc(SPC)M – 10 tv(SIMO-SPCL)M Valid time, SPInCLK low after SPInSIMO data valid (clock polarity = 1) 0.5tc(SPC)M – 10 tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – 5 – tr tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – 5 – tf tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 0) 6 tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 1) 6 tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) 4 tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) 4 # 5# 6# 7 ¶ # ns ns ns ns ns ns † The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set. ‡ tc(ICLK) = interface clock cycle time = 1/f(ICLK) § For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. ¶ When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0: tc(SPC)M = 2tc(ICLK) ≥ 100 ns. # The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). 38 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn master mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSIMO Master Out Data Is Valid Data Valid 6 7 SPInSOMI Master In Data Must Be Valid Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 1) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 39 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn slave mode timing parameters SPIn slave mode external timing parameters (CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)†‡§¶ (see Figure 13) NO. 1 4 5 MAX UNIT ns Cycle time, SPInCLK 100 256tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) td(SPCH-SOMI)S Delay time, SPInCLK high to SPInSOMI valid (clock polarity = 0) 6 + tr td(SPCL-SOMI)S Delay time, SPInCLK low to SPInSOMI valid (clock polarity = 1) 6 + tf tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) tc(SPC)S – 6 – tr tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) tc(SPC)S – 6 – tf tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low (clock polarity = 0) 6 tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high (clock polarity = 1) 6 tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0) 6 tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1) 6 2|| 3 MIN tc(SPC)S || || || 6|| 7|| # ns ns ns ns ns ns † The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared. ‡ If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1.[12:5]. § For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. ¶ tc(ICLK) = interface clock cycle time = 1/f(ICLK) # When the SPIn is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0: tc(SPC)S = 2tc(ICLK) ≥ 100 ns. || The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). 40 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn slave mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSOMI SPISOMI Data Is Valid 6 7 SPInSIMO SPISIMO Data Must Be Valid Figure 13. SPIn Slave Mode External Timing (CLOCK PHASE = 0) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 41 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn slave mode timing parameters (continued) SPIn slave mode external timing parameters (CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)†‡§¶ (see Figure 14) NO. 1 2 MIN MAX UNIT 100 256tc(ICLK) ns Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S –0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK) tv(SOMI-SPCH)S Valid time, SPInCLK high after SPInSOMI data valid (clock polarity = 0) 0.5tc(SPC)S – 6 – tr tv(SOMI-SPCL)S Valid time, SPInCLK low after SPInSOMI data valid (clock polarity = 1) 0.5tc(SPC)S – 6 – tf tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 0) 0.5tc(SPC)S – 6 – tr tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 1) 0.5tc(SPC)S – 6 – tf tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high (clock polarity = 0) 6 tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low (clock polarity = 1) 6 tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 0) 6 tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 1) 6 tc(SPC)S Cycle time, SPInCLK tw(SPCH)S || 3|| 4|| 5|| 6|| 7|| # ns ns ns ns ns ns † The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set. ‡ If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1.[12:5]. § For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. ¶ tc(ICLK) = interface clock cycle time = 1/f(ICLK) # When the SPIn is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1.[12:5] register bits. For PS values of 0: tc(SPC)S = 2tc(ICLK) ≥ 100 ns. || The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1). 42 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SPIn slave mode timing parameters (continued) 1 SPInCLK (clock polarity = 0) 2 3 SPInCLK (clock polarity = 1) 4 5 SPInSOMI SPISOMI Data Is Valid Data Valid 6 7 SPInSIMO SPISIMO Data Must Be Valid Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 1) POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 43 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SCIn isosynchronous mode timings — internal clock timing requirements for internal clock SCIn isosynchronous mode†‡§ (see Figure 15) (BAUD + 1) IS EVEN OR BAUD = 0 NO. (BAUD + 1) IS ODD AND BAUD ≠ 0 UNIT MIN MAX MIN MAX 2tc(ICLK) 224tc(ICLK) 3tc(ICLK) (224 –1) tc(ICLK) 1 tc(SCC) Cycle time, SCInCLK 2 tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) – tf 0.5tc(SCC) + 5 0.5tc(SCC) +0.5tc(ICLK) – tf 0.5tc(SCC) +0.5tc(ICLK) ns 3 tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) – tr 0.5tc(SCC) + 5 0.5tc(SCC) –0.5tc(ICLK) – tr 0.5tc(SCC) –0.5tc(ICLK) ns 4 td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 5 tv(TX) Valid time, SCInTX data after SCInCLK low 6 tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low 7 tv(SCCL-RX) Valid time, SCInRX data - tc(ICLK) + tf + 20 after SCInCLK low 10 10 ns ns tc(SCC) – 10 tc(SCC) – 10 ns tc(ICLK) + tf + 20 tc(ICLK) + tf + 20 ns - tc(ICLK) + tf + 20 ns † BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers. ‡ tc(ICLK) = interface clock cycle time = 1/f(ICLK) § For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. 