TS321 Low Power Single Operational Amplifier ■ Large output voltage swing: ■ 0 to 3.5V min. (@VCC = 5V) ■ Low supply current: 500µA ■ Low input bias current: 20nA ■ Low input offset voltage: 2mV max. ■ Wide power supply range: ■ Single supply: +3V to +30V ■ Dual supplies: ±1.5V to ±15V ■ Stable with high capacitive loads D SO-8 (Plastic Micropackage L SOT23-5 (Plastic Package) Pin connections (top view) Description The TS321 is intended for cost-sensitive applications where space saving is of great importance. This bipolar op-amp offers the benefits of a reduced component size (SOT23-5 package), with specifications that match (or are better) industry standard devices (like the popular LM358A, LM324, etc.). The TS321 has an input common mode range (Vicm) that includes ground, and therefore can be employed in single supply applications. N.C. 1 8 N.C. Inverting input 2 - 7 VCC+ Non-inverting input 3 + 6 Output 5 N.C. V CC Output 1 V CC 2 Non-inverting input 3 4 5 VCC+ 4 Inverting input Order Codes Part Number Temperature Range TS321ILT TS321ID/IDT TS321AILT TS321AID/AIDT Package Packaging Marking SOT23-5L Tape & Reel K401 SO8 Tube or Tape & Reel 321I SOT23-5L Tape & Reel K402 SO8 Tube or Tape & Reel 321AI SOT23-5L (automotive grade level) Tape & Reel SO-8 (automotive grade level) Tube or Tape & Reel -40°C, +125°C TS321IYLT K406 TS321AIYLT TS321IYD/IYDT TS321AIYD/AIYDT December 2005 Rev. 4 1/12 www.st.com 12 Typical Application Schematics TS321 1 Typical Application Schematics Figure 1. Typical application schematics V CC 6mA 4mA 100mA Q5 Q6 CC Inverting input Q2 Q3 Q1 Q7 Q4 R SC Q11 Non-inverting input Output Q13 Q10 Q8 Q9 Q12 50mA GND 2/12 TS321 Absolute Maximum Ratings 2 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Value Unit Supply Voltage ±16 to 32 V Vi Input Voltage -0.3 to +32 V Vid Differential Input Voltage +32 V VCC Parameter Output Short-circuit Duration - note Iin Input Current - note (1) Infinite (2) Toper Operating Free Air Temperature Range Tstg Storage Temperature Range 50 mA -40 to +125 °C -65 to +150 °C 250 125 °C/W (3) Rthja Thermal Resistance Junction to Ambient SOT23-5 SO8 Rthjc Thermal Resistance Junction to Case SOT23-5 SO8 81 40 °C/W HBM: Human Body Model(4) 300 V 200 V ESD MM: Machine Model(5) 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of VCC . 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. All values are typical. 4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. 3/12 Electrical Characteristics TS321 3 Electrical Characteristics Table 2. Vcc+ = +5V, Vcc- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit 0.5 4 2 5 3 mV Vio Input Offset Voltage (1) Tamb = +25°C TS321A Tmin. ≤ Tamb ≤ Tmax. TS321A Iio Input Offset Current Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 2 30 50 nA Iib Input Bias Current (2) Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax 20 150 200 nA Avd Large Signal Voltage Gain VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 50 25 100 SVR Supply Voltage Rejection Ratio Rs ≤ 10kΩ VCC+ = 5 to 30V Tamb = +25°C 65 110 ICC Supply Current, no load Tamb = +25°C, VCC = +5V VCC = +30V Tmin. ≤ Tamb ≤ Tmax., VCC = +5V VCC = +30 Vicm Common Mode Input Voltage Range (3) VCC = +30V Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 0 0 CMR Common Mode Rejection Ratio Rs ≤ 10kΩ Tamb = +25°C 65 85 Isource Output Current Source Vid = +1V VCC = +15V, Vo = +2V 20 40 Output Sink Current Vid = -1V VCC = +15V, Vo = +2V VCC = +15V, Vo = +0.2V 10 12 20 50 Short Circuit to Ground VCC = +15V High Level Output Voltage VCC = +30V Tamb = +25°C, RL = 2kΩ Tmin. ≤ Tamb ≤ Tmax. Tamb = +25°C, RL = 10kΩ Tmin. ≤ Tamb ≤ Tmax. VCC = +5V, R L = 2kΩ Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. Isink Io VOH VOL 4/12 Low Level Output Voltage RL = 10kΩ Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. V/mV dB 500 600 600 