1 3 2 SCICLK 5 4 Data Valid SCITX 6 7 Data Valid SCIRX NOTE A: Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception on the SCICLK falling edge. Figure 15. SCIn Isosynchronous Mode Timing Diagram For Internal Clock 44 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 SCIn isosynchronous mode timings — external clock timing requirements for external clock SCIn isosynchronous mode†‡ (see Figure 16) NO. MIN MAX 8tc(ICLK) UNIT 1 tc(SCC) Cycle time, SCInCLK 2 tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) – 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns 3 tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) – 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns 4 td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 2tc(ICLK) + 12 + tr ns 5 tv(TX) Valid time, SCInTX data after SCInCLK low 6 tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low 7 tv(SCCL-RX) Valid time, SCInRX data after SCInCLK low § ns 2tc(SCC)–10 ns 0 ns 2tc(ICLK) + 10 ns † tc(ICLK) = interface clock cycle time = 1/f(ICLK) ‡ For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. § When driving an external SCInCLK, the following must be true: tc(SCC) ≥ 8tc(ICLK) 1 2 3 SCICLK 5 4 Data Valid SCITX 6 7 Data Valid SCIRX NOTE A: Data transmission/reception characteristics for isosynchronous mode with external clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception on the SCICLK falling edge. Figure 16. SCIn Isosynchronous Mode Timing Diagram for External Clock POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 45 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 high-end timer (HET) timings minimum PWM output pulse width: This is equal to one High Resolution Clock Period (HRP). The HRP is defined by the 6-bit High Resolution Prescale Factor (hr) which is user defined, giving prescale factors of 1 to 64, with a linear increment of codes. Therefore, the minimum PWM output pulse width = HRP(min) = hr(min)/SYSCLK = 1/SYSCLK For example, for a SYSCLK of 30 MHz, the minimum PWM output pulse width = 1/30 = 33.33ns minimum input pulses we can capture: The input pulse width must be greater or equal to the Low Resolution Clock Period (LRP), i.e., the HET loop (the HET program must fit within the LRP). The LRP is defined by the 3-bit Loop-Resolution Prescale Factor (lr), which is user defined, with a power of 2 increment of codes. That is, the value of lr can be 1, 2, 4, 8, 16, or 32. Therefore, the minimum input pulse width = LRP(min) = hr(min) * lr(min)/SYSCLK = 1 * 1/SYSCLK For example, with a SYSCLK of 30 MHz, the minimum input pulse width = 1 * 1/30 = 33.33 ns Note: Once the input pulse width is greater than LRP, the resolution of the measurement is still HRP. (That is, the captured value gives the number of HRP clocks inside the pulse.) Abbreviations: High resolution clock period = HRP = hr/SYSCLK Loop resolution clock period = LRP = hr*lr/SYSCLK hr = HET high resolution divide rate = 1, 2, 3,...63, 64 lr = HET low resolution divide rate = 1, 2, 4, 8, 16, 32 46 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 standard CAN controller (SCC) mode timings dynamic characteristics for the CANSTX and CANSRX pins PARAMETER TEST CONDITIONS td(CANSTX) Delay time, transmit shift register to CANSTX pin† td(CANSRX) Delay time, CANSRX pin to receive shift register MIN MAX UNIT 15 ns 5 ns † These values do not include rise/fall times of the output buffer. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 47 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 multi-buffered A-to-D converter (MibADC) The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to ADREFLO unless otherwise noted. Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 bits (1024 values) Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assured Output conversion code . . . . . . . . . . . . . . . . . . . . . . . .00h to 3FFh [00 for VAI ≤ADREFLO; 3FF for VAI ≥ ADREFHI] MibADC recommended operating conditions† ADREFHI A-to-D high -voltage reference source ADREFLO A-to-D low-voltage reference source VAI Analog input voltage IAIC MIN MAX UNIT VSSAD VCCAD V VSSAD VCCAD V VSSAD − 0.3 VCCAD + 0.3 V −2 2 mA ‡ Analog input clamp current (VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3) † For VCCAD and VSSAD recommended operating conditions, see the device recommended operating conditions table. ‡ Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels. operating characteristics over full ranges of recommended operating conditions§¶ PARAMETER Analog input resistance See Figure 17 Ci Analog input capacitance See Figure 17 IAIL Analog input leakage current See Figure 17 IADREFHI ADREFHI input current ADREFHI = 3.6 V, ADREFLO = VSSAD CR Conversion range over which specified accuracy is maintained ADREFHI − ADREFLO EDNL Differential nonlinearity error EINL ETOT MIN MAX UNIT 250 500 Ω Conversion 10 pF Sampling 30 pF 1 μA 5 mA –1 3.6 V Difference between the actual step width and the ideal value after offset correction. (See Figure 18) ±2 LSB Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error after offset correction. (See Figure 19) ±2 LSB Total error/Absolute accuracy Maximum value of the difference between an analog value and the ideal midstep value. (See Figure 20) ±2 LSB § VCCIO = VCCAD = ADREFHI ¶ 1 LSB = (ADREFHI – ADREFLO)/210 for the MibADC 48 TYP DESCRIPTION/CONDITIONS Ri POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 3 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 multi-buffered A-to-D converter (MibADC) (continued) External Rs MibADC Input Pin Ri Sample Switch Parasitic Capacitance Vsrc Sample Capacitor Rleak Ci Figure 17. MibADC Input Equivalent Circuit Multi-Buffer ADC timing requirements MIN NOM MAX UNIT 0.05 μs 1 μs 0.55 μs tc(ADCLK) Cycle time, MibADC clock td(SH) Delay time, sample and hold time td(C) Delay time, conversion time Delay time, total sample/hold and conversion time 1.55 μs td(SHC) † † This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors for more detail, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (literature number SPNU206). POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 49 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 multi-buffered A-to-D converter (MibADC) (continued) The differential nonlinearity error shown in Figure 18 (sometimes referred to as differential linearity) is the difference between an actual step width and the ideal value of 1 LSB. 0 ... 110 Digital Output Code 0 ... 101 0 ... 0. .. 100 0 ... 0. .. 011 Differential Linearity Error (1/2 LSB) 1 LSB 0 ... 0. .. 010 0 ... 0. .. 001 Differential Linearity Error (–1/2 LSB) 1 LSB 0 ... 0. .. 000 0 1 2 3 4 Analog Input Value (LSB) 5 NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210 Figure 18. Differential Nonlinearity (DNL) The integral nonlinearity error shown in Figure 19 (sometimes referred to as linearity error) is the deviation of the values on the actual transfer function from a straight line. 0 ... 111 Ideal Transition Digital Output Code 0 ... 110 0 ... 101 Actual Transition 0 ... 100 At Transition 011/100 (– 1/2 LSB) 0 ... 011 0 ... 010 End-Point Lin. Error At Transition 001/010 (– 1/4 LSB) 0 ... 001 0 ... 000 0 1 2 3 4 5 6 Analog Input Value (LSB) NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210 7 Figure 19. Integral Nonlinearity (INL) Error 50 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 multi-buffer A-to-D converter (MibADC) (continued) The absolute accuracy or total error of an MibADC as shown in Figure 20 is the maximum value of the difference between an analog value and the ideal midstep value. 0 ... 111 Digital Output Code 0 ... 110 0 ... 101 0 ... 100 Total Error At Step 0 ... 101 (–1 1/4 LSB) 0 ... 011 0 ... 010 Total Error At Step 0 ... 001 (1/2 LSB) 0 ... 001 0 ... 000 0 1 2 3 4 5 6 Analog Input Value (LSB) NOTE A: 1 LSB = (ADREFHI – ADREFLO)/210 7 Figure 20. Absolute Accuracy (Total) Error POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 51 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 MECHANICAL DATA PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°-7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149/B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 Thermal Resistance Characteristics 52 PARAMETER °C/W RΘJA 51 RΘJC 5 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 List of Figures TMS470R1VF338x 100-Pin PZ Package (TOP VIEW) TMS470R1VF348x 100-Pin PZ Package (TOP VIEW) Functional Block Diagram Figure 1. Memory Map Figure 2. TMS470R1x Family Nomenclature Figure 3. Test Load Circuit Figure 4. Crystal/Clock Connection Figure 5. CLKOUT Timing Diagram Figure 6. ECLK Timing Diagram Figure 7. PORRST Timing Diagram Figure 8. JTAG Scan Timing Figure 9. CMOS-Level Outputs Figure 10. CMOS-Level Inputs Figure 11. SPIn Master Mode External Timing (CLOCK PHASE = 0) Figure 12. SPIn Master Mode External Timing (CLOCK PHASE = 1) Figure 13. SPIn Slave Mode External Timing (CLOCK PHASE = 0) Figure 14. SPIn Slave Mode External Timing (CLOCK PHASE = 1) Figure 15. SCIn Isosynchronous Mode Timing Diagram For Internal Clock Figure 16. SCIn Isosynchronous Mode Timing Diagram for External Clock Figure 17. MibADC Input Equivalent Circuit Figure 18. Differential Nonlinearity (DNL) Figure 19. Integral Nonlinearity (INL) Error Figure 20. Absolute Accuracy (Total) Error Mechanical Data POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 53 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS SPNS077J – NOVEMBER 2001 – REVISED AUGUST 2006 List of Tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. 54 Device Characteristics Memory Selection Assignment Peripherals, System Module, and Flash Base Addresses Interrupt Priority MibADC Event Hookup Configuration TMS470 Device ID Bit Allocation Register Device Part Number POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 TMS470R1VF338, TMS470R1VF348, TMS470R1VF3382, TMS470R1VF3482 16/32-BIT RISC FLASH MICROCONTROLLERS REVISION HISTORY REVISION HISTORY REV J DATE 8/06 NOTES Updates: Page 23, operating junction temperature range broken out into A, T, and Q versions Page 36, timing #5 updated POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443 55 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and application s using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different form or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Interface Logic Power Mgmt Microcontrollers Low Power Wireless Mailing Address: Applications amplifier.ti.com dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www..ti.com/lpw Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video Imaging Wireless www.ti.com/wireless Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2006, Texas Instruments Incorporated