VCC -1.5 VCC -2 40 26 25.5 27 26.5 800 900 900 1000 µA V dB mA mA µA 60 mA 27 28 V 3.5 3 5 15 20 mV TS321 Table 2. Symbol SR GBP Electrical Characteristics Vcc+ = +5V, Vcc- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Parameter Conditions Typ. Max. Unit Slew Rate VCC = +15V, Vi = 0.5 to 3V, R L = 2kΩ, CL = 100pF, Tamb = +25°C, unity gain 0.4 V/µs Gain Bandwith Product VCC = 30V, f = 100kHz, Tamb = +25°C, Vin = 10mV, R L = 2kΩ, CL = 100pF 0.8 MHz 60 Degrees 0.015 % 40 nV -----------Hz φm Phase Margin THD Total Harmonic Distortion f = 1kHz, AV = 20dB, RL = 2kΩ, V o = 2Vpp, CL = 100pF, Tamb = +25°C, VCC = 30V Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, VCC = 30V en Min. 1. Vo = 1.4V, Rs = 0W, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without damage. 5/12 Electrical Characteristics Figure 2. TS321 ICC = f(t) Figure 3. AC coupled inverting amplifier Rf 100kW CI A V= - Rf R1 (as shown AV = -10) R1 10kW Co 0 eo eI ~ R2 VCC 100kW RB 6.2kW R3 100kW 2VPP RL 10kW C1 10mF Figure 4. Non-inverting DC gain Figure 5. R1 100kW A V = 1 + R2 R1 10kW (As shown A V = 101) 1/4 TS324 eO +5V AC coupled non-inverting amplifier R2 1MW A V= 1 + R2 R1 (as shown AV = 11) C1 0.1mF Co 0 eo CI e O (V) R1 10kW R2 1MW RB 6.2kW eI ~ R3 1MW RL 10kW R4 100kW VCC 0 Figure 6. e1 DC summing amplifier 100kW eO 100kW e2 100kW e3 100kW 100kW e4 6/12 e I (mV) 100kW C2 10mF R5 100kW 2VPP TS321 Macromodel 4 Macromodel Note: Please consider following remarks before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS321 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 7/12 Macromodel TS321 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS Table 3. VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Unit 0 mV Avd RL = 2kΩ 100 V/mV ICC No load, per operator 300 µA 0 to +3.5 V Vicm VOH RL = 2kΩ +3.5 V VOL RL = 2kΩ 5 mV Vo = 0V 40 mA GBP RL = 2kΩ, CL = 100pF 0.8 MHz SR RL = 2kΩ, CL = 100pF 0.4 V/µs ∅m RL = 2kΩ, CL = 100pF 60 Degrees Ios 8/12 Value TS321 Macromodel Figure 7. ICC = f(t) Figure 8. AC coupled inverting amplifier Rf 100kW CI A V= - Rf R1 (as shown AV = -10) R1 10kW Co 0 eo eI ~ R2 VCC 100kW RB 6.2kW R3 100kW 2VPP RL 10kW C1 10mF Figure 9. Non-inverting DC gain Figure 10. AC coupled non-inverting amplifier R1 100kW A V = 1 + R2 R1 10kW (As shown A V = 101) 1/4 TS324 eO +5V R2 1MW A V= 1 + R2 R1 (as shown AV = 11) C1 0.1mF Co 0 eo CI e O (V) R1 10kW R2 1MW RB 6.2kW eI ~ R3 1MW 2VPP RL 10kW R4 100kW VCC 0 e I (mV) C2 10mF R5 100kW Figure 11. DC summing amplifier e1 100kW eO 100kW e2 100kW e3 100kW 100kW e4 100kW 9/12 Package Mechanical Data 5 TS321 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.1 SO-8 Package SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C 10/12 TS321 5.2 Package Mechanical Data SOT23-5 Package SOT23-5L MECHANICAL DATA mm. mils DIM. MIN. TYP MAX. MIN. TYP. MAX. A 0.90 1.45 35.4 57.1 A1 0.00 0.15 0.0 5.9 A2 0.90 1.30 35.4 51.2 b 0.35 0.50 13.7 19.7 C 0.09 0.20 3.5 7.8 D 2.80 3.00 110.2 118.1 E 2.60 3.00 102.3 118.1 E1 1.50 1.75 59.0 68.8 e 0 .95 37.4 e1 1.9 74.8 L 0.35 0.55 13.7 21.6 11/12 Revision history 6 TS321 Revision history Table 4. Document revision history Date Revision June 2001 1 – Initial release. July 2005 2 – PPAP references inserted in the datasheet see table order codes table on page 1. – ESD protection inserted in Table 1 on page 3 Sept. 2005 3 – Correction of errors in package names and markings in order codes table on page 1. – Minor grammatical and formatting corrections. 4 – Missing PPAP references inserted see order codes table on page 1. – Thermal Resistance Junction to Ambient and Thermal Resistance Junction to Case information added in Table 1 on page 3. – Macromodel updated see Chapter 4: Macromodel. Dec. 2005 Changes Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 12 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 12/12